一种铝电解过程槽电压的多目标优化方法与流程

文档序号:18462839发布日期:2019-08-17 02:11阅读:320来源:国知局
一种铝电解过程槽电压的多目标优化方法与流程

本发明涉及铝电解技术领域,特别涉及一种铝电解过程槽电压的多目标优化方法。



背景技术:

在铝电解生产过程中,在保证生产健康稳定运行的前提下,合理降低槽电压是节能降耗的有效办法。由于生产参数之间非线性、强耦合的关系,且槽电压不可直接控制,不能简单地采取降低槽控机中设定电压的做法,这可能导致电流效率的降低和槽状态的恶化。若想降低槽电压,操作工人需要结合当前槽状态及其趋势来调整相关可控参数的设定值,达到间接控制槽电压的效果,才能做到节能降耗生产。目前,大多数工厂通过试探法来调整设定值,但控制效果往往对操作员依赖性高、耗时、留有降低空间。为获得一组最优的设定值,建立槽电压的多目标优化模型,对生产稳定、节能生产有重要指导意义。



技术实现要素:

本发明的目的在于提供一种铝电解过程槽电压的多目标优化方法,通过优化槽电压和电解槽综合状态指标,获得一组最优的可控参数设定值,将设定值下发底层控制系统,保证铝电解的节能、稳定生产。

本发明的上述目的通过以下技术方案予以实现:

一种铝电解过程槽电压的多目标优化方法,包括如下步骤:

步骤一:从工厂现场的设备上采集若干组原始数据,其中每一组原始数据包括铝电解过程中的槽平均电压、电流效率、效应累计发生时间、槽电阻、分子比、氧化铝浓度、出铝量、极距、电解质温度、电流这些参数的现场数据,并对原始数据进行异常值剔除;

步骤二:将反映电解槽三种平衡状态的三个参数:效应累积发生时间(t)、槽平均电压(v)、电流效率(w)偏离理想状态的程度作为评判槽状态的依据,建立电解槽状态的综合状态指标模型;

步骤三:搭建自回归移动平均(arma)模型,预测槽状态综合指标的时间序列d(k),得到槽状态的自然延续趋势d(k+1);

步骤四:将未来槽状态看作由两部分组成:目前槽状态的自然延续d(k+1)、工人操作控制效果,建立模糊神经网络(fnn)模型,融合这两部分信息进行槽状态预测,求得未来槽状态;

步骤五:采用蚁狮优化算法(alo)优化的最小二乘支持向量机(lssvm)建立槽电压的预测模型;

步骤六:以槽平均电压与目标值之差最小、未来槽状态良好为目标,以生产操作要求为约束条件,建立槽电压的多目标优化模型;

步骤七:采用多目标蚁狮优化算法(moalo)求解步骤六所建立的模型,求得一组最优操作参数设定值。

所述步骤二中,综合电解槽的稳定性参数——效应累积发生时间(t)、能量平衡参数——槽平均电压(v)、电解槽物料平衡参数——电流效率(w),建立综合槽状态空间,如下所示:

式中,v优为优化槽电压,由先验知识确定。(u,v,w)与原点(0,0,0)的距离反映了槽状态偏离理想状态的程度。即:

d越大,说明该点槽状态偏离理想状态越远,槽状态越差;相反,d越小,则槽状态偏离理想状态越小,槽状态越好。

所述步骤三中,首先采用alo优化arma(m,n)的模型阶数,再采用优化后的模型预测综合状态指标的时间序列d(k+1)。

所述步骤四中,联合d(k+1)预测模型和模糊神经网络(fnn)建立槽状态预测模型,模型结构如附图2所示。

所述步骤五中,采用alo优化lssvm的核函数参数和惩罚因子,再用优化后的lssvm进行槽电压预测。

所述步骤六中,考虑到现实生产中,工人调整操作参数时应该遵守“少量多次”的准则,如:槽电阻、分子比、氧化铝浓度、出铝量的单次调整量不应超过0.2μω、0.9、1.3、40kg,调整结束后槽电压和槽状态都处在最优的临界状态。基于此要求,以未来槽状态良好、槽电压与最优值之差最小为目标,以生产操作要求为约束条件,建立槽电压的多目标优化模型如下:

fitness1=min[f(g)-v优]

fitness2=mins(g)

式中,r基、o基、m基、v优分别是是基准槽电阻、基准分子比、基准氧化铝浓度、优化槽电压,由先验知识确定。f(g)=f(s1,s2,s3,s4,x1,x2,x3)为槽平均电压预测模型,min[f(g)-v优]代表槽平均电压与最优值无限接近,体现节能降耗的生产目标。s(g)是槽状态预测模型,mins(g)代表未来槽状态无限接近最优槽状态,体现安全生产的生产要求。

与现有技术相比,本发明具有以下有益效果:本发明通过建立槽电压的多目标优化模型,获得一组最优的可控参数设定值,在保证槽状态优良的同时有效降低槽电压,从而达到稳定、节能的生产目标。

附图说明

图1本发明一种铝电解过程槽电压的多目标优化方法的步骤示意图;

图2基于arma-fnn的槽状态预测模型结构示意图;

图3基于arma(m,n)的时间序列预测模型建模过程示意图;

图4基于alo-lssvm的槽电压预测模型建模过程示意图;

图5基于moalo的槽电压多目标优化模型求解过程;

图6槽电压优化控制仿真结果。

具体实施方式

下面结合附图,对本发明进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。

铝电解生产中,可控参数有槽电阻、分子比、氧化铝浓度,而其他参数都不可控或不可精确控制。本发明建立槽电压的多目标优化模型,寻求一组最优的可控参数设定值,通过控制该组参数在目标范围内达到降低槽电压的效果,从而达到稳定、节能的生产目标。具体实施主要有三个环节,建立目标函数模型、搭建优化模型、求解模型,如附图1所示。

降低槽电压是生产控制的目标之一。槽电压是指强大的直流电流入电解槽时在进电端和出电端之间形成的电压降。实际生产过程中,槽电压不可在线测量,只能通过工人定期的离线检测获得,一般工厂是每天一测,有些工厂是几天一测。槽电压的检测滞后,操作工人得不到及时的控制反馈,很大程度上影响了生产的控制效果。为此,建立槽电压的软测量模型十分有必要。由工艺分析,极距、分子比、电阻、氧化铝浓度、出铝量、电解质温度、电流是影响槽电压的主要参数,采用最小二乘支持向量机进行槽电压预测。

保持稳定生产也是生产控制的目标之一。实际生产中,反应过程伴随着高温强腐蚀的特点使得工人无法直接观察槽状态,只能从电解槽的相关参数推测当前槽状态。判断结果的准确度依赖于工人的经验是否准确。为此,建立槽状态预测模型,有利于工人及时了解生产控制效果。未来槽状态由两部分组成:目前槽状态的自然延续d(k+1)、工人操作控制效果。目前槽状态包括三种状态:稳定性、物料平衡、能量平衡,建立综合指标d(k)可综合评价三种状态。另外,目前槽状态的自然延续d(k+1)可由时间序列预测模型获得。利用模糊神经网络融合d(k+1)和工人操作控制效果两部分信息,建立槽状态预测模型,结构如图2所示。

为了稳定、节能的生产目标,以槽状态预测结果最小、槽平均电压无限接近最优值为目标,以操作要求为约束条件,建立槽电压的多目标优化模型,采用多目标优化算法解模型,获得一组操作参数的最优组合。

该铝电解过程槽电压的多目标优化方法包括如下步骤:

步骤一:从工厂现场的设备上采集若干组原始数据,其中每一组原始数据包括铝电解过程中的槽平均电压、电流效率、效应累计发生时间、槽电阻、分子比、氧化铝浓度、出铝量、极距、电解质温度、电流这些参数的现场数据,并对原始数据中明显的测量无差点进行异常值剔除;

步骤二:建立电解槽状态的综合状态指标模型。在该步骤中,综合电解槽稳定性参数——效应累积发生时间(t)、能量平衡参数——槽平均电压(v)、物料平衡参数——电流效率(w)建立槽状态空间,如下所示:

式中,v优为优化槽电压,由先验知识确定。(u,v,w)与原点(0,0,0)的距离反映了槽状态偏离理想状态的程度。即:

d越大,说明该点槽状态偏离理想状态越远,槽状态越差;相反,d越小,则槽状态偏离理想状态越小,槽状态越好。

步骤三:使用自回归移动平均(arma)模型预测状态指标的时间序列d(k+1)。首先采用alo算法优化arma(m,n)的模型阶数,再采用优化后的模型预测综合状态指标的时间序列d(k+1),得到状态指标的自然延续趋势。模型建立的过程为:

1)种群随机初始化。根据式(1)随机生成n个蚂蚁和m个蚁狮,设置最大迭代次数、搜索空间的上下界ud、ld。设置蚁狮和蚂蚁种群规模n,最大迭代次数t。

z0=ld+rand(0,1)(ud-ld)(1)

2)计算个体适应度值。以个体z=(z1,z2)作为arma模型的阶数(m,n),向该模型输入平稳化后的d时间序列,以模型的相对误差作为个体fitness,如式(2)所示。

式中,f(i)代表第i个个体的适应度值。

3)更新蚂蚁、蚁狮和精英蚁狮的位置。蚂蚁随机游走的轨迹为(t是迭代次数):

xt=[0,...,comsum(2r(t)-1)](3)

蚂蚁的位置根据式(5)更新

ai、bi分别是数组xt中最大和最小值;分别是第t次迭代第i维变量的上边界和下边界,其计算方程为:

式(6)中是所围绕的蚁狮位置,ui、li分别是求解问题空间的第i维上界和下界。边界收缩比例i的方程如下:

其中t为当前迭代次数,t为最大迭代次数。

在alo算法中,蚂蚁的随机行为受到轮盘赌策略和精英蚁狮的影响,因此,蚂蚁的位置根据轮盘赌策略和精英蚁狮的随机移动的平均值进行更新。第t代第j个蚂蚁的位置更新公式为:

式中,是蚂蚁在第t代蚁狮种群中根据适应度大小轮盘赌选定一个蚁狮,并在其周围根据式(7)进行随机游走后的位置。是该蚂蚁在第t代精英蚁狮周围根据式(7)进行随机游走后的位置。

如果更新后的蚂蚁适应度大于选定蚁狮,则更新该蚁狮的位置到蚂蚁所在处。表示为:

4)判断是否满足终止条件。适应度值不是最小值否则转至3),是则得到优化参数(m,n),执行下一步。

5)运用arma(m,n)模型对dk+1进行预测。模型的一般表示如式(11)所示:

式中,xt为在t时刻观察到的槽状态指标d;实参数为自回归系数,θj(1≤j≤n)为移动平均系数,{at}为白噪声序列。arma(m,n)模型建立的过程如图3所示。

步骤四:以步骤三中求得的时间序列、电解槽可控参数为输入,采用模糊神经网络进行槽状态预测。将未来槽状态看作由两部分组成:目前槽状态的自然延续、工人操作控制效果,采用模糊神经网络将这两部分信息进行融合,以步骤三中求得的时间序列、电解槽可控参数为输入,建立槽状态的预测模型,求得未来槽状态,模型结构如图2所示。

步骤五:采用最小二乘支持向量机建立槽电压的预测模型。在该步骤中,首先采用alo优化lssvm的核函数参数和惩罚因子,再用优化后的lssvm进行槽电压预测,以极距、分子比、电阻、氧化铝浓度、出铝量、电解质温度、电流为模型输入,槽电压为输出。建模过程如下所示:

1)根据式(1)种群随机初始化。随机生成n个蚂蚁和m个蚁狮,设置最大迭代次数、搜索空间的上下界ud、ld。设置蚁狮和蚂蚁种群规模n,最大迭代次数t。

2)计算个体适应度值。首先以蚁狮个体为lssvm的参数,用100组数据对lssvm进行训练,得到如式(12)的lssvm函数估计模型:

式中,i表示第i个个体,表示lssvm模型输出,α与b分别为lssvm训练后得到的回归系数和偏差,k(g)为核函数。再以100组数据对lssvm进行测试。综合训练和测试结果构造烟花算法的适应度函数为:

f(i)=max(etrain(i))+max(etest(i))+|max(etrain(i))-max(etest(i))|(13)

式中f1为适应度值,etrain、etest分别为训练误差绝对值集和测试误差绝对值集,max(g)为取最大值操作。同时,记录全局最优位置作为精英蚁狮。

3)根据式(3)~(10)更新蚂蚁、蚁狮和精英蚁狮的位置。

4)判断是否满足终止条件,否则转至3),是则结束,得到优化lssvm参数z*。

5)应用优化参数z*及训练数据训练lssvm,得到槽电压预测模型。

建模过程如图4所示。

步骤六:考虑到现实生产中,工人调整操作参数时应遵守“少量多次”的准则,如:槽电阻、分子比、氧化铝浓度、出率量的单词调整量不应超过0.2μω、0.9、1.3、40kg,调整结束后槽电压和槽状态都处在最优临界状态。基于此要求,以槽平均电压与目标值之差最小、未来槽状态良好为目标,以生产操作要求为约束条件,建立槽电压的多目标优化模型,建立的槽电压多目标有边界优化模型如下所示:

fitness1=min[f(g)-v优]

fitness2=mins(g)

式中,r基、o基、m基、v优分别是基准槽电阻、基准分子比、基准氧化铝浓度、优化槽电压,由先验知识确定。f(g)=f(s1,s2,s3,s4,x1,x2,x3)为槽平均电压预测模型,min[f(g)-v优]代表槽平均电压与最优值无限接近,体现节能降耗的生产目标。s(g)是槽状态预测模型,mins(g)代表未来槽状态无限接近最优槽状态,体现安全生产的生产要求。

步骤七:采用moalo求解步骤六所建立的模型,求得适合当前槽状态的一组最优操作参数设定值。求解过程如下所示:

1)初始化种群。根据式(1)随机生成n个蚂蚁和m个蚁狮,设置最大迭代次数、搜索空间的上下界ud、ld。设置蚁狮和蚂蚁种群规模n,最大迭代次数t。

2)计算个体适应度值。

3)根据(3)~(10)式更新蚂蚁、蚁狮和精英蚁狮的位置,并存档。如果更新后的蚂蚁是帕累托最优解,即占优于选定蚁狮,如式(15),则更新该蚁狮的位置到蚂蚁所在处。

式中,表示占优于

4)如果存档空间已满,则采用轮盘赌规则以概率删除一部分解。

5)判断是否达到停止条件。如果达到则算法结束,得到最优操作参数s*。否则,运行3)。

模型求解过程如图5所示。

电解槽的控制一般由有经验的工人采用试凑的方法进行控制,本发明提出的槽电压优化方法可提供一组合理的操作参数设定值。以广西某铝厂提供的数据进行实验,首先建立槽状态预测模型和槽电压预测模型,再搭建槽电压的优化模型,模型求解结果为:fitness1=3.8446v、fitness2=0.0073。实验采用的195组数据通过计算可得平均槽电压值为3.9403v,优化槽电压值为3.8446v,可降低95.7mv槽平均电压。模型求解得到一组操作参数:s1=0.0118,s2=2.2464,s3=3.9611,s4=32.0557。将该组参数下发底层控制系统,槽状态预测结果显示了该组优化设定值的控制效果,如图6所示。例如图中第9个检测点,在未下发优化设定值时,状态指标d为0.035,此时槽状态已偏离优良状态。若在系统中下发优化设定值,槽状态指标d为0.019,槽状态已回到优良的状态。说明了优化设定模型可寻到一组优化的操作参数设定值,可使偏离最优的槽状态逐渐回到优良状态。综上,本发明提出的槽电压优化方法,在保证槽状态优良的同时有效降低槽电压。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1