用于设计离合器控制装置的软件减振器的方法和用于衰减抖振振动的软件减振器与流程

文档序号:13765507阅读:337来源:国知局
用于设计离合器控制装置的软件减振器的方法和用于衰减抖振振动的软件减振器与流程

本发明涉及一种软件减振器和一种用于对接通离合器控制装置的软件减振器进行设计的方法,用于衰减要经由自动化的摩擦离合器传递的离合器力矩的抖振振动,所述摩擦离合器设置在内燃机和变速器之间设置和被离合器控制装置控制,其中借助于软件减振器在摩擦离合器的输出端上测定变速器输入转速,并且借助于负反馈,修正由于抖振振动而被加载的离合器理论力矩。



背景技术:

自动化的摩擦离合器、例如组成双离合器的摩擦离合器是广为人知的,并且在动力传动系中使用在内燃机和变速器之间,所述动力传动系具有内燃机和变速器,例如自动化的换挡变速器、双离合变速器等。在此,摩擦离合器借助于离合器调节器、如离合器执行器操作。离合器执行器由离合器控制装置控制。离合器控制装置包含调节器,所述调节器根据离合器理论力矩来操作摩擦离合器,使得在其输出端上存在预设的离合器力矩,所述离合器理论力矩能够借助于行驶策略程序、例如根据行驶期望力矩、行驶状况、道路状况等来确定。由于摩擦离合器、内燃机、变速器等的特性,在摩擦离合器上会出现抖振过程,所述抖振过程引起离合器理论力矩以含振动的方式传递,所述离合器理论力矩具有在例如最多30Hz的频率范围中的预设的频率响应。

为了衰减所述频率响应,从DE 10 2013 204 698A1中已知一种用于减小抖振振动的方法,其中为用于离合器理论力矩的离合器调节器添加仿真的减振器,也即软件结合的减振器,例如软件减振器。



技术实现要素:

本发明的目的是提出软件减振器的有利的改进方案和用于其设计的方法。

所述目的通过权利要求1的方法的特征和权利要求5的主题来实现。从属于其的权利要求描述权利要求1的主题的或权利要求9的方法的有利的实施方式。

提出的方法用于对接通离合器控制装置的软件减振器进行设计,所述软件减振器用于衰减要经由自动化的摩擦离合器传递的离合器力矩的抖振振动,所述摩擦离合器设置在内燃机和变速器之间和被离合器控制装置控制。在此,借助于软件减振器测定在摩擦离合器的输出端上的变速器输入转速,并且借助于负反馈来衰减在摩擦离合器的输出端上由于抖振振动而加载的离合器力矩,这通过下述方式进行:相应地修正离合器理论力矩。对此提出,以鲁棒的方式设计软件减振器,这就是说,通过下述方式确定其调节参数:在与抖振振动有关的频率范围中,例如在最多30Hz的频率中经由在离合器控制装置的调节段来确定在离合器理论力矩的激励情况下的传递特性。在所述传递特性的情况下,确定变速器输入转速的未被衰减的第一频率响应和在软件减振器的输出端上的第二频率响应。在此,通过比较这两个频率响应,确定软件减振器的负反馈,即其调节参数,并且进而设计、如配置软件减振器。

根据一个有利的实施方式,将这两个频率响应作为具有幅值和相位的复变函数示出,以确定反馈,并且从中以计算的方式计算出反馈。例如,未被衰减的第一频率响应能够作为复变函数X(f)示出,而第二频率响应能够作为复变函数Y(f)示出,并且从其关系X(f)/(1+X(f)×Y(f))中计算出反馈。在此,抖振振动的最大值在预设的抖振频率中可以被衰减,而最大值的边沿被提升。从中得到在反馈放大适度的情况下对频率响应的平滑。

提出的软件减振器用于执行所述方法并且具有滤波器,所述滤波器从具有频率响应的变速器输入转速中将衰减抖振振动的负反馈馈送到离合器理论力矩上,所述频率响应承受抖振振动。线性的滤波器能够构成为具有无限的脉冲响应的递归的滤波器、IIR滤波器(infinite impulse response filter,无限脉冲响应滤波器)或构成为具有有限的脉冲响应的滤波器、FIR滤波器(finite impulse response filter,有限脉冲响应滤波器)。

根据一个优选的实施方式,可关断地调节软件减振器的放大,即反馈的品质。例如,当抖振振动以较小的概率出现时,能够关断软件减振器,而当其概率例如在车辆起步、爬行、在换挡之后接合等等的情况下增大时,接通所述软件减振器。在关断状态和接通状态之间,能够设有过渡区域。例如,能够提出借助于与软件减振器的稳定性相关的特性曲线来调节放大。

此外,反馈的最大放大可以是有限的。例如,反馈可以限制于变速器输入转速的频率响应的幅值的150%。

换言之,所述目的能够通过权利要求1或5的方法和主题如下解决:

借助近似线性的系统、如离合器系统的频率响应的知识,在使用线性的调节器、如软件减振器时,计算出在激活调节器的情况下被衰减的频率响应,其中所述离合器系统具有离合器调节器、控制所述离合器调节器的离合器控制装置以及动力系统,该动力系统以施加的负荷以及其动力性耦联在离合器输出端如变速器输入端上。因此,调节器能够最优地针对限定的目标频率响应在最佳匹配的范围中进行设计。除了逐步的、非自动化的“手动”设计之外,目标频率响应的所述设计也自动化地通过相应的优化算法实现。在借助于经由FIR滤波器的反馈的一个替选的构成方案中,这是特别简单的,并且是可计算的,而无需使用递归的匹配算法。

在过渡到运行区域中时,有利地禁用所述调节器,其中在该运行区域中调节器不再可能稳定地设计。禁用可以连续地经由调节器的总放大的撤销(Rücknahme)进行,因为随着放大的减小,调节越来越“稳定”,并且接近未调节的离合器系统。如果调节再度变得不稳定,那么可以经由特性曲线限制调节器输出。

在动力系统的运行点中调制过的理论力矩到测量的变速器输入转速的传递特性已知的情况下,其中所述传递特性呈例如关于激励频率、关于幅值和相位响应的频率响应的形式,在此,在假定特性为线性的条件下,当所使用的用于衰减的调节器同样线性地构成时,可以计算出有效的被衰减的频率响应。在此,所述线性是实际离合器系统的近似特性,所述离合器系统通常并不是严格线性的。如果未被衰减的系统通过复频率响应X(f)给出并且负反馈通过复频率响应Y(f)给出,那么在调节器激活时的频率响应可以通过复变函数X(f)/(1+X(f)*Y(f))来计算。根据计算出的被衰减的频率响应,可以执行或评估软件减振器的设计。除了减小频率响应在谐振的区域中的幅值之外,在此提出:相对提高在谐振之外的幅值。为了实现鲁棒的设计,提出频率响应的尽可能平缓的变化,而不产生过大的放大,所述过大的放大会引起调节器的不稳定。

因为尤其在复传递特性中“手动”最优设计是困难的,所以在限定设计标准的情况下,可以执行自动化的设计。设计标准例如可以是,将被衰减的频率响应的幅值的最大值设置得尽可能小,并且在此最大放大保持小于150%。在此,该设计可以借助于常见的优化算法来确定。

在此,对于自动化的设计而言特别适合的是调节器或滤波器的如下构成方案,在该构成方案中线性的滤波器通过所谓的FIR滤波器来设置。在该情况下,为软件减振器形式的调节器的设计可以直接根据目标频率响应来计算,例如无需使用递归的匹配算法。在FIR滤波器中,对变速器输入转速的或离合器理论力矩的有限数量的之前的、例如存储在缓存器中的测量值进行加权的求和。特殊的要求在此为考虑下述事实:不能够使用“来自未来的”数值。尽管如此,为了实现可靠的设计,可以设有下述边界条件:可以预设最大放大、最大幅值、采样区间和与滤波器阶数相关的缓存时间等。

根据一个有利的实施方式,在过渡到稳定的调节器设计不再可能的运行区域中时,可以提出调节器的可控的关断。关断可以连续地经由总放大进行。随着放大的减小,调节器的控制越来越“稳定”,并且接近未调节的离合器系统。

如果调节在机动车辆的或动力传动系的运行区域中变得不稳定,例如由于运行参数不可预见的改变而变得不稳定,则通过下述方式对调节器进行适当的修正:限制调节器输出并进而限制负面影响。这例如可以借助于保存在离合器控制装置中的特性曲线进行,所述特性曲线作为输入具有无限制的调节器输出信号,并且作为输出具有有限制的调节器输出信号。对于小信号,所述特性曲线例如具有为1的斜率,而在较大的信号的情况下,所述特性曲线变得平缓或具有为零的斜率。

附图说明

根据在图1至图3中示出的实施例详细阐述本发明。在此示出:

图1示出软件减振器的方框图,

图2示出用于示出设计软件减振器的图表,并且

图3示出用于自动化地设计具有FIR滤波器的软件减振器的图表。

具体实施方式

图1示出方框图1连带用于借助于软件减振器3沿着调节段2衰减抖振振动的方法的过程。借助于离合器调节器和离合器控制装置利用控制算法,将所属的摩擦离合器调节到与行驶状况相关地预设的离合器理论力矩m(k)上,例如借助于位置调节器。在特定的运行情况下,例如在起步、爬行时、在换挡之后接合时等等,会出现摩擦离合器的抖振,所述抖振沿着调节段2与干扰变量4、5、6(例如离合器控制装置的软件、离合器动力性和离合器调节器动力性)并且与动力系统的动力性相关。软件减振器3在摩擦离合器的输出端上截取变速器输入转速r(g),并且软件减振器3在匹配于干扰变量4、5、6的状态中产生调制力矩m(m)作为对所述抖振振动的负反馈,并进而在连结点7处修正离合器理论力矩m(k)。经过修正的离合器理论力矩m(k)经由离合器调节器对摩擦离合器上的要传递的离合器力矩施加影响,并进而补偿抖振振动。在连结点7和软件减振器3之间设有开关8,所述开关数字地或根据预设的特性曲线对软件减振器3的作用加权。例如在软件减振器3不稳定时、在未出现抖振振动的运行状态中、例如在摩擦离合器的输入转速和输出转速之间的转速差或转速相对于预设的转速阈值提高时等等,开关能够关断软件减振器或减小其作用。此外,借助于开关8能够调整软件减振器3的放大。

软件减振器3的设计与干扰变量4、5、6相关地进行。对此,例如凭经验地在车辆上、借助于模型计算等确定调节段2上的传递特性。随后,对离合器理论力矩m(k)加载预设的振动、振动模式等,它们位于摩擦离合器上的抖振振动过程的频率的范围中。与车辆的或动力传动系的不同的运行情况相关地,在假定调节段2为线性和软件减振器3为线性的条件下,将调节段2的和软件减振器3的频率响应作为复变函数X(f)和Y(f)测定。根据关联关系X(f)/(1+X(f)×Y(f)),设计软件减振器3,即确定其参数。

图2关于0Hz至14Hz之间的典型频率范围中的激励频率示出具有子图表I、II、III、IV的图表9。子图表I以实线示出关于图1的调节段2的复变函数X(f)的频率响应的幅值并且以虚线示出其相位。子图表II示出从中确定的具有复变函数Y(f)的频率响应。相对于具有子图表I的复变函数X(f)的以虚线示出的未被补偿的频率响应,子图表III以实线示出在设计的软件减振器3(图1)激活时的传递函数的幅值。在此,清楚的是,为了鲁棒地设计软件减振器3,最大值M仅仅不完全地沿箭头10的方向减小,并且边沿F1、F2沿箭头11的方向升高。子图表IV关于激励频率示出根据子图表I-III设计的软件减振器3的放大。最大放大在此例如能够限制于150%。

图3示出具有子图表V、VI、VII、VIII、IX的图表12,用于自动化地设计具有FIR滤波器的软件减振器。子图表V在此以虚线描绘变速器输入转速的频率响应。为了设计FIR滤波器,预设以点线示出的目标频率响应。FIR滤波器借助于实际的频率响应和目标频率响应利用优化算法来协调,使得得到以实线示出的频率响应。子图表VI以虚线示出实际的未被补偿的频率响应的相位,并且以实线示出借助于FIR滤波器补偿的频率响应。子图表VII关于激励频率如抖振频率示出FIR滤波器的放大V。以虚线示出由于子图表V的目标频率响应得到的放大,并且以实线示出在设计FIR滤波器之后得到的放大。子图表VIII示出滤波器幅值A(F)的限制,并且相对于以细线示出的无限制的幅值和无限制的滤波器相位,子图表IX以粗线示出通过相应地使用临界条件对滤波器相位的限制。

附图标记列表:

1 方框图

2 调节段

3 软件减振器

4 干扰变量

5 干扰变量

6 干扰变量

7 连结点

8 开关

9 图表

10 箭头

11 箭头

12 图表

A 幅值

A(F) 滤波器幅值

F1 边沿

F2 边沿

M 最大值

m(k) 离合器理论力矩

m(m) 调制力矩

r(g) 变速器输入转速

V 放大

I 子图表

II 子图表

III 子图表

IV 子图表

V 子图表

VI 子图表

VII 子图表

VIII 子图表

IX 子图表

相位

滤波器相位

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1