具有调整装置的动力转向设备的制作方法

文档序号:5542798阅读:92来源:国知局
专利名称:具有调整装置的动力转向设备的制作方法
技术领域
本发明涉及一种在车辆上转动可转向轮的动力转向设备,该动力转向设备具有调整装置以将齿条和小齿轮调整到正确的啮合。
背景技术
具有齿条和小齿轮的动力转向系统被利用于几乎所有现今的车辆上,以操纵车辆的至少两个车轮。车辆的方向盘通常连接到与齿条相啮合的小齿轮上。齿条和小齿轮支撑在外壳中,并且齿条将小齿轮和方向盘的旋转运动转变为线性运动。齿条的线性运动通常通过连接到每个可转向轮上的转向横拉杆传递到车辆的可转向轮上。此外,动力转向系统通常包括一助力器,该助力器可提供与方向盘的旋转成比例的压力或者作用力,以协助齿条的线性运动。该助力器是一附加的系统,该附加的系统可以为利用连接到齿条的液压活塞的液压系统或者利用电动机的电气系统,以提供辅助力到齿条上。在两者任一的系统中,在动力转向设备的使用寿命期间,希望可以正确地支撑或者允许对小齿轮和齿条之间的啮合进行调整。
齿条可以通过轴承支撑在外壳之中,以便于降低齿条在外壳之内线性运动的摩擦阻力。轴承还支撑着齿条并且通常可调整地定位与小齿轮正确啮合的齿条。诸如在美国专利No.6247375中公开的轴承利用轭(Yoke)该轭具有偏心于外壳的轴承表面,以便于支撑小齿轮并调整小齿轮使其正确啮合齿条。该轭被安装到动力转向总成的外壳中。一旦安装后,轭进行旋转,从而调整与小齿轮正确啮合的齿条的支撑和定位。然后轭采用一工具被永久地打桩入正确的位置中,以使得外壳发生变形,从而将轭支撑和固定在旋转的位置。因为轭被打桩入正确的位置,所以在轭完全安装到该总成中之后,轭和轴承的支撑是不可调整的。因此,在车辆的完全装配之后轭不允许齿条的调整,并且进一步在动力转向总成的运行期间不会提供调整作用。
另外的轴承设计,诸如美国专利No.6435050公开的轴承,利用两件式轴承设计,其具有复杂装置包括在其中,以便于在外壳中支撑齿条。该具有多个轴承面的齿条轴承是复杂的,并且需要另外的轴套来支撑与小齿轮正确的啮合的齿条。
因此,需要提供一种具有轴承的动力转向装置,该轴承具有很少的部件,以支撑与小齿轮正确啮合的齿条。此外,需要一些类型的调整设备以用于接合轴承,从而调整轴承来支撑与小齿轮正确啮合的齿条。

发明内容
本发明提供一种动力转向设备,其包括沿着纵轴线延伸的外壳。该外壳还包括具有内表面的室。齿条设置在该室之内并且支撑在该室之中,以便于沿着纵轴线运动。由外壳支撑的小齿轮延伸入该室中,以与齿条相啮合。轴承与该室的内表面相接合并且围绕齿条设置,以便于在外壳中支撑齿条。该轴承包括具有连续变化径向厚度的壁,该壁圆周地围绕齿条。调整装置由外壳支撑并且连接到轴承上,该轴承可旋转地相对纵轴线调整轴承。从而壁的连续变化的径向厚度可相对小齿轮定位齿条,以确保在齿条和小齿轮之间正确的啮合。
本发明包括轴承和接合轴承的调整装置,同时可减少总成的复杂性。具有极佳设计的调整装置可以在动力转向装置的整个使用寿命中进行调整。


本发明的其它优点将容易理解,当结合附图考虑时,并且通过参见下面的详细说明,这些优点会得到更进一步的理解,其中图1是根据本发明的第一实施例的部分切开的动力转向装置的外壳的立视图;图2是沿着图1中的剖面线2-2的剖视图;图3是沿着图1中的透视投影箭头3的详图;图4是外壳的沿着图1中的剖面线4-4的剖视图;图5是动力转向装置的齿条和小齿轮的部分剖面图;图6是支撑在轴承中并且与小齿轮相啮合的齿条的部分透视图;图7是图6中所示的轴承的侧视图;图8是表示在调整装置和轴承之间接合的部分剖视图;
图9是表示在外壳中的轴承以及调整装置、轴承和齿条之间接合的部分剖视图;图10是用于支撑与小齿轮相啮合的齿条的轴承的第二实施例的透视图;图11用于支撑与小齿轮相啮合的齿条的轴承的第三实施例的顶视图;图12是用于支撑具有Y形结构的齿条的轴承的第四实施例的侧视图;图13是用于支撑与小齿轮相啮合的齿条的轴承的第五实施例的透视图;图14是第五实施例的轴承的剖视图;图15是第五实施例的轴承的横截面透视图;图16是第五实施例的轴承的另一个横截面透视图;图17是用于支撑与小齿轮相啮合的齿条的轴承的第六实施例的剖视图;图18是第六实施例的轴承的横截面透视图;图19是第六实施例的轴承的另一个的横截面透视图;图20是用于支撑与小齿轮相啮合的齿条的轴承的第七实施例的剖视图;图21是第七实施例的轴承的横截面透视图;图22是第七实施例的轴承的另一个横截面透视图;图23是用于支撑与小齿轮相啮合的齿条的轴承的第八实施例的透视图。
具体实施例方式
参见附图,其中相同的附图标记表示在全部的多个视图中的对应的部件,动力转向设备在图1和5中总体表示为30。如图1和2中最佳地示出,动力转向装置30包括沿着纵轴线42延伸的外壳32。外壳32具有一室44,该室44沿着纵轴线42延伸并且限定内表面46,如图2最佳地示出。外壳32包括延伸到室44中的孔48以用于容纳调整装置38(在下面进行更详细的描述)。外壳32还包括邻接伸出部50,其连接到室44并且延伸以可旋转支撑小齿轮36(也将在下面进行更详细的描述)。邻接伸出部50通常横向于纵轴线42和室44。外壳32的内表面46还包括槽52,其环状的围绕纵轴线42延伸以用于定位轴承40,这将在下面充分地描述。参见图3,外壳32可选择性地包括标记54或其它特征,以帮助轴承40到外壳32之中的定位和装配,与轴承36结合使用将在下面进行进一步描述。
如图4最佳地示出,内表面46限定了两个直径56、58。第一直径56具有在纵轴线42上的中心,并且第二直径58具有在第二轴线60上的中心。外壳的内表面还包括在第一直径56和第二直径58之间的台肩62。台肩62还包括斜面和导入端,以便于在第一直径56和台肩62之间引起更加缓和的过渡。第一直径56可以偏移一定量,该量将依据内表面46和支撑在内表面之内的轴承40的设计进行变化。然而,如在现有技术中已知的,外壳32的内表面46具有不同的直径,并在纵轴线42和第二轴线60之间具有变化的偏移距离的构造。还要理解的是可以不存在偏移,这将取决于轴承40的设计,齿条34的构造,以及在给定应用范围之内动力转向装置30上的距离和尺寸约束。本领域技术人员还理解的是外壳32的内表面46可以构造成不同的几何结构,以便于在外壳之内支撑和定位轴承40和齿条34,这将在下面进行进一步描述。
参见图5和6,齿条34设置在外壳32的室44之内,并且沿着纵轴线42线性移动以响应小齿轮36的旋转运动,这在现有技术中已知。小齿轮36可旋转地支撑在外壳的邻接伸出部50中。如现有技术已知的,邻接伸出部50通常包括用于压配合旋转支撑件、也就是滚柱轴承的区域,以便于支撑小齿轮36。齿条34定义了多个与小齿轮36啮合的齿64,这在现有技术中是众所周知的。齿条34将小齿轮36的旋转运动转变为线性运动。在通常的应用中,例如应用在客车中,小齿轮36连接方向盘(未示出)并且相关于驾驶员操作的方向盘的运动进行旋转。齿条34将小齿轮36的旋转运动转变为线性运动,该齿条34通常通过接合到每个可转向轮的转向横拉杆连接到并且移动车辆的可转向轮。如现有技术已知的,动力转向设备30通常包括助力器(未示出),以在外壳32中移动齿条34。辅助力通常由机械系统所产生,诸如液压的,电气的或者其它在现有技术中已知的辅助技术。
参见图5、6、7、8和9,齿条34由轴承40支撑在外壳32之中。本发明的轴承40包括壁66,该壁66具有连续变化的径向厚度,并且圆周的围绕外壳32中的齿条34。轴承40的壁具有外面68和内面70。轴承40还提供阻尼机构100,用于相对外壳32的内表面46在轴承40之内缓冲齿条34的冲击运动。外面68提供与阻尼机构100的接合,该阻尼机构包括许多测电的材料和构造,如本领域技术人员所认知的。阻尼机构100还可定义为接合轴承40的外面68的O形环。O形环为具有弹性的聚合材料,从而可以给齿条34相对于小齿轮36和外壳32的冲击运动提供缓冲作用。如图5所示,O形环接合入外面68中的通道中并且设置在轴承40的外面68和外壳32的内表面46之间。
参见图6,轴承40的壁66可选择地定义了沿着纵轴线42向内延伸的扇形凹口114。扇形凹口114定义了从轴承40的壁66的切断部分,以允许轴承40比较接近小齿轮36地设计和定位在室44之中,如图6所示。轴承40定位在小齿轮36附近允许轴承40克服由小齿轮36啮合所引起的弯曲和扭转力来支撑齿条34。图6示出了轴承40的具有扇形凹口114的壁66,该扇形凹口114移去了壁66的一部分,以允许小齿轮36与齿条34的接合和啮合。因此,扇形凹口114允许轴承40的壁66的一部分相对于小齿轮36沿着齿条34延伸,以支撑与小齿轮36啮合的齿条34。轴承40的位置对于支撑小齿轮36和齿条34之间啮合引起的对抗力是重要的。轴承40更接近小齿轮36与齿条34的啮合位置可以降低齿条34和小齿轮36啮合作用与轴承40之间的杠杆作用力。因此,降低的杠杆作用力改进了齿条36的支撑并且防止齿条36弯曲离开和脱离与小齿轮38的正确接合。此外,轴承40定位在小齿轮36的附近或者下面可以减少噪声或振动的可能性,该噪声或振动是由于在设备30上应用了高负荷,由齿条34的冲击运动所产生的。
此外,在设备30的装配期间,轴承40包括帮助在外壳32的室44之中设置和定位轴承40的特征。如图7所示,轴承40包括定位伸出部104,在本实施例中该定位伸出部104为圆筒,用于相对外壳32设置轴承40。例如,定位伸出部104可用于定位轴承40的顶部或顶点(noon)位置,或者可选择性的与外壳32的标记54相对齐。标记54在上面已经被描述并且如图3所示。轴承40优选相对外壳32定位在室44之中,从而从标定位置旋转10到12度,以增加间隙和将齿条34设置在纵轴线42下面。通过在装配期间最初将齿条32支撑在标称位置下面,可在齿条34和小齿轮36之间产生额外的间隙。间隙需要用于安装入设备30中小齿轮36与齿条34的啮合。然而,本领域技术人员应当认识到借助于另外的装配工具也存在许多方法来定位轴承40。额外的间隙由调整装置38所消除,该调整装置38旋转轴承40以定位与小齿轮36正确啮合的齿条34,这将在下面进行详细描述。
在外壳32的内表面46中的槽52提供了轴承40在外壳32的室44之内的确定的位置和基准位置。轴承40的壁66包括前端106和后端108,它们定义了轴承的宽度。轴承40的后端108包括从轴承40向外偏置且用于接合入槽52之中的指状部110,并且提供了轴承40在室44之内的确定位置。指状部110可移动地锁定了与室44中的槽52的接合的轴承40并且可允许移去轴承40,如果需要的话,而不会损坏外壳32和/或轴承40。作为替代方案,后端108包括许多圆周地围绕轴承40的交替的指状部110和切口112,以接合槽52和定位轴承40,如图7所示。轴承40的可移去方面是有利的,其允许轴承40从外壳32中移去而不会损坏外壳32的内表面46,该外壳32是制造过程的消耗部件,并且对内表面46的损坏会导致报废部件或者产生额外的加工成本来修复外壳32的内表面46。
另外,轴承40的后端108还包括与齿条34相接合的止挡。该止挡仅仅包括具有斜面的内面70,其直径小于齿条34的端直径。存在许多方法使轴承40可以防止齿条34完全通过轴承40,因此构造齿条34在外壳32之内线性移动的止挡。当外壳32的尺寸较重要时,轴承40可作为停止件的使用是尤其有利的,因为其消除了对额外的部件或者在特征中设计内表面46从而限制齿条34在外壳32之中的移动的额外复杂性的需要。
轴承40的壁66另外包括改进轴承40的可制造性的特征。壁66可定义一腔116或多个腔116,这些腔116沿着纵轴线42从前端106朝向轴承40的后端108延伸。在轴承40的制造期间,腔116提供了轴承40的聚合材料的均匀固化。图8示出了具有许多腔116的壁66。腔116增加了轴承40的聚合材料均匀固化而对轴承40的内表面46产生很少或者没有波纹的可能性。这是重要的,因为内表面46支撑齿条34,并且对内表面46产生的波纹或缺陷会增加轴承40的磨损和增加对齿条34线性运动的摩擦阻力。
参见图7,轴承40的壁66包括外面68和内面70。外面68由外半径72所定义。外面68通常是圆形的并且定义了具有第一中心点74的外部圆周。壁66进一步由具有内半径76的内面70所定义。内面70通常是圆形的并且定义了具有第二中心点78的内部圆周。第二中心点78与第一中心点74隔开一定距离,以在外部圆周和内部圆周之间定义一定量的偏心量,从而定义了壁66的变化的径向厚度。变化的径向厚度可逐渐允许由调整装置38产生的轴承40的逐渐和平滑的调整,如下面描述的。
如图4和7所示,轴承40的外面68相对内表面46进行接合,其中内表面46定义了第二直径58。外面68稍微小于内表面46的第二直径58,以允许轴承40由调整装置38进行旋转(如下所述)。如上所述,第一直径56以纵轴线42为中心并且第二直径58以第二轴线60为中心。第二轴线60偏离纵轴线42并且偏移量能够改变。然而,如所示的,偏移量通常在相反的方向等于轴承40的壁66的第一和第二中心点74、78之间的偏心量。换句话说,偏移量与壁66的变化的径向厚度大小相等方向相反。当轴承40被调整装置38旋转时,内表面46的第一直径56允许在齿条34和外壳32之间的间隙,如下面所述的,从而移动齿条34与小齿轮36正确啮合。因此,偏离纵轴线42的第二轴线60和第二直径56对于在外壳32的尺寸被限制的应用情况下是重要的,这种尺寸限制是由于在设备30的应用范围之内距离的关系和限制。偏移的第二轴线60与轴承40的壁66变化的径向厚度相结合可允许外壳32的更小的径向横截面,其仍然具有足够的间隙用调整装置38来调整齿条34位置,如下面所述的。
参见图8,轴承40可操作地连接到调整装置38上,该调整装置38可相对纵轴线42旋转轴承40。因此,当支撑齿条34的壁66的径向厚度增加时,轴承40的壁66的变化的径向厚度会朝小齿轮36的方向移动齿条34,并且当支撑齿条34的壁的径向厚度减少时朝远离小齿轮36的方向移动齿条34。通过调整装置38旋转轴承40,齿条34相对小齿轮36和外壳32移动,从而支撑齿条34的壁66变化的径向厚度可用于定位齿条34和小齿轮36的正确啮合。因此,当轴承40由调整装置38旋转时,轴承40可随着相对纵轴线42的逐渐运动调整齿条34。壁66的变化的径向厚度在内部圆周最接近外部圆周时的径向位置最小。
轴承40的壁66定义了延伸到末端的孔80,该末端还定义了座82。调整装置38与座82相结合,以允许轴承40相对调整装置38的移动的推拉的旋转,如指示箭头84所示。孔80具有椭圆形状,其直径逐渐减少,以通常圆锥的形状变成球形的座82。孔80椭圆形和圆锥形的几何结构允许调整装置38在座82中旋转。当在轴承40的调整期间轴承40围绕纵轴线42旋转时,孔80的几何结构对于允许调整装置38旋转来说是尤其重要的。
调整装置38优选包括紧固件86或者调节螺纹件,用于与轴承40的座82相结合。紧固件86包括定义了球状部分90的第一端88和从第一端88延伸到第二端94的轴92。紧固件86的球状部分90与轴承40的座82相接合。当在轴承40的调整期间轴承40围绕纵轴线42旋转时,紧固件86在轴承40的座82中进行旋转。作为替代方案,轴承40的座82包括环形突出部分96用于与紧固件86的球状部分90相接合,从而在紧固件86和轴承40之间建立连接接合。环形突出部分96帮助提供固定接合作用,使得轴承40可以在两个方向旋转,而紧固件86不会从轴承40的座82中脱离。因此,当推力作用使得紧固件86打入座82中时,轴承40在一个方向旋转,当拉力作用使得紧固件86后退远离座82时,轴承40以相反方向旋转。紧固件86的第二端94定义了用于接合外壳32的孔48的螺纹部分98,从而允许紧固件86的变紧以推动轴承40,以及紧固件86的放松以拉动轴承40。当紧固件86在孔80之内的座82中旋转时,轴承40相对纵轴线42进行旋转。图9示出了具有调整装置38的外壳32的剖视图,该调整装置38包括紧固件86和轴承40以示出装置30的部件之间的接合情况。应该理解的是调整装置38可以为任何合适的设计。
作为替代方案,调整装置38还包括螺旋弹簧102,如图9所示。螺旋弹簧102围绕着紧固件86的轴92设置,用于在轴承40和外壳32之间的偏置。螺旋弹簧102的偏置提供了齿条34相对小齿轮36的冲击运动的额外的缓冲。此外,螺旋弹簧102提供了进一步旋转轴承40的力,以保持齿条34和小齿轮36之间的正确的啮合。当需要在动力转向设备30的操作时间内补偿由轴承40上的磨损引起的额外的间隙时,由螺旋弹簧102产生的轴承40的旋转有效地提供了轴承40操作上的调整。
阻尼机构100和轴承40的外面68提供了相对内面46的摩擦力,该摩擦力可将轴承锁定在正确位置。摩擦力提供轴承40在正确位置有效的锁定并且不会允许轴承40在高应用负荷下旋转以压缩螺旋弹簧102,从而旋转轴承40。因此,在设备30的操作期间,由螺旋弹簧102产生的轴承40的调整在旋转轴承40方面是有效的,由外面68和阻尼机构100之间的接触面与内表面46所引起的摩擦力保持轴承40在正确位置以防止螺旋弹簧102的压缩。然而,本领域技术人员将认识到螺旋弹簧102是可移去的,并且其仅仅是一种附加的选择用于提供一种方法来进一步缓冲设备30中的冲击运动,同时可提供轴承40的操作上和连续的调整,从而补偿由于设备30的操作在轴承40上的磨损所导致的额外的间隙。
此外,参见图10,紧固件86还包括相对外壳32保持紧固件86的密封件103。在本发明的一种替代方案的实施例中,在现有技术中已知的锁紧或类似方法可选择性的设置在螺纹上,或者公差叠加可以用来相对外壳32保持紧固件86。
在图10-23中示出了轴承40的多种实施例。每一实施例还示出了灵活性和对轴承40的壁的设计替代方案,以产生具有不同宽度、壁66的扇形凹口114的设计和腔116的设置的多种轴承40,每个对一种应用来说是唯一的。图10中的轴承40的作为替代方案的实施例没有包括扇形凹口114,然而,紧固件86可在紧固件86上利用密封件。紧固件86与外壳32的孔48(未示出)接合以在设备30中固定紧固件86。
参见图11,轴承40的第三实施例包括一增加的轴承40的宽度,该宽度跨越和支撑齿条34的更长的部分。因此,该额外的轴承40的宽度可提高轴承40的负荷承载能力,以用于支撑与小齿轮36相啮合的齿条34。额外的阻尼机构100、在该实施例中的O形环用来提供齿条34相对小齿轮36的冲击运动的额外缓冲作用。
图12示出了轴承40的第四实施例,并且包括可旋转接合轴承40的内面70的接合器118。接合器118定义孔120,该孔120具有与齿条34的构造互补的构造。接合器118通常用来支撑具有Y形齿条构造的齿条34。第四实施例的轴承40还允许外壳32的内表面46为更简单的管构造,而不需要偏移第二直径58的额外的加工,如现有技术已知的以及如上所述的。接合器118是额外的部件,该部件通常是利用Y形齿条构造的可变作用的动力转向装置30所需要的。此外,本领域技术人员可认识到作为替代方案,接合器118的孔120可以是与任何齿条构造互补的构造。
图13-16示出了轴承40的第五实施例,该轴承40与从轴承40的前端106延伸出的腔116相结合。然而,第五实施例没有包括扇形凹口114,因此,轴承40设置在紧邻小齿轮36的室44之中。
图17-19示出了轴承40的第六实施例,该轴承40与圆周地围绕前端106的腔116相结合。腔116沿着纵轴线42朝向后端108延伸,并且设置在轴承40的外面68和内面70之间。另外,轴承40包括在轴承40的壁66中的扇形凹口114。
图20-22示出了轴承40的第七实施例,该轴承40结合沿着纵轴线42从轴承40的前端106朝向后端108延伸的多个腔116。另外,扇形凹口114延伸更长的长度到壁66之中以缩小轴承40的宽度,该扇形凹口114可允许设置轴承40,从而使得轴承40的壁66的一部分与啮合齿条34的小齿轮36直接相对。
图23示出了轴承40的第八实施例,该轴承40具有从轴承40的前端106延伸出的多个腔116。此外,第八实施例示出了扇形凹口114,并且该扇形凹口114可以在尺寸和角度上发生改变,从而进一步在轴承40的壁66的一部分中缩小轴承40的宽度。本领域技术人员理解到外壳32的负荷要求和设计需要轴承40可以灵活地用于在外壳32中设置轴承40,在接近齿条34和小齿轮36之间的啮合的情况下。
明显地,根据上述本发明的技术方案可以进行多种修改和变化。本发明可以与上述具体的描述不同的方案实施,只要在附加的权利要求的范围之内。
权利要求
1.一种动力转向设备(30),其包括一外壳(32),其沿着纵轴线(42)延伸,并且具有室(44),该室(44)具有内表面(46);一齿条(34),其设置在所述室(44)中,用于沿着所述纵轴线(42)动;一小齿轮(36),其由所述外壳(32)支撑,并且延伸到所述室(44)之中用于与所述齿条(34)相啮合;一轴承(40),其与所述室(44)的所述内表面(46)相接合,并且围绕所述齿条(34)设置,其中所述轴承(40)具有圆周地围绕所述齿条(34)且具有连续变化的径向厚度的壁(66);和一调整装置(38),其由外壳(32)支撑,并且连接到所述轴承(40)上,用于相对所述轴线可旋转地调整所述轴承(40),从而相对所述小齿轮(36)移动所述齿条(34),用于确保所述小齿轮(36)和所述齿条(34)的正确的啮合。
2.如权利要求1所述的设备(30),其中所述轴承(40)的所述壁(66)还定义了延伸到末端的孔(50),该末端定义了座(52),其中所述调整装置(52)连接到所述座(52)上。
3.如权利要求2所述的设备(30),其中所述调整装置(38)还包括紧固件(54),该紧固件具有定义了与所述座(52)接合的球状部分(58)的第一端(56)和从所述第一端(56)延伸到与所述外壳(32)接合的第二端(62)的轴(60)。
4.如权利要求3所述的设备(30),其中所述座(52)还定义了环形突出部分(64),其中所述紧固件(54)的所述球状部分(58)与所述环形突出部分(64)相接合。
5.如权利要求3所述的设备(30),其中所述调整装置(38)还包括围绕所述紧固件(54)的所述轴(60)设置的螺旋弹簧(66),用于在所述轴承(44)和所述内表面(46)之间偏置。
6.如权利要求3所述的设备(30),其中所述外壳(32)还包括了延伸到所述室(44)中的孔(68),该孔(68)用于容纳所述调整装置(38)的所述紧固件(54)。
7.如权利要求6所述的设备(30),其中所述紧固件(54)的所述第二端(62)还定义了用于与所述外壳(32)的所述孔(68)接合的螺纹部分(70)。
8.如权利要求1所述的设备(30),其中所述壁(46)沿着前端(72)和后端(74)之间的纵轴线(36)延伸,其中所述后端(74)定义了止挡,以限制所述齿条(34)在所述室(44)中的运动。
9.如权利要求1所述的设备(30),其中所述外壳(32)的所述内表面(46)还包括了用于定位所述轴承(44)的环状地围绕所述纵轴线(36)延伸的槽(76)。
10.如权利要求9所述的设备(30),其中所述轴承(44)还包括从所述轴承(44)向外偏置的指状部(78),用于接合入所述槽(76)中以在所述室(44)中定位所述轴承(44)。
11.如权利要求9所述的设备(30),其中所述壁(46)具有前端(72)和后端(74),并且后端(74)还定义了多个交替的圆周地围绕所述轴承(44)的指状部(78)和切口(80),而且所述多个指状部(78)从所述轴承(44)向外偏置,用于与所述槽(76)相接合以在所述室(44)中定位所述轴承(44)。
12.如权利要求1所述的设备(30),其中所述轴承(44)的所述壁(46)包括具有外半径(84)的外面(82)和具有内半径(88)的内面(86),所述内半径(88)与所述外半径(84)偏置一距离,以定义所述壁(46)的所述变化的径向厚度。
13.如权利要求12所述的设备(30),其中所述轴承(44)还包括可旋转地与所述内面(86)相接合的接合器(90),其中所述接合器(90)定义了孔(92),该孔(92)具有与所述齿条(34)的构造互补的构造。
14.如权利要求1所述的设备(30),其中所述轴承(44)的所述壁(46)由外面(82)和内面(86)所定义,其中外面(82)定义了具有第一中心点(94)的外部圆周,内面(86)定义了具有第二中心点(96)的内部圆周,并且所述第二中心点(96)偏心于所述第一中心点(94)以定义所述壁(46)的所述变化的径向厚度。
15.如权利要求14所述的设备(30),其中所述变化的径向厚度定义了最小的径向厚度,在那里所述内部圆周最接近所述外部圆周。
16.如权利要求1所述的设备(30),其中所述轴承(44)还包括用于在所述齿条(34)和所述小齿轮(36)之间缓冲冲击运动的阻尼机构(98)。
17.如权利要求1所述的设备(30),其中所述壁(46)还定义了在前端(72)和后端(74)之间延伸的轴承(44)的宽度,并且所述前端(72)还进一步由至少一个扇形凹口(114)所定义,所述扇形凹口(114)沿着所述纵轴线(36)向内延伸到所述轴承(44)的所述壁(46)之中,用于允许所述轴承(44)定位在所述小齿轮(36)下面。
18.如权利要求1所述的设备(30),其中所述壁(46)具有前端(72)和后端(74),并且所述后端(74)还包括定位伸出部(102),用于在所述轴承(44)装入所述室(44)期间相对所述外壳(32)定位所述轴承(44)。
19.如权利要求1所述的设备(30),其中所述壁(46)还定义了在前端(72)和后端(74)之间延伸的轴承(44)的宽度,并且所述壁(46)还定义了在所述外面和内面(82、86)之间沿着所述纵轴线(36)从所述前端(72)延伸的腔(104),用于改善所述轴承(44)的固化特征。
全文摘要
本发明提供了一种动力转向装置(30),其包括沿着纵轴线(36)延伸的外壳(32)。齿条(36)设置在外壳(32)之中并且由轴承(34)支撑以沿着纵轴线(36)运动。由外壳(32)支撑的小齿轮(44)与齿条(36)相啮合。围绕齿条(36)设置的轴承(34)包括圆周地围绕齿条(36)的壁(66),该壁(66)具有连续变化的径向厚度。由外壳(32)支撑的调整装置(46)连接到轴承(34)上并且相对纵轴线(36)可旋转地调整轴承(34)。当轴承(34)由调整装置(46)相对小齿轮(44)旋转以确保在齿条(36)和小齿轮(44)之间正确啮合时,壁(66)的连续变化的径向厚度定位齿条(36)。
文档编号F16H57/12GK1895946SQ20061009966
公开日2007年1月17日 申请日期2006年6月29日 优先权日2005年6月30日
发明者G·E·阿尔特, M·L·阿伦德, D·法内利, M·雷拉尼 申请人:德尔菲技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1