内燃机的排气净化装置的制作方法

文档序号:21502608发布日期:2020-07-14 17:44阅读:109来源:国知局
内燃机的排气净化装置的制作方法

本发明涉及内燃机的排气净化装置。



背景技术:

在内燃机的排气通路设置有净化从内燃机产生的排气的催化剂及捕集器。作为催化剂,使用净化氮氧化物(nox)的选择型还原型催化剂(scr催化剂:selectivecatalyticreduction)等。捕集器捕集粒状物质(pm:particulatematter)。

通过将堆积于捕集器的pm燃烧,能够使捕集器再生。例如,已知有通过在内燃机中进行稀燃烧而使排气中的氧浓度变化从而进行捕集器再生的技术(例如日本特开2018-178981)。



技术实现要素:

通过将未燃燃料向催化剂供给,能够使排气的温度上升而使捕集器再生。但是,若捕集器的温度过度变高,则捕集器会损伤。于是,本发明提供能够抑制捕集器的损伤的内燃机的排气净化装置。

本发明的第一方案涉及排气净化装置。排气净化装置包括:燃料喷射阀,向内燃机喷射燃料;催化剂,设置于所述内燃机的排气通路、净化排气;捕集器,设置于所述排气通路中的比所述催化剂靠下游侧处、捕集粒状物质;燃料导入部,将从所述燃料喷射阀喷射的燃料以未燃的状态从所述内燃机向所述排气通路导入;及负荷控制部,控制所述内燃机的负荷的上限。在所述排气净化装置中,在所述燃料以未燃的状态向所述排气通路供给的情况下,所述负荷控制部将所述负荷的上限设为比所述喷射前的所述负荷的上限即第1限制值低的第2限制值。

上述第一方案的排气净化装置可以还包括在所述内燃机的进气通路设置的节气门。在所述排气净化装置中,所述负荷控制部可以通过控制所述节气门的开度的上限来控制所述负荷的上限。

在上述第一方案的排气净化装置中,所述负荷控制部可以在所述未燃的燃料的喷射结束时将所述负荷的上限设为所述第2限制值。

上述第一方案的排气净化装置可以还包括取得部,取得从所述未燃的燃料的喷射结束时起的向所述内燃机流动的空气的累计量。在所述排气净化装置中,可以是,在所述燃料以未燃的状态向所述排气通路供给且所述累计量为预定量以下的情况下,所述负荷控制部将所述负荷的上限设为所述第2限制值,在所述燃料以未燃的状态向所述排气通路供给且所述累计量比预定量大的情况下,所述负荷控制部使所述负荷的上限比所述第2限制值高。

能够提供能抑制捕集器的损伤的内燃机的排气净化装置。

附图说明

本发明的示例性实施例的特征、优点及技术上和工业上的意义将会在下面参照附图来描述,在这些附图中,同样的标号表示同样的要素,其中:

图1是例示混合动力车辆的示意图。

图2是例示排气净化装置的示意图。

图3是本实施方式中的时间图。

图4是例示ecu执行的控制的流程图。

具体实施方式

以下,参照附图对本实施方式的排气净化装置100进行说明。排气净化装置100搭载于混合动力车辆。

混合动力车辆

图1是例示混合动力车辆1的示意图。如图1所示,混合动力车辆1搭载混合动力系统9及内燃机10(发动机),具有驱动轮1a及1b。混合动力车辆1也可以是蓄电池2能够由外部电源充电的插电式混合动力车辆。内燃机10例如是汽油发动机,使燃料燃烧来产生动力。

混合动力系统

混合动力系统9包括蓄电池2、变换器3、电动发电机(mg:motorgenerator)4及5、动力分配机构6、减速齿轮7及减速器8。mg4及5具有马达功能(动力运行)及发电功能(再生),经由变换器3而连接于蓄电池2。

动力分配机构6例如由包括将太阳轮、行星轮及齿圈的行星齿轮构成,连结于内燃机10及mg4,且经由减速器8而连结于驱动轮1a。内燃机10输出的动力由动力分配机构6分配而传递至驱动轮1a侧和mg4侧。减速齿轮7连结于mg5,经由减速器8而连结于驱动轮1a。mg5输出的动力经由减速齿轮7及减速器8而向驱动轮1a传递。

蓄电池2放电的直流电力由变换器3变换为交流电力,而向mg4或5供给。在蓄电池2的充电时,mg4或5发电的交流电力由变换器3变换为直流电力,而向蓄电池2供给。在蓄电池2上也可以连接进行电力的升压及降压的转换器。关于ecu(electroniccontrolunit:电子控制单元)50将在后文叙述。

排气净化装置

图2是例示排气净化装置100的示意图。如图2所示,排气净化装置100应用于内燃机10,具备ecu50、scr催化剂40及捕集器42。

内燃机10例如是具有4个气缸#1~#4的四缸的汽油发动机,搭载于车辆。内燃机10的气缸#1~#4连接于进气歧管22及排气歧管24。在进气歧管22的上游侧连接有进气通路20。在排气歧管24的下游侧连接有排气通路26。

在进气通路20从上游侧起依次设置有空气流量计21、涡轮增压器36的压缩机36a、中冷器25及节气门30。空气流量计21测定向进气通路20导入的空气量。通过压缩机36a旋转而将进气增压。中冷器25冷却进气。通过节气门30的开度来调整进气的流量。进气通过进气歧管22而向气缸#1~#4导入。

在各气缸设置有燃料喷射阀12及火花塞14。另外,在进气歧管22与气缸对应地设置有4个燃料喷射阀13。燃料喷射阀12及13连接于共轨18。从泵16向共轨18供给高压的燃料,当燃料喷射阀12开阀时,燃料向气缸内喷射。燃料喷射阀13进行燃料的进气口喷射(端口喷射)。内燃机10具有燃料喷射阀12及13的至少一方即可。

在气缸内燃料与空气被压缩,火花塞14对混合气点火。通过燃烧而产生的排气通过排气歧管24及排气通路26而排出。

进气歧管22和排气歧管24由egr(exhaustgasrecirculation:排气再循环)通路28连接。排气的一部分通过egr通路28而向进气歧管22内的吸入空气合流。在egr通路28设置有egr阀32及egr冷却器34。通过调整egr阀32的开度来调整egr通路28内的排气的循环量。egr冷却器34使egr通路28内的排气的温度下降。

在排气通路26从上游侧起依次设置有涡轮增压器36的涡轮36b、空燃比传感器41、scr催化剂40、温度传感器43及捕集器42。涡轮36b及压缩机36a通过排气流入而旋转,将进气增压。空燃比传感器41检测空燃比。温度传感器43测定排气的温度。

scr催化剂40是将排气中的nox还原净化的选择还原型的催化剂。捕集器42例如是由多孔质的陶瓷等形成的gpf(汽油颗粒捕集器),捕集排气中的pm(颗粒物质)。在捕集器42也可以担载促进pm的氧化的催化剂。差压传感器44包括在捕集器42的上游侧和下游侧设置的2个压力传感器,ecu50根据这些压力传感器的压力来检测捕集器42前后的差压。

通过使堆积于捕集器42的pm燃烧而除去该pm,来进行使捕集器42再生的再生处理。通过为预定的温度以上且包含氧的排气向捕集器42流动,pm燃烧。使从燃料喷射阀12或13喷射的燃料不燃烧而向排气通路26导入,通过未燃燃料向scr催化剂40流动而排气升温。通过这样生成的高温的排气向捕集器42流动,来进行捕集器42的再生。此外,有时将以捕集器42的再生为目的的燃料喷射记为再生喷射。

但是,若捕集器42的温度过度上升,则捕集器42会损伤。在捕集器再生中,堆积于捕集器42的pm燃烧,因此捕集器42升温。尤其是,在未燃燃料的喷射后,会产生高温的排气,若在喷射后混合动力车辆1加速,则高温的排气大量流入捕集器42。因而,温度可能会大幅上升。在本实施方式中,通过降低内燃机10的负荷率来抑制捕集器42的升温。

ecu50具备cpu(centralprocessingunit:中央处理单元)、ram(randomaccessmemory:随机存取存储器)及rom(readonlymemory:只读存储器)等存储装置等,通过执行存储于rom、存储装置的程序来进行各种控制。ecu50能够取得空气流量计21检测的空气量,对预定的期间内的空气量进行累计。ecu50取得空燃比传感器41检测的空燃比,取得温度传感器43取得的排气的温度,基于差压传感器44检测的压力来取得捕集器42的前后的差压。

ecu50控制燃料喷射阀12及13的燃料喷射、火花塞14的点火,控制节气门30及egr阀32的开度。ecu50通过从燃料喷射阀12及13的至少一方喷射燃料且不进行火花塞14的点火,从而作为将燃料以未燃的状态向排气通路26导入的燃料导入部发挥功能。ecu50作为确定内燃机10的负荷率的限制值的负荷控制部发挥功能,通过控制节气门30的开度而将负荷率控制成限制值以内。

图3是本实施方式中的时间图,从上排起依次表示车速、再生喷射、scr催化剂40的温度(催化剂温度)、捕集器42的温度(捕集器温度)、内燃机10的负荷率、累计空气量。图中的虚线表示比较例,实线表示实施方式。

负荷率是将最大的负荷设为100%时的负荷的比率,负荷率的增加及下降分别意味着负荷的增加及下降。负荷例如是节气门30的开度,负荷及负荷率越大则节气门30的开度越大。l1及l2是负荷率的限制值(上限),l2比l1低,例如为l1的7成(70%)以上且9成(90%)以下。累计空气量表示在时间t1以后向进气通路20导入的空气的量的累计值。

如图3所示,在时间t0燃料的再生喷射开始,在时间t1结束。通过再生喷射而催化剂温度上升。车速在再生喷射中(期间)下降,从喷射后起增加。ecu50例如根据驾驶员的加速器踩踏程度等来控制节气门30的开度(负荷)。

在比较例中,负荷率的限制值恒定在l1。在再生喷射的结束后负荷率上升,达到作为上限的l1。因而,从scr催化剂40向捕集器42流入高温的排气,捕集器温度也上升,达到t1。其结果,捕集器42可能会因热而熔融。

另一方面,在实施方式中,时间t1以前及时间t2以后的负荷率的限制值是l1,在t1起到t2为止的期间中限制值是比l1低的l2。因而,再生喷射后的负荷率即使最大也为l2,低于比较例。由此,排气的流量减少,捕集器42的升温被抑制。如图3所示,捕集器温度不上升至t1,成为比t1低的t2,之后下降。因此,捕集器42的损伤被抑制。

在时间t2下,从再生喷射结束后起的累计的累计空气量达到a0。此时,负荷率的限制值从l2恢复为l1。若累计空气量成为a0,则排气也充分多地流动,可认为通过再生喷射而成为了高温的排气流出到捕集器42的下游侧。因此,即使将限制值恢复为l1,捕集器42的损伤的可能性也小。

图4是例示ecu50执行的控制的流程图。如图4所示,ecu50执行再生喷射(步骤s10),使从燃料喷射阀12及13的至少一方喷射的燃料不燃烧而向排气通路26导入。ecu50判定是否为再生喷射中(步骤s12)。在肯定判定(是)的情况下,ecu50将负荷率的限制值设为l1(步骤s14)。该状态对应于图3的时间t0~t1。

另一方面,在否定判定(否)的情况下,ecu50对空气量进行累计而取得累计空气量a(步骤s16),判定累计空气量a是否为a0以下(步骤s18)。在否定判定的情况下,ecu50将负荷率的限制值设为l1(步骤s14)。该状态对应于图3的时间t2以后。在肯定判定的情况下,ecu50将负荷率的限制值设为l2(步骤s20)。该状态对应于图3的时间t1~t2。以上,控制结束。

根据本实施方式,在未燃燃料的供给后,ecu50将负荷率的限制值设为比供给前的限制值l1低的l2。由此,高温的排气难以流向捕集器42,捕集器42的升温被抑制,被抑制为比t1低的t2左右。其结果,捕集器42的损伤被抑制。

负荷率的限制值具体而言对应于节气门30的开度的上限。也就是说,与限制值是l1的情况相比,在限制值是l2的情况下开度的上限小。因此,开度被缩小,向内燃机10导入的空气量及排出的排气量减少。其结果,由排气引起的捕集器42的升温被抑制。

也可以在喷射结束后的任意的时间点下使限制值从l1成为l2。但是,在再生喷射后的加速中,由于向负荷施加限制而驾驶性能恶化。ecu50在未燃燃料的喷射中将限制值设为l1,从结束时的t1到t2期间将限制值设为l2。通过与喷射结束同时地将限制值降低为l2,能够使因未燃燃料的影响而成为了高温的排气的流量下降,有效地抑制捕集器42的升温。另外,驾驶性能的恶化被抑制。此外,ecu50例如也可以在喷射中(t0~t1)使限制值变化成l2。

如图3所示,在再生喷射后捕集器温度上升至t2,因此堆积于捕集器42的pm燃烧。即,根据本实施方式,能够兼顾捕集器42的过度的升温的抑制和再生两者。

ecu50取得从再生喷射结束后起的累计空气量a,若a为阈值a0以下则将限制值设为l2(图3的t1~t2),若a超过a0则将限制值设为l1(t2以后)。在图3的t1~t2的期间中,因再生喷射而成为了高温的排气向捕集器42流入,因此可能会过度升温。于是,通过将限制值设为l2来抑制升温。另一方面,若累计空气量a变得比a0多,则成为了高温的排气流向比捕集器42靠下游侧处。因而,即使将限制值从l2提升为l1,过度的升温的可能性也小。另外,通过限制值成为l1,节气门30的开度变大,能够实现内燃机10的输出增加。其结果,能够得到驾驶员要求的输出,驾驶性能改善。此外,时间t2以后的限制值比l2高即可,可以与l1相等,也可以与l1不同。

如图1所示,混合动力车辆1除了内燃机10之外还具有mg5作为驱动源。因此,在如图3的时间t1~t2那样将负荷率以l2进行限制的期间,mg5也可以产生驱动力。由此,驾驶性能改善。

虽然内燃机10是汽油发动机且捕集器42设为了gpf,但也可以是,内燃机10是柴油发动机且捕集器42是dpf(柴油颗粒捕集器)。在柴油发动机中,例如通过后喷射等来供给未燃燃料。

以上,虽然对本发明的优选的实施方式进行了详述,但本发明不限定于该特定的实施方式,能够在权利要求书所记载的本发明的主旨的范围内进行各种变形、变更。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1