具有金属强度的复合翼型件的制作方法

文档序号:15984225发布日期:2018-11-17 00:42阅读:155来源:国知局

本公开的领域整体上涉及燃气涡轮风扇发动机,并且更具体地涉及包括具有金属强度的复合翼型件的燃气涡轮风扇发动机。

背景技术

用于涡轮风扇的至少一些已知的翼型件组件或风扇叶片,例如在航空器发动机中实施的那些,使用诸如碳纤维层的复合部件形成。由碳纤维制造的这些层合翼型件中的至少一些包括在制造翼型件之后与其联接的一个或多个金属片。例如,至少一些已知的碳纤维风扇叶片包括联接到叶片的前缘的金属片,以便增加风扇叶片的冲击能力。但是,这些金属片增加了每个翼型件的重量。由于降低发动机重量是航空器发动机设计中不变的驱动因素,所以在利用金属部件提供的附加强度的同时减少翼型件的重量将是有益的。



技术实现要素:

在一个方面中,提供了层合复合翼型件组件。翼型件组件包括:第一薄层,所述第一薄层由包括金属纤维的预浸材料(pre-pregmaterial)形成;和至少第二薄层,所述至少第二薄层由预浸材料形成,所述预浸材料包括与碳纤维混合的金属纤维,仅金属纤维,仅碳纤维,包括金属纤维的基材,包括碳纤维的基材及其组合中的至少一种。

翼型件组件可以包括附加的,更少的和/或替代的元件。在一些实施例中,金属纤维包括退火钢,镍合金,镍和铬合金,钛,钨及其组合中的至少一种。在一些实施例中,第二薄层由与第一薄层不同的预浸材料形成。在一些实施例中,第一薄层由包括沿第一方向取向的金属纤维的预浸材料形成,并且第二薄层由包括沿第二方向取向的碳纤维的预浸材料形成。第一薄层可以由包括沿第一方向取向的单向金属纤维的预浸材料形成,并且第二薄层可以由包括沿第二方向取向的单向碳纤维的预浸材料形成。在一些实施例中,第一薄层和第二薄层中的一个由预浸材料形成,所述预浸材料包括沿第一方向取向的单向碳纤维和与碳纤维交叉的金属纤维。在其他实施例中,翼型件组件包括由预浸材料形成的多个薄层,包括第一薄层和第二薄层,并且多个薄层的薄层子集由包括碳纤维的预浸材料形成。翼型件组件还可以包括延伸到多个薄层的子集中的金属线。金属线可以以2.5d构造延伸到多个薄层的子集中,或者金属线可以以3d构造延伸到多个薄层的子集中。

在另一方面中,提供了形成层合复合翼型件组件的方法。该方法包括:提供由包括金属纤维的预浸材料形成的第一薄层;以及将第二薄层定位在第一薄层附近,第二薄层由预浸材料形成,所述预浸材料包括与碳纤维混合的金属纤维,仅金属纤维,仅碳纤维,包括金属纤维的基材,包括碳纤维的基材及其组合中的至少一种。该方法还包括固化至少第一薄层和第二薄层以形成层合复合翼型件组件。

该方法可以包括额外的,更少的和/或替代的步骤。例如,在一些实施例中,提供第一薄层包括提供由包括沿第一方向取向的金属纤维的预浸材料形成的第一薄层,并且定位第二薄层包括定位由包括沿第二方向取向的碳纤维的预浸材料形成的第二薄层。在一些实施例中,层合复合翼型件组件包括由预浸材料形成的多个薄层,包括第一薄层和所述第二薄层,并且其中所述多个薄层的薄层子集包括由包括碳纤维的预浸材料形成的薄层,所述方法还包括将金属线穿入所述多个薄层的子集中。将金属线穿入多个薄层的子集中可以包括以2.5d构造将金属线穿入,或者将金属线穿入多个薄层的子集中可以包括以3d构造将金属线穿入。

在另一方面中,提供了发动机。该发动机包括核心发动机和由核心发动机提供动力的风扇。风扇包括至少一个层合复合翼型件组件。层合复合翼型件组件包括:第一薄层,所述第一薄层由包括金属纤维的预浸材料形成;和至少第二薄层,所述至少第二薄层由预浸材料形成,所述预浸材料包括与碳纤维混合的金属纤维,仅金属纤维,仅碳纤维,包括金属纤维的基材,包括碳纤维的基材及其组合中的至少一种。

发动机和/或翼型件组件可以包括附加的,更少的和/或替代的元件。在一些实施例中,金属纤维包括退火钢,镍合金,镍和铬合金,钛,钨及其组合中的至少一种。在一些实施例中,第二薄层由与第一薄层不同的预浸材料形成。在一些实施例中,翼型件组件包括由预浸材料形成的多个薄层,包括第一薄层和第二薄层,并且其中多个薄层的薄层子集由包括碳纤维的预浸材料形成,翼型件组件还包括延伸到多个薄层的子集中的金属线。金属线可以以2.5d构造延伸到多个薄层的子集中,或者金属线可以以3d构造延伸到多个薄层的子集中。

附图说明

当参考附图阅读以下详细描述时,本发明的这些和其它特征,方面和优点将变得更好理解,在所有附图中相同的标号表示相同的零件,在附图中:

图1是根据本公开的实例实施例的示例性航空器的图示;

图2是可与图1中所示的航空器一起使用的示例性燃气涡轮风扇发动机的示意性图示;

图3是可以与图2中所示的涡轮风扇发动机一起使用的第一示例性层合翼型件组件的视图;

图4是可与图3所示的层合翼型件组件一起使用的薄层的示意图;

图5是可与图2中所示的涡轮风扇发动机一起使用的第二示例性层合翼型件组件的透视图,包括2.5d构造中的金属线;和

图6是可与图2中所示的涡轮风扇发动机一起使用的第三示例性层合翼型件组件的透视图,包括3d构造中的金属线。

除非另外指明,否则本文所提供的附图意在说明本发明的实施例的特征。这些特征被认为适用于包括本发明的一个或多个实施例的广泛多种系统。由此,附图并非意在包括所属领域的技术人员已知的实践本文中所公开的实施例所需的所有常规特征。

具体实施方式

在以下说明书和权利要求书中,将引用若干术语,所述术语应定义为具有以下含义。

除非上下文另外明确规定,否则单数形式“一”以及“所述”包括复数形式。

“任选”或“视需要”意指随后描述的事件或情形可能发生或可能不发生,且所述描述包括事件发生的情况和事件不发生的情况。

如本文在整个说明书和权利要求书中所使用的近似语言可应用于修饰可以许可的方式变化而不会导致其相关的基本功能改变的任何定量表示。因此,由例如“约”,“大约”和“大体上”的用语修饰的值不限于所指定的确切值。在至少一些情况下,近似语言可对应于用于测量所述值的仪器的精度。此处以及在整个说明书和权利要求书中,范围限制可以组合和/或互换;除非上下文或语言另外指示,否则此类范围确定包括其中含有的所有子范围。

如本文中所使用,用语“轴向”和“轴向地”是指大体上平行于发动机的中心线延伸的方向和定向。此外,用语“径向”和“径向地”是指大体上垂直于发动机的中心线延伸的方向和定向。此外,如本文中所使用,用语“周向”和“周向地”是指绕发动机的中心线弓状地延伸的方向和定向。

以下描述涉及附图,其中,在没有相反表示的情况下,不同附图中的相同数字表示相似的元件。

在此描述的层合翼型件组件的实施例提供了用于减小复合发动机叶片(例如,风扇叶片)的重量同时保持向其添加金属的强度优势的成本有效的系统。金属元件设置在形成层合翼型件组件的一个或多个薄层的预浸材料内,并且金属元件的数量和位置可以根据每个叶片的具体设计需求来选择。此外,在一些实施例中,将金属纤维编织到层合翼型件组件中以改善翼型件的强度和抗冲击性,同时减轻其增加的重量。

图1是航空器100的透视图。在实例实施例中,航空器100包括机身102,所述机身包括机头104,尾部106以及在其间延伸的中空伸长主体108。航空器100还包括机翼110,所述机翼在侧向方向112上延伸远离机身102。机翼110包括在航空器100在正常飞行期间的运动方向116上的前向前边缘114以及机翼110的相对边缘上的后向后边缘118。航空器100进一步包括至少一个发动机120,例如但不限于涡扇发动机,其被构造成驱动例如风扇122等带叶片的可旋转构件以产生推力。发动机120连接到发动机吊架124,所述发动机吊架可将发动机120连接到航空器100。发动机吊架124例如可以将发动机120以邻近尾翼106的推动器构造(未示出)联接到机翼110和机身102中的至少一个。

图2是根据本发明的示例性实施例的发动机120(如图1所示)的示意性横截面图。在示例性实施例中,发动机120以高涵道涡扇喷气发动机实施。如图2中所示,发动机120界定轴向方向a(平行于出于参考目的而提供的纵向轴线202而延伸)和径向方向r。一般来说,发动机120包括风扇组件204和安置在风扇组件204下游的核心涡轮发动机206。

在所述实例实施例中,核心涡轮发动机206包括界定环形入口220的发动机箱208。发动机箱208至少部分地包围呈串行流动关系的:压缩机部段,其包括增压机或低压(lp)压缩机222和高压(hp)压缩机224;燃烧部段226;涡轮部段,其包括高压(hp)涡轮228和低压(lp)涡轮230;以及喷气排气喷嘴部段232。压缩机部段,燃烧部段226,涡轮部段和喷射排气喷嘴部段232一起界定核心空气流动路径237。

在所述实例实施例中,风扇组件204包括风扇238,所述风扇具有连接到盘242的呈间隔关系的多个风扇叶片240,在本文中也被称为“翼型件组件”240。翼型件组件240从盘242径向向外延伸。盘242由可旋转的前毂248覆盖,所述前毂148成空气动力学轮廓以促进空气流通过多个翼型件组件240。另外,风扇组件204包括环形风扇壳体或外部短舱250,所述环形风扇壳体或外部短舱周向地包围风扇238和/或核心发动机206的至少一部分。在所述实例实施例中,短舱250被构造成相对于核心涡轮发动机206由多个周向间隔开的出口导流板252支撑。此外,短舱250的下游部段254可在核心发动机206的外部部分上方延伸,以便在其间界定外涵气流通道256。

在发动机120的运转期间,大量空气258通过短舱250和/或风扇组件204的相关联入口260进入发动机120。当大量空气258横穿翼型件组件240时,大量空气258的第一部分262被引导或传送到外涵气流通道256中,且大量空气258的第二部分264被引导或传送到核心空气流动路径237中,或更具体地说,进入lp压缩机222中。第一部分262与第二部分264之间的比率通常被称为涵道比。第二部分264的压力接着在其被传送通过高压(hp)压缩机224且进入燃烧部段226时增大,在所述燃烧部段,所述第二部分与燃料混合且燃烧以提供燃烧气体266。

燃烧气体266被引导通过hp涡轮228,其中来自燃烧气体266的一部分热能和/或动能被提取以驱动hp压缩机224的旋转。燃烧气体266然后被引导通过lp涡轮230,其中第二部分热能和动能从燃烧气体266中被抽取以驱动lp压缩机222的旋转和/或风扇238的旋转。

燃烧气体266随后被传送通过核心涡轮发动机206的喷气排气喷嘴部段232以提供推力。同时,当第一部分262在从发动机120的风扇喷嘴排气部段276排放之前被传送通过外涵气流通道256时,第一部分262的压力显著增大,从而也提供推进推力。hp涡轮228,lp涡轮230和喷气排气喷嘴部段232至少部分地界定热气体路径278以用于将燃烧气体266传送通过核心涡轮发动机206。

涡扇发动机120仅作为实例描绘于图中,在其它示例性实施例中,涡扇发动机120可具有任何其它合适的构造,包括例如涡轮螺旋桨发动机,军事目的发动机和基于海洋或陆地的航空衍生发动机。

图3是可与涡轮风扇发动机120(在图2中示出)一起使用的第一示例性层合翼型件组件240的视图。应该理解的是,虽然下面的讨论涉及风扇238的翼型件组件240(如图2所示),但是本公开适用于任何旋转发动机或机械部件中的叶片或翼型件组件。在所示实施例中,翼型件组件240从构造成接合风扇238的盘242(图2所示)的燕尾部302延伸。叶片根部304联接到燕尾部302上并从燕尾部径向向外形成。翼型件组件240还包括翼型件306,该翼型件在其远侧径向端具有末端(未示出)。

在所示实施例中,翼型件组件240是层合翼型件组件。如本文所提到的,“层合”翼型件组件是使用多个层或薄层310制造的,如图4所示。参考图3和4,每个薄层310包括沿一个方向315延伸的至少一种材料的多个纤维312或“单向纤维”312。纤维312被树脂或基材314包围,使得薄层310被称为“浸渍”有纤维312,或者由包括纤维312和基材314的“预浸”材料313形成。预浸材料与“编织”材料的区别在于,编织材料具有编织干燥的或不具有树脂的纤维,并且在编织纤维上添加树脂。

翼型件组件240由包括不同材料的纤维312的多个薄层310制成。更具体地,翼型件组件240包括由包括金属纤维326的预浸材料313形成的至少一个薄层310(例如,第一薄层328),以及由预浸材料313形成的至少一个薄层310(例如第二薄层330),该预浸材料313包括与碳纤维322混合的金属纤维326,仅金属纤维326,仅碳纤维322,包括金属纤维326的基材314,包括碳纤维322的基材314以及它们的组合中的至少一种。在所示的实施例中,多个薄层310的子集320包括碳纤维322或任何其他非金属纤维,并且多个薄层310的子集324包括金属纤维326,其中金属纤维326包括退火钢,镍合金,镍和铬合金,钛,钨及其组合中的至少一种。金属纤维326的替代实施例可以包括另外的和/或替代的金属。在一些情况下,薄层310中的一个或多个包括单向碳纤维322,其中金属纤维326与碳纤维322交叉。

为了形成翼型件组件240,多个薄层310定位成使得纤维312相对于翼型件组件240整体和/或相对于相邻薄层310以特定角度取向。例如,包括金属纤维326的第一薄层328被切割成期望的形状并被定位成使得金属纤维326沿第一方向(未具体示出)延伸。包括碳纤维322(或金属纤维326和碳纤维322的组合)的第二薄层330被切割成期望的形状并且定位在第一薄层328附近,并且碳纤维322沿第二方向(未具体示出)延伸。在一些情况下,第一方向和第二方向基本相似(例如小于1°的差异)。在其他情况下,第一方向和第二方向基本上不相似,并且第二方向相对于第一方向以预定角度取向。一旦多个薄层310按需要定位,薄层310就被固化以完成翼型件组件240。

形成具有包括金属纤维326的薄层310的层合翼型件组件240有助于提高全碳纤维翼型件组件上的延展性,并且增加层合翼型件组件240的失效应变。换句话说,用金属纤维326代替至少一些碳纤维322使得翼型件组件240例如在碰撞事件中能够更多地弯曲而不会失效。值得注意的是,层合翼型件组件240是通过将金属纤维326选择性地添加到一个或多个薄层310中和/或选择性地添加仅包括金属纤维326的薄层310而形成的,使得金属纤维326的位置适应翼型件组件240的特定的设计需要。取决于翼型件组件240的设计需求,选择包括金属纤维326的金属纤维326和/或薄层310的量和/或位置以改善翼型件组件240的失效应变和抗冲击性。因此,由于翼型件组件240的可定制性,减少或消除了对外部粘合金属件的需求,从而与具有外部金属的全碳翼型件相比,有助于形成具有减小的重量和/或减小的厚度的翼型件组件240。减少翼型件重量又会降低整个发动机的重量,从而提高效率和燃料消耗。

图5是可与涡扇发动机120(图2中示出)一起使用的第二示例性层合翼型件组件240a的透视图。在所示实施例中,翼型件组件240a使用以2.5d构造342延伸穿过薄层310的一个或多个金属线340构造而成。更具体地,一个或多个金属线340在厚度方向344上从燕尾部302通过薄层310延伸到翼型件组件240a的末端(未示出)。2.5d构造342的特征在于一个或多个金属线340穿过翼型件306延伸小于全厚度距离t。在所示实施例中,金属线340针对厚度t的一部分延伸穿过薄层310的第一子集346,针对厚度t的另一部分穿过薄层310的第二子集348,并且针对厚度t的另一部分穿过薄层310的第三子集350,其中第一,第二和/或第三子集346,348,350可以包括一个或多个相同的薄层310,并且其中厚度t的各部分可以重叠。在另一个实施例中,一些金属线340可以在沿翼型件306的特定位置延伸穿过薄层310的大致一半(例如,基本上1/2t),并且其他金属线340可以沿着翼型件306在其他特定位置处延伸穿过薄层310的大致另一半。2.5d构造342的其他实现方式在本公开的范围内(例如,更多金属线340延伸穿过薄层310的不同子集)。

在一些实施例中,翼型件组件240a由仅包括碳纤维322的薄层310制造。在其他实施例中,翼型件组件240a由多种不同类型的薄层310制成。换句话说,2.5d构造342中的金属线340的穿入可以在具有或不具有内部金属纤维326的翼型件组件240上实现。

图6是可与涡扇发动机120(如图2所示)一起使用的第三示例性层合翼型件组件240b的透视图。在图示的实施例中,翼型件组件240b使用以3d构造352延伸穿过薄层310的一个或多个金属线340构造而成。更具体地,一个或多个金属线340在厚度方向344上从燕尾部302通过薄层310延伸到翼型件组件240b的末端(未示出)。3d构造352的特征在于一个或多个金属线340通过翼型件306延伸全厚度距离t。换句话说,金属线340在厚度方向344上延伸穿过基本上全部薄层310。

在一些实施例中,翼型件组件240b由仅包括碳纤维322的薄层310制造。在其他实施例中,翼型件组件240b由多个不同类型的薄层310制成。换句话说,3d构造352中的金属线340的穿入可以在具有或不具有内部金属纤维326的翼型件组件240上实现。在示例性实施例中,金属线340在固化薄层310之前穿过薄层310以形成翼型件组件240a和/或240b。

上述层合翼型件组件提供了用于改善风扇翼型件组件的延展性和抗冲击性同时减轻其重量的有效方法。具体地,翼型件组件包括金属纤维和/或金属线,其选择性地添加到和/或替代层合翼型件组件内的碳纤维,从而有助于减少或消除对外部粘合金属件的需要。

上文详细描述了层合翼型件组件的示例性实施例。翼型件组件以及形成和/或操作翼型件组件的方法不限于所描述的特定实施例,但相反地,翼型件组件的部件和/或方法的步骤可以独立地且与本文中所描述的其它部件和/或步骤分开地利用。相反,示例性实施例可结合具有叶片式旋转部件的许多其它机械应用来实施和利用。

尽管可能在一些附图中展示本发明的各种实施例的具体特征,而在其它附图中未展示,但这仅是为方便起见。根据本发明的原理,可结合任何其它图式的任何特征参考和/或主张图式的任何特征。

本书面描述使用实例来公开包括最佳模式的实施例,并且还使所属领域的技术人员能够实践所述实施例,包括制造和使用任何装置或系统以及执行任何并入的方法。本发明的可获专利的范围由权利要求书所界定,且可包括所属领域的技术人员想到的其它实例。如果此类其它实例具有并非不同于权利要求书的字面语言的结构要素,或如果它们包括与权利要求书的字面语言无实质差异的等效结构要素,那么此类其它实例希望在权利要求书的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1