压缩机和/或膨胀机装置的制造方法

文档序号:8919262阅读:206来源:国知局
压缩机和/或膨胀机装置的制造方法
【专利说明】压缩机和/或膨胀机装置
[0001]本申请是名称为“压缩机和/或膨胀机装置”、申请日为2010年5月21日、国际申请号为PCT/US2010/035795、国家申请号为201080028681.2的发明专利申请的分案申请。
[0002]相关申请的交叉引用
[0003]本申请要求2009年5月22日提交的名称为“压缩机和/或膨胀机装置”的美国临时专利申请序列N0.61/216,942的优先权和权益,该申请的全部公开内容通过参引的方式并入本文。
技术领域
[0004]本发明整体上涉及用于气体比如空气的压缩和/或膨胀的系统、装置及方法,并且具体地涉及一种包括允许从被压缩和/或膨胀的气体交换热和/或将热交换给该气体的特征的装置。
【背景技术】
[0005]传统地,发电厂的大小定为适应峰值电力需求。发电厂会在它们能够如何快速起动和关闭方面受限制,并且完全关闭发电厂通常不可行。电力输出限制与起动和关闭限制的组合限制了电厂最佳地满足波动的电力需求的能力。这些限制可能引致增大的温室气体排放、增大的总燃料消耗、和/或潜在的更高的运行费用、以及其他缺点。为电厂补充能量存储系统可以产生存储电力以用于以后使用的能力,这可以允许电厂以使这些缺点最小化的方式完成波动的消费者需求。
[0006]能量存储系统可以改进发电厂的总运行费用、可靠性、和/或排放曲线。但是,现有的能量存储技术存在缺点。作为示例,蓄电池、飞轮、电容器和燃料电池可以提供快速响应时间并且可以有助于补偿临时断电,但是具有有限的能量存储能力并且可能实施成本高。安装其他更大容量的系统比如泵吸式水力系统需要特定的地质形成,该地质形成不是在所有位置处均可或得。
[0007]间歇式发电地点比如一些风力发电厂可能具有超过传输能力的容量。缺少合适的能量存储系统,这种间歇式发电地点可能不能以全容量进行操作。当发电地点能够以高于可传输的速率产生能量时,间歇式发电地点可以获益于大小能够定为存储能量的存储系统。当由间歇地点产生的电力低于传输线路容量时所存储的能量可以通过传输线路释放。
[0008]压缩空气能量存储(CAES)系统是用于以压缩空气的形式存储能量的有限使用的另一种已知类型的系统。CAES系统可以用于当电力需求为低时,典型地在夜晚期间,以压缩空气的形式存储能量,并且随后当需求为高时,典型地在白天期间释放能量。这种系统包括压缩机,该压缩机通常以恒定的速度进行操作以压缩用于存储的空气。与压缩机分离的涡轮机和涡轮膨胀机典型地用于膨胀压缩空气以发电。但是,涡轮机和涡轮膨胀机常常需要压缩空气以较恒定的压力比如大约35个大气压提供。另外地或可选地,压力高于35个大气压的空气可能需要在涡轮机中膨胀之前被节流,从而导致另外的损耗,该损耗也减小系统的效率和/或减小存储结构可以容纳的能量密度。另外,为了增大通过涡轮机膨胀的每单位空气产生的电能,在这种系统中的压缩空气常常在膨胀之前通过燃烧化石燃料预加热到升高的温度(例如,l,000°c ),这增大了存储能量的成本、减小总效率、并且产生与能量存储相关联的排放。
[0009]用于将能量存储为压缩空气的已知CAES型系统具有多级压缩机,该多级压缩机可以包括冷却压缩机的级之间的空气的级间冷却器和/或在压缩之后冷却空气的级后冷却器。但是,在这种系统中,为了使级间冷却器有效地工作,在压缩的每个级期间在被冷却之前空气仍然必须达到显著的温度,这将引入系统的低效率。由此,需要提供具有改进的效率的CAES型系统。

【发明内容】

[0010]本文描述了用于操作液压致动装置/系统的系统和方法。在一个实施例中,系统包括:至少一个限定有内部区域的压力容器,所述内部区域用于保持液体体积或气体体积中的至少一种;以及致动器,所述致动器联接至所述压力容器并且与所述压力容器流体连通。所述致动器具有第一操作模式,在所述第一操作模式下,设置在所述压力容器内的液体体积被移动以压缩气体并且使气体移动离开所述压力容器。所述致动器能够具有第二操作模式,在所述第二操作模式下,设置在所述压力容器内的液体体积被进入所述压力容器内的膨胀气体移动。所述系统还能够包括热传递装置,所述热传递装置构造为将热传递给由所述压力容器保持的液体体积或气体体积中的至少一种或从该液体体积或气体体积中的至少一种传递热。
【附图说明】
[0011]图1是根据实施例的空气压缩和膨胀能量系统的示意图;
[0012]图2A是根据一个实施例的空气压缩和膨胀能量系统的示意图,其示出了压缩循环期间的能量流;
[0013]图2B是根据一个实施例的空气压缩和膨胀能量系统的示意图,其示出了膨胀循环期间的能量流;
[0014]图3A示出了压缩机/膨胀机装置的一个实施例的单个级;
[0015]图3B是沿图3A的横截面3B-3B截取的一个分隔器的横截面图,并且示出了在压力容器的空气内的点与压力容器内的热通过其传递的表面之间的平均最小距离的图示;
[0016]图4A-图4C示出了可以增大压力容器内的热传递表面积的分隔器的各种构型的横截面;
[0017]图5A-图5C示出了在根据一个实施例的压缩或膨胀循环的不同级中的空气/液体界面;
[0018]图6示出了根据一个实施例的带有热交换器的容器,所述热交换器可以用于将热传递给压力容器的液体或从压力容器的液体传递热;
[0019]图7A示出了根据一个实施例的多级压缩机/膨胀机装置;
[0020]图7B-图7E示出了在压缩循环期间处于不同的级中的图7A的多级压缩机/膨胀机装置;
[0021]图7F-图71示出了在膨胀循环期间处于不同的级中的图7A的多级压缩机/膨胀机装置;
[0022]图8示出了结合到风力涡轮机中的根据一个实施例的压缩空气存储系统;
[0023]图9示出了根据一个实施例的压缩机/膨胀机装置的示意横截面图,所述压缩机/膨胀机装置构造为使得其可以结合到风力涡轮机的塔中;以及
[0024]图10示出了在通过根据一个实施例的用于改变存储结构空气压力的压缩机/膨胀机装置进行膨胀的期间在不同级处的压力水平的图表。
【具体实施方式】
[0025]本文公开了用于以改进的效率将能量存储为比如空气的压缩气体和/或从所存储的压缩气体产生能量的系统和方法。所述装置的多个方面可以涉及在空气的压缩期间和在空气的膨胀期间在热力学和/或机械效率方面的改进。
[0026]空气压缩的能量流特征由各种能量流的组合构成,包括“做功能量流”和“热能量流”。熟悉本领域的技术人员将理解术语“能量”、“做功”、“热量”、“温度”、“压力”、“体积”和“密度”之间的区别。本讨论通过以这些术语的确切的热力学意义使用这些术语进行,并且不用于教导区别。
[0027]众所周知的气体压缩动力学是比如空气的气体当其被压缩时温度升高。热量和温度的热力学概念相互关连,使得没有热量流出压缩气体的气体压缩过程导致最大的气体温度升高。这种零热量流动过程称为“绝热”过程。相比之下,如果热量以充分的速率流出压缩气体,则气体可以压缩而没有温度变化。这种恒定温度的过程称为“等温”压缩。
[0028]对于给定的气体体积减小,绝热压缩过程导致最高的气体压力、最高的气体温度、和最高的做功消耗。相比之下,对于相同的体积减小,等温压缩过程导致最低的压力、最低的气体温度(即,与起始温度相同)、和最低的做功消耗。涉及中间水平的热量流动的过程导致气体压力、气体温度和做功消耗的中间值。本领域的技术人员将认识到,理想的等温空气压缩过程是理论极限,其在现实中仅能够通过结合较冷的散热器来实现;尽管其是用于空气压缩/膨胀讨论和分析的有用度量。
[0029]因为其可以影响压力、温度和做功,接近等温气体压缩过程的能力可以用于设计能量存储装置。用于压缩空气能量存储装置的基本目标是使被消耗以实现特定的气体存储条件的做功最小化;该存储条件由气体的密度、温度、压力和体积限定。当使气体压缩期间消耗的功最小化是能量存储装置的基本目标的时候,熟悉本领域的技术人员将认识到,在压缩期间和存储期间需要注意与热相关的能量流。此外,熟悉机器设计领域的技术人员将认识到,需要注意与压力和温度相关的限制;并且将认识到可能源自于更低温度和压力的益处。熟悉热力学领域的技术人员将认识到,与气体压缩相关的因素对于气体膨胀以相反的方式相关,并且由此适合于从膨胀的气体吸取能量。关于能量存储系统,熟悉热力学和机器设计领域的技术人员将认识到,等温气体压缩过程单独不足以实现有用的能量存储系统,但是还将认识到能够得益于近等温过程出现。
[0030]在空气的压缩中实现特定的压力涉及到的做功可以通过在压缩过程期间从空气中移除热而减小,从而减小因温度的升高而导致的压力升高所需要的额外的功。相似地,当空气膨胀到给定的压力时能够从压缩的空气得到的做功的量能够通过在膨胀过程期间防止空气温度下降而连续添加热量而增大。
[0031]热量(S卩,热能)可以在压缩期间从空气中移除。以该方式移除热量可以减小系统可能设计以适应的最大温度。另外,增大给定压力下的密度和从空气移除热量可以增大能够存储在给定的空间体积中的空气质量,并且减小用于增大在存储压力下的空气密度所需的做功。应当理解的是,给定的空气质量在处于更低的温度下时占据更小的空间。就此而言,向存储装置提供相对更冷的空气可以增大可由系统存储的总的空气质量。
[0032]热量还可以在进气冲程之前或期间被移除,这实现了多个益处,包括在压缩冲程开始时的更高密度的空气、以及潮湿空气的干燥。该动作还通过在进气冲程期间将空气暴露给在先前的压缩冲程期间已经由液体冷却的热容结构来实现。另外,入口上游的预冷却器能够实现相似的或另外的益处。
[0033]另外,在将空气排放到大气中之前的任一时间可以将热能添加回膨胀空气中以升高或维持其温度。添加热量到压缩空气中将压力升高为高于其本来的压力。以该方式,系统能够利用来自存储装置中的更小的空气质量流输出相同或更大的功率。换言之,对于相同的质量流而言功率更大。
[0034]在一些实施例中,提供了在压缩和/或膨胀期间促进更大的热传递的一个或多个特征。这些特征可以包括但不限于较慢的压缩和/或膨胀循环、对于给定的空气体积在空气与相邻表面之间的较大的热传递面积、和/或在热量通过其传递的装置中的空气与装置的液体或结构之间的小的平均最小距离。
[0035]在一些实施例中,系统包括可以用于在一个操作模式中压缩空气以用于存储在存储结构中的压缩机/膨胀机装置。压缩空气可以在以后的时间通过相同的压缩机/膨胀机装置在不同的操作模式中膨胀以释放能量。热量可以在压缩期间从空气中移除和/或在膨胀期间添加至空气中以改进装置的效率。往返行程的热效率(即,与压缩一定量的空气并且随后膨胀该相同量的空气以产生机械能并且排除机械的、电的、或其他寄生系统损失后直接相关联的效率)可以为50%或更高、60%或更高、70%或更高、80%或更高、以及甚至90%或更高。
[0036]在一些实施例中,压缩机/膨胀机装置能够包括在压缩和/或膨胀循环的至少一部分期间要至少部分地填充液体的一个或更多个压力容器。在操作的压缩模式下,当装置的致动器使液体从容器内移位以增大压力容器中可用于空气的体积时,空气能够从大气被吸入压力容器内或者从上游压缩机接收。液体随后通过致动器被移动或泵吸到容器内以减小压力容器中可用于空气的体积,从而压缩空气和从其输送空气。在操作的膨胀模式下,加压的空气可以由压力容器接收以使压力容器中的液体移位并且驱动致动器以从压缩气体释放和传递能量。当压力容器中可用于空气的体积随后减小时,已经膨胀的空气可以随后从压力容器排放到大气中,排放到下游压缩机/膨胀机装置或用于进一步膨胀的其他装置中。
[0037]在一些实施例中,热量可以从压缩在压力容器中的空气传递以减小实现给定密度所需的功,这可以增大压缩过程的效率。在一些实施例中,可以提供增大的热传递的装置包括但不限于压缩和/或膨胀可能发生的较慢的操作速度。在一些实施例中,完全的压缩或膨胀循环可以足够慢以提供用于在空气与液体之间的热传递的另外的时间。根据一些实施例,足够的热能可以被传递以近似于等温压缩和/或膨胀过程,从而实现与其相关联的效率。另外地或可选地,更快的速度可允许在膨胀期间等温地或温度变化地实现更大的功率水平,这对于系统操作有时是期望的。
[0038]尽管认识到注意能量流对于设计有用的能量存储系统而言是基本的,对于系统而言实现有意义的能量流速率也是重要的。能量流速率一一意味着每单位时间的能量一一也称为“功率”。有意义的高功率水平的值对于本领域的技术人员应当是清楚的。但是,应当指出的是,所描述的发明的关键方面是在压缩/膨胀空气与系统的处理液体之间可以实现的热量流动速率。此外,本发明实现的关键特征可以是其响应于较小的空气温度变化实现的较高的热传递速率。
[0039]在一些实施例中,热量可以通过在压力容器中的液体从被压缩和/或膨胀的空气传递或传递给该空气。应理解的,空气/液体界面可以在压力容器中的压缩和/或膨胀过程期间运动和/或改变形状。该运动和/或形状改变可以向压缩机/膨胀机装置提供热传递表面,该热传递表面能够适应在压缩和/或膨胀期间热量通过其传递的压力容器的内区域的变化的形状。在一些实施例中,液体能够使在压缩之后留在压力容器中的空气体积几乎消除或完全消除(即,零余隙体积)。
[0040]一般而言,当与空气进行比较时,液体可以具有较高的热容,使得当热量穿过其中时液体可以维持相对恒定的温度,从而使系统缓冲于明显的温度变化。在空气与液体或容器自身的部件之间传递的热量可以通过与液体或容器的部件相接触的一个或多个热交换器从压力容器移动或移动到压力容器。可以用于完成该目的的一种类型的热交换器是热管,如在本文中详细描述的那样。空气和处理液体的热控制可以通过质量传递、热传递或这两者的任意组合来实现。
[0041 ] 在一些实施例中,分隔器可以定位在压力容器的体积内部以增大在压力容器的液体和固体以及被压缩和/或膨胀的空气的热传递表面处的热传递面积。所构思的用于增大热传递表面积的方法包括使用流体到固体和流体到流体。每一个分隔器可以定形为和/或可以定位为在压力容器内捕获空气体积或空气穴,这样除了分隔器与空气之间的界面(即,空气/分隔器界面)以外,提供了一个或多个空气/液体界面。空气/液体界面和空气/分隔器界面提供了在压缩和/或膨胀期间热量可以通过其传递的表面。分隔器可以构造为使得热量通过其传递(要么在空气/液体界面处直接传递要么通过空气/分隔器界面的分隔器的部分间接地传递)的液体的面积可以维持基本恒定,即使朝向压缩循环的终点也如此,此时仅较小的空气体积保持在压力容器中。朝向压缩的终点维持用于热传递的大的表面积可以在压缩期间提高效率,这是由于缺少热移除的该部分的压缩过程典型地经受温度的最大升高和对压缩效率的最大破坏。将理解的是,朝向压缩的终点,可用于空气的体积的递增的变化可能导致可用于空气的总体积的最大百分比变化,并且由此可能与缺少热移除的最大温度变化相关联。类似的效果可以通过贯穿膨胀循环并且特别是在膨胀循环的起点处维持用于从液体和/或分隔器到空气的热传递的较大面积来实现。
[0042]在一些实施例中,提供用于将热量传递给空气/从空气传递热量的空气/液体界面和空气/分隔器界面的分隔器可允许压力容器的结构部件(例如,外壳)定形为和/或定尺寸为用于最佳的结构限制和/或运输限制,同时还增大用于与在压力容器内压缩或膨胀的空气进行热传递的面积。根据一些实施例,分隔器可以包括盘状或其他端部开口的形状,这些形状构造为当空气被压缩和/或膨胀时在压力容器内
当前第1页1 2 3 4 5 6 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1