用于接合高纯度流体通路的超密封垫圈的制作方法

文档序号:13765531阅读:119来源:国知局
用于接合高纯度流体通路的超密封垫圈的制作方法

本申请依据美国法典第35卷第119(e)节要求2014年4月17日提交的序号为61/980,823、标题为“ULTRA-SEAL GASKET FOR JOINING HIGH PURITY FLUID PATHWAYS”的美国临时申请的优先权,该申请通过引用整体合并于此。

技术领域



背景技术:

本发明的实施例涉及用于密封流体通路的各部分之间的接头(joint)的、可锻的、主要是金属的垫圈(gasket)。接口(interface)结构和相关垫圈的许多组合在流体输送设备的设计中是众所周知的。这些结构包括法兰(flange)、压盖(gland)、组件连接、以及其他功能件,其使得各种设备元件能够机械地装配,形成各种互连的流体通路。代表性流体输送设备可见于生产精细化学品、石油产品、平板电子显示器或半导体的工业设备中,并且可能受到真空、或压力、或纯度的要求以及它们的组合。半导体制造设备中意图用于操纵工艺材料的元件之间的流体通路通常需要注意维持所输送的反应物的高纯度,并且通常还具有比例如在石油化工厂中使用的流体通路小得多的横截面。在许多情况下,从业者已经发现金属垫圈提供优于聚合物材料的卓越性能,尤其是关于工艺流体或污染物通过垫圈的扩散以及随之而来的对不期望泄漏的抵抗性而言。

一种已知类型的流体通路接头使用环形垫圈,起初在径向方向上是平坦的,在轴向上被挤压在标称相同形状的环状突起之间,环状突起围绕对置的设备元件的圆形管道开口。环状突起在轴向上被压向彼此,导致可延展的金属垫圈的永久塑性形变,产生将抵抗甚至很难的泄露的密封结构以包含诸如氦之类的流体。这种接头的代表性例子可见于以下专利中:颁发给Carlson和Wheeler的美国专利No.3,208,758(熟知为法兰)、颁发给Callahan和Wennerstrom的美国专利No.3,521,910(熟知为接头)、以及颁发给Harra和Nystrom的美国专利No.4,303,251。

另一种已知类型的流体通路接头使用预定横截面轮廓的环形垫圈,其被挤压在标称相同形状的环状突起之间,环状突起围绕对置的设备元件的圆形管道开口。这种接头的代表性例子可见于以下专利中:颁发给Leigh的美国专利No.4,854,597、颁发给McGarvey的美国专利No.5,505,464、以及颁发给Ohmi等人的美国专利No.6,135,155(W-Seal接头类型的早期版本)。Ohmi等人的专利额外提供用于在接头组装期间保持垫圈并且使垫圈居中的单独固位(retainer)部件。其他的单独固位结构也可见于以下专利中:颁发给Barber和Aldridge的美国专利No.5,673,946和No.5,758,910、以及颁发给Ohmi等人的美国专利No.7,140,647。

又一种已知类型的流体通路接头(熟知为C-Seal接头类型)使用复杂形状的环形金属垫圈,其被挤压在对置的设备元件之间,这些对置的设备元件具有与垫圈接触的简单平坦表面。最常见的是至少一个设备元件的面具有圆形沉孔(counterbore)凹陷以容纳垫圈。这种接头的代表性例子可见于以下专利中:颁发给Inagaki等人的美国专利No.5,797,604、颁发给Doyle的美国专利No.6,357,760和No.6,688,608、以及颁发给Spence和Felber的美国专利No.6,409,180。颁发给Spence和Felber的专利‘180额外提供了用于在接头组装期间保持垫圈并且使垫圈居中的单独固位部件。其他的单独固位结构也可见于以下专利中:颁发给Kojima和Aoyama的美国专利No.5,984,318、颁发给Doyle的美国专利No.6,845,984、以及颁发给Whitlow等人的美国专利No.6,945,539。此外,颁发给本发明人Kim Ngoc Vu等人的美国专利No.5,992,463和颁发给Swensen等人的美国专利No.5,730,448示出了适当厚度的固位器(retainer)可以替代地提供沉孔侧壁的挤压限制功能并且允许在简单平坦的对置面之间使用垫圈。

高纯度流体输送组件和流体通路元件通常由316L型不锈钢或诸如之类的镍合金的真空精炼变体制成。这两种金属材料都仅可通过机械工作而不能通过热处理来硬化,因此存在被伴随金属垫圈的局部力损伤的风险。由聚合物材料制成的高纯度流体输送组件也是众所周知的,常在带有金属离子的潜在污染是要考虑的问题的情况控制某种液态流体的流动时使用。在许多聚合物设备设计中,流体通路接头也使用带有中间的垫圈的对置平坦表面(有或没有沉孔)。用于这种接头的由聚合物材料制成的垫圈也可受益于本公开中描述的发明设计。



技术实现要素:

本发明的实施例涉及用于密封地接合对置的流体管道端口的环形垫圈。流体管道端口可对应于流体输送系统的相邻流体管道端口,诸如半导体气体面板(gas panel)、石油化工生产或配送系统等。垫圈具有本体(body),其被孔穿过,所述孔创建流体通路并且定义径向内表面,本体还具有径向外表面、第一轴向端表面和第二轴向端表面。第一轴向端表面和第二轴向端表面中的至少一个具有与垫圈密封区域径向相邻的应力集中特征,垫圈密封区域被构造和布置为与对应的流体管道端口的面表面相接触。在一实施例中,应力集中特征定义垫圈密封区域中的唇部,其包括保护脊部和密封表面。在接头组装之前,密封区域唇部可取地轴向向外突出得超过对应的轴向端表面。

在一实施例中,应力集中特征包括在轴向端表面中的一个或两个中并且与一个或两个对应的垫圈密封区域相邻的凹槽。在另一实施例中,应力集中凹槽底切一个或两个密封区域。在一些实施例中,应力集中凹槽具有底切一个或两个密封区域的V形,在另一些实施例中,应力集中凹槽具有带基本平行侧面的底切一个或两个密封区域的U形。

在又一实施例中,应力集中特征包括伸入到轴向端表面中的任一个或两个中的规则布置的盲腔。在另一实施例中,规则布置的应力集中盲腔底切一个或两个密封区域唇部。在另一实施例中,盲腔的圆周相位关系可以是一致的或反相穿插的。

在又一实施例中,第一轴向端表面具有应力集中特征,其包括底切第一密封区域的规则布置的盲腔,第二轴向端表面具有起初在径向方向上平坦的第二密封区域。在另一实施例中,第一轴向端表面具有应力集中特征,其包括底切第一密封区域的凹槽,第二轴向端表面具有起初在径向方向上平坦的第二密封区域。凹槽可具有V形或带基本平行的侧面的U形。在任一实施例中,轴向端表面中的一个或两个可具有与垫圈的径向外表面相邻的圆周区域,该圆周区域用作限制对可变形密封区域的挤压的限位器。

本文描述的各种实施例的环形垫圈可由可锻材料形成。可锻材料可包括:选自由以下材料构成的组的单种金属材料:不锈钢合金、铬合金、镍合金、商用纯镍、铜合金、以及商用纯铜;基本与316型系列不锈钢合金相同的单种金属材料;选自由以下材料构成的组的单种聚合物材料:聚丙烯(PP)、聚偏二氟乙烯(PVDF)、全氟烷氧基聚合物(PFA)、聚四氟乙烯(PTFE)、聚三氟氯乙烯(PCTFE)和聚酰亚胺;或与聚酰亚胺基本相同的单种聚合物材料。

根据本文描述的各方面,提供一种形成高纯度流体接头的方法,其中,垫圈起初作为可锻材料的闭合环,具有相对于垫圈环形状的近邻内部轴(proximal interior axis)斜成一角度的未变形垫圈密封表面,垫圈然后被挤压在对置的流体输送设备元件之间,直到垫圈密封表面的一部分弯曲得基本上垂直于垫圈环形状的近邻内部轴。

附图说明

附图并不意图是按比例绘制的。为了清晰,可能并不是每个组件在每幅图中都被标注。附图中:

图1A是在直径上截取的第一代表性垫圈;

图1B是图1A所示的第一代表性垫圈的放大横截面;

图2A是在直径上截取的第二代表性垫圈;

图2B是图2A所示的第二代表性垫圈的放大横截面;

图3A是在直径上截取的第三代表性垫圈;

图3B是图3A所示的第三代表性垫圈的放大横截面;

图3C是以透视图示出的图3A的第三代表性垫圈;

图4A是在直径上截取的第四代表性垫圈;

图4B是第四代表性垫圈的放大横截面;

图5A是在两个位置处截取的第五代表性垫圈;

图5B是第五代表性垫圈的平面图,示出两个截取位置的非直径(反相)关系;

图6A例示说明在施加轴向密封力以形成接头之前通过定位件(keeper)定位并且位于流体管道端口沉孔内的第四代表性垫圈;

图6B例示说明在已经形成接头之后在流体管道端口沉孔中的第四代表性垫圈;

图7A是在直径上截取的第六代表性垫圈;

图7B是图7A所示的第六代表性垫圈的放大横截面;

图7C是第六代表性垫圈的替代例子的放大横截面,其中垫圈的第一轴向端表面上的应力集中特征包括应力集中凹槽;

图8A例示说明在施加轴向密封力以形成接头之前通过定位件定位并且位于具有平坦底部的流体管道端口沉孔和具有成型的环状突起的流体管道端口沉孔之间的第六代表性垫圈;

图8B例示说明在已经形成接头之后在对应的流体管道端口沉孔之间的第六代表性垫圈;

图9A是在直径上截取的第七代表性垫圈;

图9B是图9A所示的第七代表性垫圈的放大横截面;

图10A例示说明在施加轴向密封力以形成接头之前通过定位件定位并且位于流体管道端口沉孔内的第七代表性垫圈;以及

图10B例示说明在已经形成接头之后在流体管道端口沉孔中的第七代表性垫圈。

具体实施方式

本文论述的设备和方法的例子在应用上不限于以下描述中阐述的或附图中例示说明的组件的构造和布置的细节。这些设备和方法能够有其他实施例,并且能够以各种方式实施或实现。此外,本文中使用的措辞和术语是为了描述的目的,不应被认为是限制。本文中对“包括”、“包含”或“具有”、“含有”、“涉及”以及它们的变体的使用意在包含其后列出的各项和其等同形式以及附加项。

形成具有足以最小化分子水平上的泄漏(例如,小于1×10-9std.cc/sec的氦泄漏速率)的密封完整性的流体通路接头涉及特殊的设计考量。熟练的设计者已知的是,使用金属垫圈形成成功地与金属流体输送设备元件配合的接头很大程度上得益于与设备元件接触的垫圈密封区域的塑性形变。当从具有相对较大的泊松比和较低的屈服强度的垫圈材料诸如铜变为具有较小的泊松比和较高的屈服强度的垫圈材料诸如不锈钢时,变得更难以获得合适的形变。另外,非常大的轴向力对于在金属垫圈中实现任何轴向应变可能是必要的。一种设计方案涉及制造具有轴向取向的密封区域的垫圈,这些密封区域具有大幅缩小的接触区域以在所需轴向接合力没有成问题地大增的情况下促进垫圈的密封区域的塑性形变。

相关且通常同时使用的更容易地实现垫圈塑性形变的技术是将垫圈材料退火到最大程度地柔软的状况。另一已知的设计挑战是金属的相对较高的杨氏模量(弹性模量),导致弹性形变之后可逆的金属垫圈回弹较小,并且还限制了在塑性形变发生之前可给予金属垫圈的应变量。如材料力学研究中已知的那样,退火不会明显地影响垫圈的刚度(弹性模量),但是将明显地降低其屈服强度。在许多垫圈材料初始屈服之后发生的应变硬化可以是垫圈的最终回弹属性的重要贡献者。另一设计挑战是缺乏足够的体硬度(bulk hardness)的垫圈可能随时间流逝而表现出冷流松弛,进而发展成泄漏,尽管最初是适当紧密的。

前述有问题的形变特性可能使接头的轴向尺寸公差比大批量生产中可取的更为关键,并且还提出了可被描述为垫圈内的残余膨胀力不足以确保密封完整性的问题。对于这些挑战,一种设计解决方案选择性地从环形部件的块体去除材料以产生诱导故意的有效应力集中的垫圈横截面轮廓。该应力集中使得当产生净弹性轴向应变时需要更小的轴向力,并且可能在垫圈块体的某些内部区域产生应变硬化。所得的可逆弹性轴向位移对轴向力的关系提供了表现出比以其他方式获得的回弹更大的回弹的垫圈,因此用较小的总所需的设备元件配合力形成更可靠的接头。材料的去除例如可通过如前面引用的Doyle专利以及Spence和Felber专利中那样机加工去除一些部分、或通过如颁发给Swensen等人的美国专利No.5,730,448和No.5,713,582中所示的那样将片料(sheet stock)形成为“C”形横截面的环面(torus)来实现,或者可以通过如Inagaki专利中那样实际上包含环型弹簧(toroidal spring)或通过其他制造技术来获得期望的类似弹簧的行为。Doyle以及Spence和Felber的设计在径向方向上去除材料,因此受到在垫圈内部流体通路和外部环境之间要保证最小壁厚的要求的限制。就此而言,制造公差也可能具有负面后果。

在许多前面引用的美国专利的例子中,在接头装配之前存在相当大的不利地刮擦垫圈的轴向取向的密封区域的风险,此种损伤导致不可能获得无泄漏的接头。通过单独的固位器使垫圈居中提供了流体通路管道端口和穿过垫圈的中央通路之间期望的对准一致性。在用于半导体制造工艺的一些流体输送设备或装置内,存在同时使用多种类型的流体通路接头的情况,因此,允许独立地定制对置的垫圈密封区域上的垫圈密封表面的物理形状和/或对置的垫圈密封区域的机械行为的垫圈结构是期望的。

申请人的环形垫圈的第一代表性例子100例示于图1A和图1B中。垫圈本体150被孔(hole)151穿过,孔151定义流体通路洞孔(bore)155,其包括径向内表面156,径向内表面156可方便地基本上是直的以减小流体输送设备耦接接头中的流体湍流。垫圈本体的径向外侧范围由径向外表面190定义,径向外表面190可具有用于容纳定位件(keeper)(图1A中未示出)的圆周凹槽192,定位件用于将垫圈100定位在流体输送组件的组装件(图1A中也未示出)中。

第一代表性垫圈例子可具有包括应力集中特征120的第一轴向端表面110,应力集中特征120呈现为第一轴向端表面110中的凹槽。应力集中凹槽120从与预期的垫圈密封区域直接相邻的区域移除垫圈本体材料,从而形成唇部130,唇部130可取地在形成接头之前轴向向外突出得超过第一轴向端表面。唇部130包括轴向突起的保护脊部132和直接相邻的密封表面134。在正常的工厂操纵期间当垫圈在粗糙表面上滑动时,保护脊部132可能受损,但是密封表面134将保持原状。密封表面134是相对于垫圈洞孔155的轴以及第一轴向端表面110的平面表现出基本恒定的角度的圆周扇区(sector),但是对于一些垫圈材料而言可以有利地具有稍凸的形状。垫圈密封区域唇部130可被理解为像从垫圈洞孔155朝向径向外表面190向外张开的截头圆锥壳。密封表面134的径向范围有益地大于现有设计缩小的接触区域以在垫圈和流体管道端口面之间创建在径向上长得多的防漏接触。当垫圈100通过对置的平坦设备面之间的轴向挤压而制作到无泄漏流体通路接头中时,借助于允许唇部130弯曲的凹槽120,保护脊部132将塑性形变,密封表面134随着进一步的轴向挤压而稍微径向向外偏转,接触平坦的设备面。

第一代表性垫圈例子可具有包括应力集中特征170的第二轴向端表面160,应力集中特征170呈现为第二轴向端表面160中的凹槽。应力集中凹槽170从与预期的垫圈密封区域直接相邻的区域移除垫圈本体材料,从而形成唇部180,唇部180可取地在形成接头之前轴向向外突出得超过第二轴向端表面。唇部180包括轴向突起的保护脊部182和直接相邻的密封表面184。在正常的工厂操纵期间当垫圈在粗糙表面上滑动时,保护脊部182可能受损,但是密封表面184将保持原状。密封表面184是相对于垫圈洞孔155的轴以及第二轴向端表面160的平面表现出基本恒定的角度的圆周扇区(sector),但是对于一些垫圈材料而言可以有利地具有稍凸的形状。密封表面184的径向范围有益地大于现有设计缩小的接触区域以在垫圈和流体管道端口面之间创建在径向上长得多的防漏接触。当垫圈100通过对置的平坦设备面之间的轴向挤压而制作到无泄漏流体通路接头中时,借助于允许唇部180弯曲的凹槽170,保护脊部182将塑性形变,密封表面184随着进一步的轴向挤压而稍微径向向外偏转,接触平坦的设备面。

垫圈设计者可意识到轴向端表面110、160可以如何起到相对较硬的限位器(stop)的作用,这些限位器通过接触对应的流体管道端口的面表面来防止垫圈唇部130、180被过度挤压。垫圈100内细微的成分变化和制造偏差可使得在形成接头时的垫圈挤压过程期间轴向端表面110、160中的一个先于另一个轴向端表面160、110接触对应的流体管道端口面。所说明的硬限位功能确保两个对置的垫圈唇部130、180最终被相等地、充分地挤压。还应意识到的是,流体通路洞孔155的末端区域157、158优选具有比轴向端表面110、160更小的轴向范围以防止当接头完全配合时在流体通路内形成虚的泄漏腔体。设计者还可理解的是,垫圈本体150内存在不变的中央材料使第一轴向端表面唇部130的形变行为基本上独立于第二轴向端表面唇部180的形变行为。

申请人的环形垫圈的第二代表性例子200例示说明于图2A和图2B中,并且类似于第一例子。垫圈本体250被孔251穿过,孔251定义流体通路洞孔255,其包括径向内表面256,径向内表面256可方便地基本是直的以减小流体输送设备耦接接头中的流体湍流。垫圈本体的径向外侧范围由径向外表面290定义,径向外表面290可具有圆周凹槽292以容纳定位件(图2A和图2B未示出),定位件用于将垫圈200定位在流体输送组件的组装件(也未示出)中。

第二代表性垫圈例子可以具有包括应力集中特征220、270的第一轴向端表面210和第二轴向端表面260,应力集中特征220、270呈现为轴向端表面210、260中的凹槽。应力集中凹槽220、270从与两个预期的垫圈密封区域直接相邻的区域移除垫圈本体材料,从而在轴向端表面210、260上形成唇部230、280,这些唇部可取地在形成接头之前轴向向外突出得超过对应的轴向端表面210、260。应力集中凹槽220、270具有最接近垫圈径向内表面256的内壁221、271,其与每个相关联的垫圈轴向端表面210、260的平面形成锐角,从而形成每个垫圈密封区域的底切(undercut)。唇部230、280每个都包括轴向突起的保护脊部232、282以及直接相邻的密封表面234、284。在正常的工厂操纵期间当垫圈在粗糙表面上滑动时,保护脊部232、282可能受损,但是密封表面234、284将保持原状。密封表面234、284是相对于垫圈洞孔255的轴以及每个相关联的轴向端表面210、260的平面表现出基本恒定的角度的圆周扇区,但是对于一些垫圈材料而言可以有利地具有稍凸的形状。垫圈密封区域唇部230、280可被理解为像相对指向的截头圆锥壳,这些截头圆锥壳从垫圈洞孔255朝向径向外表面290向外张开。密封表面234、284的径向范围有益地大于现有设计缩小的接触区域以在垫圈和流体管道端口面之间创建在径向上长得多的防漏接触。当垫圈200通过对置的平坦设备面之间的轴向挤压而制作到无泄漏流体通路接头中时,由于底切凹槽220、270允许垫圈唇部230、280可控地弯曲,所以保护脊部232、282将塑性形变,密封表面234、284随着进一步的轴向挤压而稍微径向向外偏转,接触平坦的设备面。

类似地考虑第二代表性垫圈例子,设计者可意识到轴向端表面210、260可以如何起到相对较硬的限位器的作用,这些限位器通过接触对应的流体管道端口的面表面来防止垫圈唇部230、280被过度挤压。垫圈200内细微的成分变化和制造偏差可使得在形成接头时的垫圈挤压过程期间轴向端表面210、260中的一个先于另一个轴向端表面260、210接触对应的流体管道端口面。所说明的硬限位功能确保两个对置的垫圈唇部230、280最终被相等地、充分地挤压。还应意识到的是,流体通路洞孔255的末端区域257、258优选具有比轴向端表面210、260更小的轴向范围以阻止当接头完全配合时在流体通路内形成虚的泄漏腔体。设计者还可理解的是,垫圈本体250内存在不变的中央材料使第一轴向端表面唇部230的形变行为基本上独立于第二轴向端表面唇部280的形变行为。相对的轴向端表面唇部230、280之间的形变行为的该独立性可根据设计者的选择而允许制造在相对侧具有故意不同特性的垫圈。熟练的设计者将意识到的是,唇部弯曲特性可以通过对底切锐角以及凹槽深度和宽度的选择来进行调节。因此,例如,底切锐角、凹槽深度和凹槽宽度中的一个或多个可以在垫圈的一侧相对于垫圈相对侧的底切锐角、凹槽深度或凹槽宽度是不同的。此外,环形垫圈可以具有在一个轴向端表面上的与图1A-1C所示的应力集中凹槽120类似的应力集中凹槽、以及在相对的轴向端表面上的与图2A-2C所示的应力集中凹槽220类似的应力集中凹槽,其中与垫圈径向内表面最接近的应力集中凹槽220的内壁271形成为与垫圈轴向端表面260的平面成锐角。因此,也如下面进一步描述的那样考虑使用在物理结构和/或形变行为上彼此完全不同的第一和第二轴向端表面设计。

在高纯度应用中有经验的设计者将意识到的是,将应力集中特征220、270放置在“润湿的”流体通路之外以最小化可能捕获污染物的通路口袋(pocket)是可取的,所得设计具有从垫圈洞孔255向外张开的垫圈密封区域唇部230、280。更关心密封相对较高的通路内部压力的应用将可能受益于通过具有朝向垫圈洞孔向内张开的垫圈密封区域唇部而获得的流体驱使(energized)的密封效果。在这种替代设计中,内部流体压力将推挤向内张开的垫圈密封唇部并且迫使它们倚靠着它们对应的设备元件,从而实现沿径向接触区域更紧密的密封。这种替代垫圈实施例将需要使一个或多个应力集中特征放置得最接近于垫圈洞孔并且相邻的密封区域唇部在径向上离垫圈洞孔更远。

申请人的环形垫圈的第三代表性例子300例示说明于图3A、图3B和图3C中。垫圈本体350被孔351穿过,孔351定义流体通路洞孔355,其包括径向内表面356,径向内表面356可方便地基本上是直的以减小流体输送设备耦接接头中的流体湍流。垫圈本体的径向外侧范围由径向外表面390定义,径向外表面390可具有用于容纳定位件(图3A、3B、3C未示出)的圆周凹槽392,定位件用于将垫圈300定位在流体输送组件的组装件(这些图中也未示出)中。

第三代表性垫圈例子可具有包括应力集中特征320的第一轴向端表面310,应力集中特征320由伸入到第一轴向端表面310中的规则布置的盲腔(blind cavity)组成。应力集中腔体325、326、327等从与预期的垫圈密封区域直接相邻的区域移除垫圈本体材料,从而在第一轴向端表面310上形成唇部330,唇部330可取地在形成接头之前轴向向外突出得超过第一轴向端表面。唇部330包括轴向突起的保护脊部332和直接相邻的密封表面334。密封表面334是相对于垫圈洞孔355的轴以及第一轴向端表面310的平面表现出基本恒定的角度的圆周扇区,但是对于一些垫圈材料而言可以有利地具有稍凸的形状。垫圈密封区域唇部330可被理解为像从垫圈洞孔355朝向径向外表面390向外张开的截头圆锥壳。密封表面334的径向范围有益地大于现有设计缩小的接触区域以在垫圈和流体管道端口面之间创建在径向上长得多的防漏接触。在正常的工厂操纵期间当垫圈在粗糙表面上滑动时,保护脊部332可能受损,但是密封表面334将保持原状。当垫圈300通过对置的平坦设备面之间的轴向挤压而制作到无泄漏流体通路接头中时,借助允许唇部330弯曲的腔体325、326、327等,保护脊部332将塑性形变,密封表面334随着进一步的轴向挤压而稍微径向向外偏转。

第三代表性垫圈例子可具有包括应力集中特征370的第二轴向端表面360,应力集中特征370包括伸入到第二轴向端表面360中的规则布置的盲腔。应力集中腔体375、376、377等从与预期的垫圈密封区域直接相邻的区域移除垫圈本体材料,从而在第二轴向端表面360上形成唇部380,唇部380可取地在形成接头之前轴向向外突起得超过对应的轴向端表面。唇部380包括轴向突起的保护脊部382和直接相邻的密封表面384。密封表面384是相对于垫圈洞孔355的轴以及第二轴向端表面360的平面表现出基本恒定的角度的圆周扇区,但是对于一些垫圈材料而言可以有利地具有稍凸的形状。密封表面384的径向范围有益地大于现有设计缩小的接触区域以在垫圈和流体管道端口面之间创建在径向上长得多的防漏接触。在正常的工厂操纵期间当垫圈在粗糙表面上滑动时,保护脊部382可能受损,但是密封表面384将保持原状。当垫圈300通过对置的平坦设备面之间的轴向挤压而制作到无泄漏流体通路接头中时,借助于允许唇部380弯曲的腔体375、376、377等,保护脊部382将塑性形变,密封表面384随着进一步的轴向挤压而稍微径向向外偏转。尽管设置在垫圈300的相对轴向面上的应力集中腔体325、326、327和375、376、377示为绕垫圈的圆周是彼此同相的,但是应意识到的是,如下面关于图5A和图5B进一步描述的那样,它们可以替代地设置为彼此反相。

类似地考虑第三代表性垫圈例子,设计者可意识到轴向端表面310、360可如何起到相对较硬的限位器的作用,这些限位器通过接触对应的流体管道端口的面表面来防止垫圈唇部330、380被过度挤压。垫圈300内细微的成分变化和制造偏差可使得在形成接头时的垫圈挤压过程期间轴向端表面310、360中的一个先于另一个轴向端表面360、310接触对应的流体管道端口面。所说明的硬限位功能确保两个对置的垫圈唇部330、380最终被相等地、充分地挤压。还应意识到的是,流体通路洞孔355的末端区域357、358优选具有比轴向端表面310、360更小的轴向范围以防止当接头完全配合时在流体通路内形成虚的泄漏腔体。设计者还可理解的是,垫圈本体350内存在不变的中央材料使第一轴向端表面唇部330的形变行为基本上独立于第二轴向端表面唇部380的形变行为。

图4A和图4B例示说明的申请人的环形垫圈的第四代表性例子400类似于第三例子。垫圈本体450被孔451穿过,孔451定义流体通路洞孔455,其包括径向内表面456,径向内表面456可方便地基本上是直的以减小流体输送设备耦接接头中的流体湍流。垫圈本体的径向外侧范围由径向外表面490定义,径向外表面490可具有圆周凹槽492以容纳定位件(图4A和图4B未示出),定位件用于将垫圈400定位在流体输送组件的组装件(也未示出)中。

第四代表性垫圈例子可具有包括应力集中特征420、470的第一和第二轴向端表面410和460,应力集中特征420、470包括伸入到两个轴向端表面410、460中的规则布置的盲腔425、475。应力集中腔体425、475从与两个预期的垫圈密封区域直接相邻的区域移除垫圈本体材料,从而在轴向端表面410、460上形成唇部430、480,这些唇部可取地在形成接头之前轴向向外突起得超过对应的轴向端表面410、460。多个应力集中腔体425、475中的每个腔体都具有独立的体积轴(volumetric axes)421、471,这些体积轴与相关联的垫圈轴向端表面410、460的平面形成锐角,从而形成垫圈密封区域的多个底切。唇部430、480每个都包括轴向突起的保护脊部432、482和直接相邻的密封表面434、484。在正常的工厂操纵期间当垫圈在粗糙表面上滑动时,保护脊部432、482可能受损,但是密封表面434、484将保持原状。密封表面434、484是相对于垫圈洞孔455的轴以及每个相关联的轴向端表面410、460的平面表现出基本恒定的角度的圆周扇区,但是对于一些垫圈材料而言可以有利地具有稍凸的形状。垫圈密封区域唇部430、480可被理解为像相对指向的截头圆锥壳,这些截头圆锥壳从垫圈洞孔455朝向径向外表面490向外张开。密封表面434、484的径向范围有益地大于现有设计缩小的接触区域以在垫圈和流体管道端口面之间创建在径向上长得多的防漏接触。当垫圈400通过对置的平坦设备面之间的轴向挤压而制作到无泄漏流体通路接头中时,由于底切腔体425、475允许垫圈唇部430、480可控地弯曲,所以保护脊部432、482将塑性形变,密封表面434、484随着进一步的轴向挤压而稍微径向向外偏转。

类似地考虑第四代表性垫圈例子,设计者可意识到轴向端表面410、460可以如何起到相对较硬的限位器的作用,这些限位器通过接触对应的流体管道端口的面表面来防止垫圈唇部430、480被过度挤压。垫圈400内细微的成分变化和制造偏差可使得在形成接头时的垫圈挤压过程期间轴向端表面410、460中的一个先于另一个轴向端表面460、410接触对应的流体管道端口面。所说明的硬限位功能确保两个对置的垫圈唇部430、480最终被相等地、充分地挤压。还应意识到的是,流体通路洞孔455的末端区域457、458将优选具有比轴向端表面410、460更小的轴向范围以防止当接头完全配合时在流体通路内形成虚的泄漏腔体。设计者还可理解的是,垫圈本体450内存在不变的中央材料使第一轴向端表面唇部430的形变行为基本上独立于第二轴向端表面唇部480的形变行为。

熟练的垫圈设计者将进一步意识到的是,相对独立地起作用的第一轴向端表面形状和第二轴向端表面形状还设想这样一种设计组合,其包括在一个面上的应力集中凹槽和在相对面上的多个应力集中腔体。例如在一些实施例中,一个面上的应力集中特征可以类似于图1A-C的应力集中凹槽120、170或图2A-C的应力集中凹槽220、270,而相对面上的应力集中特征可以包括与图3A-C的应力集中腔体325、326、327或图4A-B的应力集中腔体425、475类似的多个应力集中腔体。另外,当多个应力集中腔体被设计到第一轴向端表面和第二轴向端表面两者中时,相对腔体的各个体积轴可以如图4A那样圆周向对齐,或者替代地可以如例示说明第五垫圈例子500的图5A和图5B中那样交错。图5A中的对应元件包括垫圈本体550、径向内表面556、具有唇部530和相关联的盲腔525的第一轴向端表面510、以及具有唇部580和相关联的盲腔565的第二轴向端表面560。图5B的顶部平面图示出了横截面图如何揭示一个轴向端表面的腔体与相对轴向端表面的腔体基本上反相地穿插。还应意识到的是,图5A例示说明了如下垫圈,其中径向外表面590没有用于定位件的凹槽,因为定位件凹槽在所有例子中都是可选的。

图6A和图6B例示说明当第四示例形状的环形金属垫圈400被挤压在对置的设备元件605、660之间时如何实现密封,设备元件605、660具有与垫圈400接触的简单平坦表面630、680。如图6A所示,当设备元件605、660被紧固件或配合组件螺纹压向彼此时,密封区域唇部430、480最初沿保护脊部432、482接触流体输送设备元件的平坦表面630、680。与外部圆周凹槽492啮合的薄定位件495可帮助使垫圈400位于对置的流体管道端口610、690之间。如图6B所示,在完成所构成的接头的轴向挤压之后,对置的设备元件605、660毗接垫圈的轴向端表面410、460,并且垫圈唇部430、480已经向外弯曲,使得密封表面434、484已经与对应的流体输送设备元件的流体管道端口面表面614、664形成平坦接触。应意识到的是,如图6A和6B所示,在对置的设备元件605、660之间的挤压之前和之后,垫圈400的径向外表面490的径向范围都优选小于对置的设备元件的平坦表面630、680的径向范围。

申请人的环形垫圈的第六代表性例子700例示说明于图7A和图7B中。垫圈本体750被孔穿过,该孔定义流体通路洞孔755,流体通路洞孔755包括径向内表面756,径向内表面756可方便地基本上是直的以减小流体输送设备耦接接头中的流体湍流。垫圈本体的径向外侧范围由径向外表面790定义,径向外表面790可具有圆周凹槽792以容纳定位件(图7A和图7B未示出),定位件用于将垫圈700定位在流体输送组件的组装件(也未示出)中。

第六代表性垫圈例子可具有包括应力集中特征的第一轴向端表面710,应力集中特征包括伸入到第一轴向端表面710中的规则布置的盲腔718、719、720等和725、726、727等。应力集中腔体725等从与预期的垫圈密封区域直接相邻的区域移除垫圈本体材料,从而在第一轴向端表面710上形成唇部730,唇部730可取地在形成接头之前轴向向外突出得超过对应的第一轴向端表面710。多个应力集中腔体725等中的每个腔体都具有单独的体积轴721,体积轴721与相关联的第一垫圈轴向端表面710的平面形成锐角,从而形成垫圈密封区域的多个底切。唇部730包括轴向突起的保护脊部732和直接相邻的密封表面734。在正常的工厂操纵期间当垫圈在粗糙表面上滑动时,保护脊部732可能受损,但是密封表面734将保持原状。密封表面734是相对于垫圈洞孔755的轴以及相关联的第一轴向端表面710的平面表现出基本恒定的角度的圆周扇区,但是对于一些垫圈材料而言可以有利地具有稍凸的形状。密封表面734的径向范围有益地大于现有设计缩小的接触区域以在垫圈和流体管道端口面之间创建在径向上长得多的防漏接触。当垫圈700通过对置的平坦设备面之间的轴向挤压而制作到无泄漏流体通路接头中时,由于底切腔体725等允许垫圈唇部730可控地弯曲,所以保护脊部732将塑性形变,密封表面734随着进一步的轴向挤压而稍微径向向外偏转。应意识到的是,前面在第一垫圈例子和第二垫圈例子中描述的凹槽应力集中特征可以替代地应用在当前描述的垫圈例子的第一轴向端表面上。申请人的第六代表性垫圈例子的这种替代例子701例示说明于图7C中,在图7C中附图标记710、720、730、732、734和757对应于前面关于图1A-C描述的特征110、120、130、132、134和157。尽管未示出,但是应意识到的是,可以替代地使用与关于图2A-C描述的应力集中凹槽类似的应力集中凹槽。

第六代表性垫圈例子可以具有包括外部倒角770的第二轴向端表面760,为方便起见,外部倒角770融合到径向外表面790中。密封区域785,其起初在径向方向上是平坦的,适合与具有围绕圆形管道开口的环状突起的流体输送元件一起使用,被形成为大体上垂直于垫圈洞孔755的轴并且平行于第二轴向端表面760的平面的圆周扇区。起初平坦的密封区域785的轴向范围可以有利地小于第二轴向端表面760,以便有效地凹陷在第二轴向端表面760内。在正常的工厂操纵期间当垫圈在粗糙表面上滑动时,第二轴向端表面760可能受损,但是密封表面785将保持原状。当垫圈700通过对置的流体输送元件管道端口之间的轴向挤压而制作到无泄漏流体通路接头中时,如下面进一步描述的那样,环状突起将导致垫圈密封区域785的永久塑性形变。

考虑第六代表性垫圈例子,设计者可以意识到第一轴向端表面710可如何起到相对较硬的限位器的作用,该限位器通过接触对应的第一流体管道端口的面表面来防止垫圈唇部730被过度挤压。还应意识到的是,流体通路洞孔755的第一末端区域757优选具有比第一轴向端表面710更小的轴向范围,以防止当接头完全配合时在流体通路内形成虚的泄漏腔体。设计者还可理解的是,垫圈本体750内存在不变的中央材料使得第一轴向端表面唇部730的形变行为基本上独立于第二轴向端表面密封区域785的形变行为。如下面关于图8A和图8B进一步描述的那样,形变行为的该独立性在第六代表性垫圈例子中被有利地使用。

图8A和图8B例示说明当第六示例形状的环形金属垫圈700被挤压在对置的流体输送设备元件805、860之间时如何实现密封。图8A例示说明在施加轴向密封力以形成接头之前,通过定位件795定位并且位于具有平坦底部的上流体管道端口沉孔830和具有成型的环状突起885的下流体管道端口沉孔880之间的第六代表性垫圈。图8B例示说明在形成接头之后在对应的流体管道端口沉孔之间的第六代表性垫圈700。如图8A所示,当设备元件805、860被紧固件(或者配合组件螺纹或其他手段)压向彼此时,密封区域唇部730起初沿保护脊部732接触流体输送设备元件的平坦表面830,并且起初平坦的密封区域785接触环状突起885。与外部圆周凹槽792啮合的薄定位件795可帮助使垫圈700位于对置的流体管道端口810、890之间。在形成接头时的垫圈挤压过程期间,抵靠在上流体管道端口沉孔830上的第一轴向端表面710的硬限位功能确保用于接合对置的流体管道端口810、890的所有附加拧紧动作将导致起初平坦的密封区域785被下流体管道端口环状突起885适当地压入。如图8B所示,在完成所构成的接头的轴向挤压之后,垫圈唇部730已经向外弯曲,使得密封表面734与对应的流体输送设备元件的流体管道端口面表面830形成平坦接触,而起初平坦的密封区域785已经由于环状突起885压入到其中而变形。当设备元件805、860接触定位件795时,进一步的垫圈挤压已不可行。第二轴向端表面760的轴向范围可结合定位件795的厚度来选择,以确保第二轴向端表面760与下流体管道端口沉孔880的底部之间有间隙。间隙可以是可取的,以确保密封仅发生在成型的环状突起885和起初平坦的(但是现在变形的)第二轴向端表面密封区域785之间,同时还允许执行测试接头完整性的氦泄漏检测方法。应意识到的是,如图8A和8B所示,在对置的设备元件805、860之间的挤压之前和之后,垫圈700的径向外表面790的径向范围都优选比流体输送设备元件805的沉孔830的径向范围和流体输送设备元件860的沉孔880的径向范围更小。

申请人的环形垫圈的第七代表性例子900例示说明于图9A和图9B中,并且类似于第一和第二代表性例子。垫圈本体950被孔951穿过,孔951定义流体通路洞孔955,流体通路洞孔955包括径向内表面956,径向内表面956可以方便地基本上是直的以减小流体输送设备耦接接头中的流体湍流。垫圈本体的径向外侧范围由径向外表面990定义,径向外表面990又可具有圆周凹槽992以容纳定位件(图9A和图9B未示出),定位件用于将垫圈900定位在流体输送组件的组装件(也未示出)中。如前面关于先前的代表性垫圈例子所描述的那样,容纳定位件的凹槽992的存在在该代表性例子中是可选的。

第七代表性垫圈例子可具有包括应力集中特征920、970的第一和第二轴向端表面910和960,应力集中特征920、970又呈现为轴向端表面910、960中的凹槽。应力集中凹槽920、970从与两个预期的垫圈密封区域直接相邻的区域移除垫圈本体材料,从而在轴向端表面910、960上形成唇部930、980,这些唇部可取地在形成接头之前轴向向外突出得超过对应的轴向端表面910、960。以与图2A和2B所示的第二代表性垫圈例子类似的方式,应力集中凹槽920、970具有与垫圈径向内表面956最接近的内壁,这些内壁与每个相关联的垫圈轴向端表面910、960的平面形成锐角,从而形成每个垫圈密封区域的底切。然而,与图2A和2B的第二代表性垫圈例子形成对照的是,本第七代表性垫圈例子的应力集中凹槽920、970具有基本彼此平行的径向内和外槽壁,由此定义U形凹槽,而不是图2A和2B的第二代表性垫圈例子中描绘的基本V形的凹槽220、270。应力集中凹槽920、970的基本平行的径向内和外槽壁从而每个都与每个相关联的垫圈轴向端表面910、960的平面形成锐角。如在前述代表性垫圈例子中那样,唇部930、980每个都包括轴向突起的保护脊部932、982和直接相邻的密封表面934、984。例如在正常的工厂操纵期间当垫圈在粗糙表面上滑动时,保护脊部932、982可能受损,但是密封表面934、984将保持原状。密封表面934、984是相对于垫圈洞孔955的轴以及每个相关联的轴向端表面910、960的平面表现出基本恒定的角度的圆周扇区,但是对于一些垫圈材料而言可以有利地具有稍凸的形状。应意识到的是,垫圈密封区域唇部930、980又可像相对指向的截头圆锥壳,这些截头圆锥壳从垫圈洞孔955朝向径向外表面990向外张开。如前述代表性垫圈例子中那样,密封表面934、984的径向范围有益地大于现有设计缩小的接触区域以在垫圈和流体管道端口面之间创建在径向上长得多的防漏接触。当垫圈900通过对置的平坦设备面之间的轴向挤压而制作到无泄漏流体通路接头中时,如关于图10A和10B进一步描述的那样,由于底切凹槽920、970允许垫圈唇部930、980可控地弯曲,所以保护脊部932、982将塑性形变,密封表面934、984随着进一步的轴向挤压而稍微径向向外偏转,接触平坦设备面。

类似地考虑前述代表性垫圈例子,设计者可以意识到轴向端表面910、960可如何起到相对较硬的限位器的作用,这些限位器通过接触对应的流体管道端口的面表面来防止垫圈唇部930、980被过度挤压。垫圈900内细微的成分变化和制造偏差可使得在形成接头时的垫圈挤压过程期间轴向端表面910、960中的一个先于另一个轴向端表面960、910接触对应的流体管道端口面。然而,所说明的硬限位功能确保了两个对置的垫圈唇部930、980最终被相等地、充分地挤压。还应意识到的是,流体通路洞孔955的末端区域957、958优选具有比轴向端表面910、960更小的轴向范围以防止当接头完全配合时在流体通路内形成虚的泄漏腔体。

熟练的设计者将意识到的是,垫圈本体950内存在不变的中央材料使得第一轴向端表面唇部930的形变行为基本上独立于第二轴向端表面唇部980的形变行为。相对的轴向端表面930、980之间的形变行为的该独立性可根据设计者的选择允许制造在相对侧具有故意不同特性的垫圈。熟练的设计者将意识到的是,唇部弯曲特性可通过对底切锐角以及凹槽深度和宽度的选择来进行调节。因此,例如,底切锐角、凹槽深度和凹槽宽度中的一个或多个在垫圈的一侧可相对于垫圈相对侧的底切锐角、凹槽深度或凹槽宽度是不同的。此外,环形垫圈可具有在一个轴向端表面上的与图1A-1C所示的应力集中凹槽120或图2A-2C所示的应力集中凹槽220类似的应力集中凹槽,在相对轴向端表面上的另一应力集中特征与上述应力集中凹槽920或970类似。又替代地,环形垫圈可具有在一个轴向端表面上的与上述应力集中凹槽920、970类似的应力集中特征,相对轴向端表面被以前面关于图7A和7B描述的方式构造为与具有围绕圆形管道开口的环状突起的流体输送元件一起形成流体紧密密封。因此应意识到的是,本文公开的各种代表性垫圈设计不限于具有基本对称的轴向端表面的垫圈,因为也考虑使用在物理结构和/或形变行为上彼此完全不同的第一轴向端表面和第二轴向端表面。

在高纯度应用中有经验的设计者将意识到的是,将应力集中特征920、970放置在“润湿的”流体通路之外以最小化可能捕获污染物的通路口袋是可取的,所得设计具有从垫圈洞孔255向外张开的垫圈密封区域唇部930、980。更关心密封相对较高的通路内部压力的应用将可能受益于通过具有朝向垫圈洞孔向内张开的垫圈密封区域唇部而获得的流体驱使的密封效果。在这种替代设计中,内部流体压力将推挤向内张开的垫圈密封唇部并且迫使它们倚靠着它们对应的设备元件,从而实现沿径向接触区域更紧密的密封。这种替代垫圈实施例将需要使一个或多个应力集中特征放置得最接近于垫圈洞孔并且相邻的密封区域唇部在径向上离垫圈洞孔更远。

图10A和图10B例示说明了当第七示例形状的环形金属垫圈900被挤压在对置的设备元件605、660之间时如何实现密封,设备元件605、660具有与垫圈900接触的简单平坦表面630、680。如图10A所示,当设备元件605、660通过紧固件或配合组件螺纹被推向彼此时,密封区域唇部930、980起初沿保护脊部932、982接触流体输送设备元件的平坦表面630、680。与垫圈900的外部圆周凹槽992啮合的薄定位件995可帮助使垫圈900位于对置的流体管道端口610、690之间。如图10B所示,在完成所构成的接头的轴向挤压之后,对置的设备元件605、660毗接垫圈轴向端表面910、960,并且垫圈唇部930、980已经向外弯曲,使得密封表面934、984已经与对应的流体输送设备元件的流体管道端口面表面614、664形成平坦接触。应意识到的是,如图10A和10B所示,在对置的设备元件605、660之间的挤压之前和之后,垫圈900的径向外表面990的径向范围又都优选小于对置的设备元件的平坦表面630、680的径向范围。

本文描述的各种垫圈设计在高纯度流体输送设备的情形尤其有用,在高纯度流体输送设备的情形中,垫圈材料可具有与想要在流体流通中被密封地接合的设备元件类似的机械属性。由高纯度316L不锈钢制成的具有带平坦底部沉孔的流体管道端口的流体输送系统组件的使用是众所周知的。用这种组件实现分子水平泄漏紧密度的困难可通过使用所描述的设计来减轻。在由聚合物材料制成的高纯度液体输送设备中,本质上存在相同的问题,这些设计也类似地适用于这些情形。

如鉴于以上公开应意识到的那样,本文描述的各种垫圈设计允许垫圈的对置轴向面被独立地定制以满足它们毗接的流体输送设备的相邻面表面的物理要求和机械要求。因此,例如,垫圈一侧的垫圈密封表面可构造为密封地啮合一个设备元件中围绕圆形管道开口的环状突起,而垫圈的相对侧可构造为密封地啮合相对设备元件中围绕圆形管道开口的凹进平坦表面。

已经如此描述了本发明的至少一个实施例的若干方面,应意识到的是,各种改变、修改和改进将是本领域技术人员容易想到的。这些改变、修改和改进旨在是本公开的一部分,并且旨在落入本发明的范围内。因此,前面的描述和附图仅是示例性的。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1