用于Ⅲ型气体抽吸的高传导率低温泵的制作方法

文档序号:5454341阅读:132来源:国知局
专利名称:用于Ⅲ型气体抽吸的高传导率低温泵的制作方法
相关申请本申请是申请于2004年9月24日,申请号为10/948,955的美国申请的继续,并要求该申请的利益。该申请的全部教导在此通过引证被并入本文作为参考。
背景技术
当前有效的低温泵,无论是通过打开来制冷的还是封闭制冷循环的,通常都遵循相同的设计思路。通常操作于开氏温标4-25度范围内的低温第二阶段阵列是主要的抽吸表面。这个表面被通常操作于开氏温标40-130度的温度范围内的高温圆筒所围绕,该圆筒提供较低温度阵列的辐射屏蔽。所述的辐射屏蔽通常包括外壳,该外壳除了在位于主抽吸表面和将被抽空的仓室之间的前面阵列之外都是封闭的。这种较高温度,第一阶段,前面阵列都作为用于较高沸点气体(诸如作为I型气体所已知的水蒸汽)的抽吸位置。
在操作中,诸如水蒸汽的高沸点气体在前面阵列被冷凝。较低沸点气体穿过前面阵列并进入辐射屏蔽内的体积中。II型气体,诸如氮气,在第二阶段阵列上冷凝。在4开氏温标时,III型气体,比如氢气、氦气和氖气,具有可感知的气压。为了捕获III型气体,第二阶段阵列的内部表面上被涂上吸附剂,诸如活性炭、沸石或者分子筛。吸附是一种工艺,借此气体可以物理地被在制冷温度下保持的材料所捕获,从而从环境中被移除。通过在抽吸表面上被冷凝的或者被吸收的气体,在工作仓室中只剩下真空。
在由封闭的循环冷却器制冷的系统中,冷却器典型的是两阶段制冷器,具有延伸穿过辐射屏蔽的指形冷冻器。制冷器的第二、最寒冷的阶段的冷端是指形制冷器的尖端。主要抽吸表面,或者低温板,被连接到在指形制冷器的第二阶段的最冷端上的散热片上。这个低温板可能是简单的金属片,杯子或者环绕安排的并且连接到第二阶段散热片(举例来说,如在此被并入本文作为参考的美国专利第4,494,381号专利中所描述的)上的金属隔板的圆筒型阵列。这个第二阶段低温板也可能支持低温冷凝气体吸附剂,诸如前面所述的活性炭或者沸石。
制冷器指形冷冻器可能延伸穿过杯型辐射屏蔽并且与该屏蔽同轴。在其它的系统中,指形冷冻器延伸穿过辐射屏蔽的侧面。这样的配置有时会更好地为低温泵的布置提供有效的空间。
辐射屏蔽被连接到在制冷器的第二阶段的最冷端的散热片上,或者是加热站上。该屏蔽以一种这样的方式围绕第二阶段低温板,即能够保护低温板不受辐射热。封闭辐射屏蔽的前面阵列被穿过屏蔽(如在美国专利第4,356,701号所公开的,该专利在此被并入本文作为参考)或者穿过热支柱的第一阶段散热片所冷却。
低温泵在大量的气体已经被收集之后有时需要被更新。更新是一种工艺,其中先前被低温泵所捕获的气体被释放。更新通常通过允许低温泵回到周围的温度来完成,并且气体随后通过次级抽吸的方式被从低温泵中移除。在气体这种释放和移除之后,低温泵被恢复之后,再次制冷又能够从工作仓室中移除大量的气体。
现有技术的实践已经能够保护置于第二阶段低温板上的吸附剂,例如,通过用山形封闭第二阶段吸附剂,以阻止冷凝气体在其上冷凝从而阻碍吸附层。在这种方式中,所述的层为非冷凝气体的吸收而保留,诸如氢气,氖气或者氦气。这样就减少了制冷循环的频率。然而,所述的山形降低了非可凝结的气体到吸附剂的易接近程度。
低温泵的价值在于氢气的捕获能力,这种能力是关于从泵的外部到达低温泵的开口的氢气分子在阵列的第二阶段被捕获的能力。这种捕获能力直接地涉及对氢气的抽吸速度,每秒钟由泵所捕获的公升数。传统设计的高速泵具有20%或更高的氢气捕获能力。
已经提供了各种不同的设计来提高III型气体的抽吸速度。举例来说,在此通过引证被并入本文作为参考的美国第4,718,241号专利描述了增加抽吸不可冷凝的气体的速度的设计,而在同时限制了系统的更新的频率。这是通过展开第二阶段低温板以允许不可冷凝的气体,诸如,氢气,氖气,氦气,更加容易接近已经置于低温板的圆盘的内表面上的吸附剂来完成的。这样允许不可冷凝的气体更加迅速地被吸收,因此增加了对不可冷凝气体的抽吸速度。同时,第二阶段阵列被设计以致于确保全部气体分子首先撞击没有被涂上吸附材料的低温板表面。

发明内容
在诸如离子灌输的一些应用中,II型气体是普遍的,并且低温泵的加载受到III型氢气所支配。承认的是,本设计是在对II型气体的捕获的较少关注和对防止吸附剂被I型气体和II型气体接触的较少关注的基础上,而同时展开低温抽吸阵列以提高吸附剂的导电率用于被吸附剂对III型气体的快速收集。所公开的实施方案提供高电导率的前面阵列,形成将气体朝向第二阶段低温板集中的辐射屏蔽,以及打开的第二阶段低温板体系结构,但是发明的实施并不需要包括所有的这些特征。
本发明能够使低温泵具有对氢气至少20%的捕获可能性,优选的是超过25%。所公开的实施方案具有高于30%的捕获可能性。低温泵包括具有第一和第二阶段的制冷器。与制冷器的第二阶段进行热接触的第二阶段低温板冷凝低温冷凝气体。辐射屏蔽围绕第二阶段低温板并与制冷器的第一阶段热接触。穿过辐射屏蔽中的开口的前面阵列作为用于第二阶段低温板的辐射屏蔽并作为用于较高冷凝温度气体的低温泵抽吸表面。第二阶段低温板包括装载吸附剂的隔板阵列,至少大约80%的吸附剂具有到辐射屏蔽或者到辐射屏蔽中的开口的直接的视线。更优选的是至少90%的吸附剂这样地被暴露着,而最优选的是,实质上全部的吸附剂是暴露着的。优选的是,多数吸附剂被暴露给辐射屏蔽的圆筒型侧面或者前面开口。在一些实施方案中,第二阶段低温板的至少大约90%的表面区域被涂有吸附剂。
前面阵列覆盖的区域可能大于第二阶段低温板的投影,但是小于辐射屏蔽中开口的50%。第二阶段低温板的直径优选的是小于辐射屏蔽中的开口的直径的60%。
辐射屏蔽可能包括圆筒和封闭圆筒的末端的底部,圆筒的接合处以及弯曲地将气体朝向第二阶段低温板集中气体的底部。
第二阶段低温板可能包括具有定向地朝向辐射屏蔽的平坦隔板。向外形成角度的并朝向辐射屏蔽的开口的前面隔板限定了向辐射屏蔽的开口延伸的外壳,该外壳具有倾斜的外围。后面的隔板可能向外形成角度的并远离辐射屏蔽的开口,后面隔板的边缘限定了远离辐射屏蔽的开口而延伸的外壳,该外壳具有倾斜的外围。在一个实施方案中,前面和后面的隔板是扇形圆盘。在另一个实施方案中,前面和后面的隔板包括同轴的截头圆锥体的隔板。
根据本发明的另一方面,第二阶段低温板阵列包括圆盘阵列,圆盘形成扇形以限定通常呈球形的外壳。具体的,该阵列可能包括一摞平行的圆盘,形成扇形的圆盘在摞的一端形成拱顶,形成扇形的圆盘在摞的另一端形成反向的拱顶。圆盘可能被安装到适于被安装到低温的制冷器加热站上的一对托架上。


通过以下对附图中所举例说明的本发明优选的实施方案更加具体的描述,本发明前面的以及其它目标、特征和优点将会更加的明显。在附图中,相同的参考数字在整个附图的不同的附图中都指代相同的部件。附图并不是严格按照比例所绘制的,其重点在于说明发明的原理。
附图1是体现本发明的低温泵的透视图,其中真空容器和辐射屏蔽被打开。
附图2是附图1的实施方案的第二阶段低温板的透视图。
附图3是附图1中所示的,其半个第二阶段低温板组件被移除的透视图。
附图4是附图1的第二阶段低温板的侧视图。
附图5是附图1的第二阶段低温板相对于附图4的90°方向的侧视图。
附图6是本发明作为替代的实施方案的透视图。
附图7是附图6的第二阶段低温板阵列的一半在安装到低温泵上之前的透视图。
附图8是被安装到低温泵上的附图7的阵列的一半的透视图。
附图9是附图6的实施方案的第二阶段低温泵的侧视图。
附图10是附图6实施方案的第二阶段低温板相对于附图9的90°方向的侧视图。
具体实施例方式
对本发明优选的实施方案的描述如下所述附图1-5举例说明了本发明的一个实施方案。附图1是低温泵的透视图,其中真空容器12和辐射屏蔽14被打开。真空容器12可能被直接地安装到法兰16上的工作仓室上,或者安装到在真空容器和工作仓室之间的中间闸式阀上。两阶段指形冷冻器的低温制冷器15通过旁边开口突出进入壳体。在这个实施方案中,制冷器的第二阶段被圆筒18所围绕,其中圆筒18防护制冷器的第二阶段。圆筒18将指形制冷器中的气体的蒸发和随后的浓缩降低到最小,其中指形制冷器的温度沿着指形制冷器而波动,如美国专利第5,156,007中所描述的那样,该专利作为参考被并入本文。
制冷器包括在由发动机所驱动的指形制冷器中的置换剂。进入指形制冷器的氦气被膨胀并且因此以产生极其低的温度的方式被制冷。这样的一种制冷器在美国授予Chellis等的第3,218,815号专利中被公开,该专利在此作为参考被并入本文。
被安装到第一阶段吸热设备上的杯型辐射屏蔽典型地在大约开氏温标65到100度之间进行操作。辐射屏蔽防护第二阶段低温区域并依靠直接辐射或者更高冷凝温度水蒸气将该区域的加热降低到最小。第一阶段抽吸表面包括前面阵列20,该前面阵列20既可用于第二阶段抽吸区域的辐射屏蔽,也可用于较高温度冷凝气体(诸如水蒸汽)的低温表面。该阵列允许穿过第二阶段抽吸区域的较低冷凝温度气体的通道。
典型的前面阵列延长穿过辐射屏蔽的整个开口,并且包括山形隔板以确保较大百分比的I形气体撞击前面阵列并因此在它们能够进入辐射屏蔽内的真空之前被冷凝。相反的,实施方案中所公开的前面阵列完全地覆盖了第二阶段低温板阵列22,但是并没有延伸到辐射屏蔽开口的外部外围。优选地,前面阵列覆盖少于50%的开口。在一个实施方案中,其中辐射屏蔽具有304毫米的直径,而前面阵列的直径仅仅是165毫米,这样前面阵列对开口的覆盖就少于三分之一。在这样的实施方案中,第二阶段阵列具有134毫米的直径。如附图4中所示的,前面阵列仅仅使用三个锥头圆锥体形状的隔板24,而并不是山形的。前面阵列减少的区域和开口涉及增加了气体分子可能进入辐射屏蔽内体积的可能性,并借此被捕获,用于以在制冷器上增加的热负荷的代价增加抽吸速度。然而,具有减少的直径的第二阶段阵列,前面阵列覆盖的区域大于阵列的投影以避免在热负荷上过多的增加。
与传统的设计相反,第二阶段制冷板22具有非常开放的体系结构。具体地说,它形成为一摞间隔的平坦圆盘26,该圆盘在两面都能够装载吸附剂。在圆盘上有孔,用以促进吸附剂与圆盘表面的结合,从而将吸附剂保持在这些表面上。
前面隔板28,30和32在形状上都是截头圆锥体的,它们也同样被涂上吸附剂。在示意性的实施方案中,这些隔板中的每一个都形成不同的角度,但是它们全部在表面上都是尖角的而且都朝向辐射屏蔽的开口。如附图4中通过虚线34所举例说明的那样,截头圆锥体的隔板限定了外壳,该外壳指向辐射屏蔽的开口,但是向外围倾斜。在前面阵列外壳中的这种倾斜最小化了已经在前面隔板24之间穿过的气体的直接接触,这样该气体很可能会首先横切辐射屏蔽14,冷凝I型气体。后面的截头圆锥体的隔板37,38和39提供被涂在表面区域上的附加的吸附剂用于捕获III型气体。
阵列上的很多的隔板,实质上全部表面都涂有吸附剂,以提供对III型气体更大的捕获能力。与现有的设计所不同的是(现有设计将会阻碍从辐射屏蔽到许多吸附剂的视线),在圆盘26、前面隔板28,30和32以及后面隔板37,38和39上的实质上全部的吸附剂都被暴露给到辐射屏蔽或辐射屏蔽中的前面开口的直接视线。表面的大多数被暴露给辐射屏蔽的圆筒侧面或者圆柱形的前面开口。这样的暴露将吸附剂支配给较高的热负荷并暴露给I型和II型气体,但是实质上增加了III型气体的抽吸速度。
如同在附图4中所示的,第二阶段低温板阵列22具有实质上小于辐射屏蔽的直径。在一个实施方案中,阵列的直径是134毫米,而辐射屏蔽的直径是304毫米。作为结果,就会在两者之间存在较大敞开的体积,提供较高传导率的气体到第二阶段低温板,正如I型气体在辐射屏蔽的表面收集。通常,优选的是,第二阶段低温板的直径小于辐射屏蔽直径的60%。
由于在低温板和辐射屏蔽之间具有敞开的空间,因此显著数量的气体被期待到达辐射屏蔽的封闭的底部。气体分子在较低压力的环境下沿着直的路线行进,并且在它们与表面碰撞时,极其可能以余弦法则从表面被再次发射。在示意性的实施方案中,辐射屏蔽14的圆筒的接合处36与封闭的底部成弯曲型以集中气体,该气体撞击接合处,但是不会在辐射屏蔽上被冷凝。因此,I型气体被预期冷凝,而II型气体和III型气体直接朝向第二阶段低温板用于促使在第二阶段上的冷凝或吸收。优选的,弯曲部分延长至低温板阵列大约外围的位置。
第二阶段低温板阵列形成于两个组件,其中一个如附图2中所示。阵列的每一个水平的圆盘都实际上由两个半个圆盘所组成,一个位于每一个组件上,并且每个半个圆盘在下文中被称为圆盘。每个圆盘是由金属片形成的,该金属片具有倾向于其中心的标签27(附图1,4,5)。这种标签顶靠在托架40上并被固定在托架上。锥头圆锥体的隔板37,38和39的较低阵列被安装到托架40的较低水平部分42上。安装到托架上的半个圆筒44位于(但存在间隔)屏蔽圆筒18内以使屏蔽相对于低温制冷器的第二阶段是完整的。
被举例说明的实施方案包括一组可选的后面隔板37,38和39,这些隔板被指引向外以及向下地朝向辐射屏蔽的底部,具体的是朝向圆筒型侧面的弯曲接合处和辐射屏蔽的平坦底部。这些隔板容易收集直接来自辐射屏蔽的较低部分的气体。
在组件中,附图2的组件如附图3中所示,通过安装到加热站末端的附加托架48,被安装到低温制冷器的第二阶段末端上的加热站46上。前面截头圆锥体的隔板然后仍然被用螺杆固定到托架48上。
附图6-10举例说明了本发明的另一个实施方案。在这个实施方案中,辐射屏蔽14和前面低温板20类似于在第一个实施方案中所建立的那些。类似地,第二阶段低温板具有敞开的设计,在其中,平坦隔板被吸附剂所覆盖,吸附剂被暴露给从周围的辐射屏蔽或前面开口的直接的视线。然而,这个实施方案允许较少的隔板部件和增加的表面区域。在这个实施方案中,阵列由圆盘所形成,圆盘被展成扇型以限定通常为球型的阵列。这样的设计同样依靠两个部件,其中一个在附图7中被举例说明。半圆形圆盘被安装到托架62上,该托架具有垂直的部分64还有在两端逐渐增加的倾斜部分。四个圆盘66被安装到托架的垂直部分并因此是水平的。在托架的每端上的三个圆盘向外形成角度并朝向辐射屏蔽的各个端。最后的圆盘被安装到各个组件的托架的顶端和底端,并且近乎是垂直的。每一个隔板组件托架被安装到低温制冷器的加热站46上,如附图8所示。
如附图10中所示,扇型的圆盘的末端限定外壳,该外壳形成朝向前面开口的球形穹面,和朝向辐射屏蔽的底部的反向穹面。如第一个实施方案,这个穹面型在外壳内提供斜面,以增加表面区域但是最小化在前面阵列的隔板之间穿过的辐射的直接拦截。如在第一个实施方案中,隔板的整个表面区域可能被涂上吸附剂,使其具有较高水平的传导率。
具有400毫米直径的典型的现有的低温泵具有在75对氢的大约12,000公升每秒的捕获速度,以及对氢的大约22%的捕获概率。在第一个公开的实施方案的实施中,320毫米直径的系统,这是一个具有400毫米系统的大约三分之二开口区域的系统,拥有大约11,000公升每秒的捕获速度以及大约31%的捕获概率。在第二个所公开的具有320毫米直径的实施方案的实施中,获得大约13,000公升每秒的捕获速度以及大约37%的捕获概率。作为另一种比较,传统的250毫米系统具有大约4,500公升每秒的捕获速度以及大约21%对氢的捕获概率。根据本发明第二个实施方案的250毫米的系统获得大约7,000公升每秒的捕获速度以及大约32%对氢的捕获概率。
虽然本发明已经结合其优选的实施方案被具体地示出和描述,但是本领域技术人员能够理解的是,本发明在没有超出由所附的权利要求所限定的本发明的保护范围的情况下,还可以在形式上和细节上进行各种不同的改变。
权利要求
1.一种低温泵,其包括具有第一和第二阶段的制冷器;与制冷器的第二阶段热接触的第二阶段低温板,以冷凝较低温度的冷凝气体;围绕第二阶段低温板的辐射屏蔽,该辐射屏蔽与制冷器的第一阶段进行热接触;以及穿过辐射屏蔽中的开口的前面低温板,该前面低温板作为低温抽吸表面用于较高冷凝温度气体;该低温泵具有至少20%对氢气的捕获能力,以及第二阶段低温板包括装载吸附剂的隔板阵列,至少大约80%的吸附剂具有到辐射屏蔽或者到辐射屏蔽中的开口的直接的视线。
2.根据权利要求1的低温泵,其中第二阶段低温板的至少大约90%的表面区域被涂有吸附剂。
3.根据权利要求2的低温泵,其中第二阶段低温板包括平坦隔板,该平坦隔板具有定向的朝向辐射屏蔽的边缘。
4.根据权利要求3的低温泵,其中第二阶段低温板进一步包括前面隔板,该前面隔板向外形成角度并朝向辐射屏蔽中的开口。
5.根据权利要求4的低温泵,其中前面隔板的边缘限定了朝向辐射屏蔽中的开口延伸的外壳,该外壳具有倾斜的外围。
6.根据权利要求5的低温泵,其中前面隔板是展开成扇型的圆盘。
7.根据权利要求5的低温泵,其中前面隔板包括同轴的截头圆锥体的隔板。
8.根据权利要求5的低温泵,进一步包括后面隔板,该后面隔板向外形成角度并远离辐射屏蔽的开口,后面隔板的边缘限定了远离辐射屏蔽的开口延伸的外壳,该外壳具有倾斜的外围。
9.根据权利要求1的低温泵,其中辐射屏蔽包括圆筒和封闭圆筒的末端的底部,圆筒的接合处以及倾斜地使气体朝向第二阶段低温板集中的底部。
10.根据权利要求9的低温泵,其中第二阶段低温板进一步包括后面隔板,该后面隔板向外形成角度并远离辐射屏蔽的开口。
11.根据权利要求10的低温泵,其中后面隔板的边缘限定了外壳,该外壳沿着其外围倾斜。
12.根据权利要求1的低温泵,其中前面低温板覆盖的区域大于第二阶段低温板的阴影,但是少于辐射屏蔽的开口的50%。
13.根据权利要求1的低温泵,其中第二阶段低温板的直径少于辐射屏蔽开口直径的60%。
14.根据权利要求1的低温泵,其中当第二阶段低温板包括圆盘阵列时,圆盘形成扇形以限定通常是球形的外壳。
15.根据权利要求14的低温泵,其中形成球形的外壳包括一摞平行的圆盘,在所述的摞的一端形成拱顶的成扇形的圆盘,以及在所述的摞的另一端形成反向的拱顶的成扇形的圆盘。
16.根据权利要求1的低温泵,其中至少90%的吸附剂具有到辐射屏蔽或者辐射屏蔽的开口的直接的视线。
17.根据权利要求1的低温泵,其中实质上的全部的吸附剂具有到辐射屏蔽或者到辐射屏蔽的开口的直接的视线。
18.根据权利要求1的低温泵,其中低温泵具有对氢气的至少25%的捕获能力。
19.根据权利要求1的低温泵,其中低温泵具有对氢气的至少30%的捕获能力。
20.一种低温泵,其包括具有第一和第二阶段的制冷器;第二阶段低温板,该第二阶段低温板与制冷器的第二阶段进行热接触以冷凝低温冷凝气体;围绕第二阶段低温板的辐射屏蔽,该辐射屏蔽与制冷器的第一阶段进行热接触;以及穿过辐射屏蔽的开口的前面低温板,该前面低温板作为对较高冷凝温度气体的低温抽吸表面,该前面低温板覆盖的区域小于辐射屏蔽中的开口的50%;包括隔板阵列的第二阶段低温板,所述的隔板阵列承载吸附剂,至少大约80%的吸附剂具有到辐射屏蔽或者到辐射屏蔽中的开口的直接的视线。
21.根据权利要求20的低温泵,其中至少大约90%的吸附剂具有到辐射屏蔽或者到辐射屏蔽中的开口的直接的视线。
22.根据权利要求20的低温泵,其中实质上的全部的吸附剂具有到辐射屏蔽或者到辐射屏蔽中的开口的直接的视线。
23.根据权利要求20的低温泵,其中低温泵具有对氢气的至少25%的捕获能力。
24.根据权利要求20的低温泵,其中低温泵具有对氢气的至少30%的捕获能力。
25.一种低温泵,其包括具有第一和第二阶段的制冷器;第二阶段低温板,该第二阶段低温板与制冷器的第二阶段进行热接触以冷凝低温冷凝气体;围绕第二阶段低温板的辐射屏蔽,该辐射屏蔽与制冷器的第一阶段进行热接触;以及穿过辐射屏蔽中的开口的前面阵列,该前面阵列作为用于较高冷凝温度气体的低温抽吸表面;包括承载吸附剂的隔板的阵列的第二阶段低温板,其中至少大约80%的吸附剂具有到辐射屏蔽或者到辐射屏蔽中的开口的直接的视线,多数吸附剂具有到辐射屏蔽的圆筒型侧面或者到辐射屏蔽中的开口的直接的视线。
26.根据权利要求25的低温泵,其中至少90%的吸附剂具有到辐射屏蔽或者到辐射屏蔽中的开口的直接的视线。
27.根据权利要求25的低温泵,其中实质上全部的吸附剂具有到辐射屏蔽或者到辐射屏蔽中的开口的直接的视线。
28.根据权利要求25的低温泵,其中低温泵具有对氢气的至少25%的捕获能力。
29.根据权利要求25的低温泵,其中低温泵具有对氢气的至少30%的捕获能力。
30.一种低温泵,其包括具有第一和第二阶段的制冷器;第二阶段低温板,该第二阶段低温板与制冷器的第二阶段进行热接触以冷凝低温冷凝气体;以及围绕第二阶段低温板的辐射屏蔽,该辐射屏蔽与制冷器的第一阶段进行热接触,该辐射屏蔽包括圆筒以及封闭圆筒的一端的底部,圆筒的接合处以及形成倾斜地以朝向第二阶段低温板集中气体的底部;以及穿过辐射屏蔽中的开口的前面阵列,该前面阵列作为用于较高冷凝温度气体的低温抽吸表面,前面低温板覆盖的区域大于第二阶段低温板的投影,但是小于辐射屏蔽中的开口的50%;第二阶段低温板,其包括平坦隔板阵列,该平坦隔板具有朝向辐射屏蔽定向的边缘;前面隔板,该前面阵列向外形成角度并朝向辐射屏蔽中的开口,该前面隔板限定了朝向辐射屏蔽中的开口延伸的外壳,所述的外壳具有倾斜的外围;以及后面隔板,该后面隔板向外形成角度并远离辐射屏蔽的开口,该后面隔板限定了沿着外围倾斜的外壳;第二阶段低温板的隔板承载吸附剂,至少大约80%的吸附剂具有到辐射屏蔽或者到辐射屏蔽中的开口的直接的视线。
31.一种包括圆盘阵列的低温板阵列,形成扇形的圆盘限定了通常形成球形的外壳。
32.根据权利要求31的低温板阵列,包括一摞平行的圆盘;在摞的一端形成拱顶的扇形的圆盘;以及在摞的另一端形成相反的拱顶的扇形的圆盘。
33.根据权利要求32的低温板阵列,其中圆盘被安装到一对适于被安装到低温制冷器加热站上的托架上。
34.一种低温泵,其包括具有第一和第二阶段的制冷器;第二阶段低温板,该第二阶段低温板与制冷器的第二阶段进行热接触以冷凝低温冷凝气体,第二阶段低温板包括圆盘的阵列,所述的圆盘形成扇形以限定通常成球形的外壳;围绕第二阶段低温板的辐射屏蔽,该辐射屏蔽与第一阶段散热片热接触;以及穿过辐射屏蔽中的开口的前面低温板,该前面低温板作为用于较高冷凝温度气体的低温抽吸表面。
35.根据权利要求34的低温泵,其中第二阶段低温板包括一摞平行的圆盘;在该摞的一端上形成拱顶的扇形圆盘;以及在该摞的另一端上形成相反的拱顶的扇形圆盘。
全文摘要
提供对Ⅲ型气体具有较高抽吸速度的一种低温泵。打开配置的前面阵列提供了气体进入辐射屏蔽的较高传导率,该辐射屏蔽被形成以朝向第二阶段阵列集中气体。第二阶段阵列具有打开配置的涂有吸附剂的隔板。实质上全部的吸附剂具有到辐射屏蔽或者到辐射屏蔽中的开口的直接的视线,实质上全部的隔板被涂有吸附剂。在一种形式中,第二阶段低温泵阵列包括展成扇形的圆盘阵列以限定通常成球形的外壳。
文档编号F04B37/02GK101044319SQ200580036260
公开日2007年9月26日 申请日期2005年7月11日 优先权日2004年9月24日
发明者阿伦·J·巴特莱特, 约翰·诺德博格, 布赖恩·汤普森 申请人:布鲁克斯自动化有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1