使用替代位置葡萄糖测定来校准和维护非侵入式及可植入分析器的方法和装置的制作方法

文档序号:6016240阅读:214来源:国知局

专利名称::使用替代位置葡萄糖测定来校准和维护非侵入式及可植入分析器的方法和装置的制作方法
背景技术
:发明领域本发明总地涉及葡萄糖分析器的校准和维护。本发明尤其涉及使用替代位置(alternativesite)葡萄糖测定来改进非侵入式或可植入葡萄糖分析器的算法开发、校准和/或质量控制。背景信息糖尿病是一种慢性病,它导致胰岛素的不当产生和利用,胰岛素是一种促进葡萄糖吸收进细胞的荷尔蒙。虽然糖尿病的准确原因是未知的,但是遗传因素、环境因素以及肥胖似乎起作用。在心血管性心脏病、视网膜病以及神经病这三大类中,糖尿病的危险性提高。糖尿病可具有下列并发症的一种或多种心脏病和心搏、高血压、肾病、神经病(神经性疾病和切断术)、视网膜病、糖尿病酮症中毒、皮肤状况、牙龈疾病、阳萎以及胎儿并发症。糖尿病是世界上导致死亡和残疾的首要原因。而且,糖尿病仅仅是一组葡萄糖代谢紊乱中的一个,葡萄糖代谢紊乱还包括减退的葡萄糖耐量以及高胰岛素血症或低血糖症。糖尿病发病率和趋势糖尿病一直是非常普遍的疾病。世界卫生组织(WHO)估计全世界有1.54亿的人受糖尿病的折磨。五千四百万糖尿病人居住在发达国家。WHO估计到2025年为止糖尿病人的数量将增长到3亿人。在美国,估计有1.57亿人或百分之5.9的人口有糖尿病。美国国内,确诊患有糖尿病的成人的发病率在1999年中增加了6个百分点,并且在1990至1998年间提高了33个百分点。这对应于美国每年新增大约八十万新病例。仅对于美国经济的估计总损失就超过每年900亿美元。糖尿病统计(DiabetesStatistics),国家卫生研究机构,公开号98-3926,马里兰州贝塞斯达(1997年11月)。长期临床研究显示出可通过适当地控制血糖水平来显著的减少并发症的发作。糖尿病控制和并发症试验研究组(DiabetesControlandComplicationTrialResearchGroup),《有关胰岛素依赖型糖尿病中长期并发症的发展和进展的糖尿病强化治疗的效果》(Theeffectofintensivetreatmentofdiabetesonthedevelopmentandprogressionoflong-termcomplicationsininsulin-dependentdiabetesmellitus),医生NEngJ,329977-86(1993);英国预期糖尿病研究(UKPDS)组,《与2型糖尿病人的并发症的常规治疗和风险相比较的利用磺脲或胰岛素的增强的血糖控制》(Intensiveblood-glucosecontrolwithsulphonylureasorinsulincomparedwithconventionaltreatmentandriskofcomplicationsinpatientswithtype2diabetes),Lancet,352837-853(1998);以及Y.Ohkubo、H.Kishikawa、E.Araki、T.Miyata、S.Isami、S.Motoyoshi、Y.Kojima、N.Furuyoshi、M.Shichizi,《增强的胰岛素疗法防止患有非胰岛素依赖型糖尿病的日本患者中的糖尿病微脉管并发症的进展一个随机的预期6年的研究》(intensiveinsulintherapypreventstheprogressionofdiabeticmicrovascularcomplicationsinJapanesepatientswithnon-insulin-dependentdiabetesmellitusarandomizedprospective6-yearstudy),DiabetesResClinPract,28103-117(1995)。糖尿病管理的一个重要要素是家庭环境中糖尿病患者对血糖水平的自我监控。然而,由于在分析之前透过皮肤来抽血造成的不便和疼痛的特性,当前的监控技术阻碍了定时使用。糖尿病控制和并发症试验研究组,见前文。结果,非侵入式的葡萄糖测量已被认定为糖尿病管理的一种有利的发展。还追求最终联结到提供人造胰腺的胰岛素输送系统的可植入的葡萄糖分析器。葡萄糖测量历史、方法和技术糖尿病治疗已发展了几个阶段。胰岛素疗法和家庭葡萄糖测定的组合发展导致糖尿病患者的寿命的根本提高。家庭葡萄糖测定自身也已发展了连续几个阶段。对葡萄糖进行尿检已被更为精确的侵入式手指针刺葡萄糖测定所替代,但侵入式手指针刺葡萄糖测定有些疼痛、还表现出可能的生物危害的。替代位置葡萄糖测定的发展具有稍微减轻疼痛的特点,但是由于充分灌注(perfuse)的手指和不充分灌注的替代位置之间血糖中的时间和空间差异而造成可能引入新的困难。此外,生物危害问题依然存在。当前的研究关注于将完全消除与葡萄糖测定相关联的疼痛以及流动的生物危害问题的非侵入式技术。最后,结合了葡萄糖测定和胰岛素输送的可植入或全回路系统已取得了显著的进步,将导致人造胰腺的实现。当前可把血糖测定分类为四个主要的类型●传统侵入式;●替代侵入式;●非侵入式;以及●可植入。由于对这些测量模式的广泛使用,以及文字上对术语的相当宽松的使用,在此提供每一种模式的测量的详细概述,以便阐明这里的术语的使用。在医学领域中,术语“侵入式”通常适用于外科手术方法和过程,一般涉及对组织的至少某种损伤或伤害,如切割,以便实现其目的。然而,在葡萄糖测定领域中,术语“侵入式”是相对于非侵入式来定义的。“非侵入式”清楚地描述了总是基于信号的方法,其中不从身体采集生物采样或液体来进行葡萄糖测定。从而,“侵入式”意味着从身体采集生物采样。从而可把侵入式葡萄糖测定进一步划分成两个单独的组。第一组是“传统侵入式”方法,其中通过手指尖或脚趾中的动脉、静脉或毛细血管网来从身体采集血样。第二组是“替代侵入式”方法,其中从除了手指尖或脚趾中的动脉、静脉或毛细血管网之外的其它区域提取血样、间质液(interstitial)或生物液体。1.传统侵入式葡萄糖测定有三大类传统的(典型的)侵入式葡萄糖测定。前两个分别利用用针从动脉或静脉抽取的血液。第三种由通过从手指尖或脚趾的毛细血管网获得的毛细血管血构成。在已过去的二十年间,这已成为血糖自我监控的最普遍的方法。利用各种技术来分析由静脉或动脉抽取以及手指针刺方法采集的血液。葡萄糖分析包括诸如比色和酶葡萄糖分析。基于酶的最普遍的葡萄糖分析器利用葡糖氧化酶,它催化了葡萄糖与氧反应,以形成葡糖酸内酯和过氧化氢,如下文方程式1所示。葡萄糖测定包括基于通过采样pH中的变化或通过过氧化氢的形成造成的氧耗尽的技术。许多比色和电解酶(electro-enzymatic)技术还利用反应生成物作为起动试剂。例如,在存在铂的情况下,过氧化氢反应以形成氢离子、氧、以及电子;任一个可间接用于测定葡萄糖浓度,如方程式2所示。(1)(2)注意到,诸如THERASENSEFREESTYLE(加利福尼亚阿拉米达市,THERASENSE有限公司)之类的许多替代位置方法从手指尖或脚趾之外的区域采集血样。在此,即使具有诸如上述的比色或酶分析类似的化学分析,也不把这些技术称作传统侵入式葡萄糖测量,除非采样是从手指尖或脚趾抽取的。然而,用于从包括手指尖或脚趾的采样位置通过刺血针(lancet)采集血液的相同设备是传统侵入式葡萄糖分析器。2.替代侵入式葡萄糖测定有几种替代侵入式方法来测定葡萄糖浓度。第一组替代侵入式葡萄糖分析器具有若干与传统侵入式葡萄糖分析器的类似处。一个类似处是血样是用刺血针获得的。显然,这种形式的替代侵入式葡萄糖测定虽然不适用于静脉或动脉血的分析,但是可用于采集毛细管血样。第二个类似处是使用类似于上述的比色和酶分析的化学分析来分析血样。然而,主要差别是,在替代侵入式葡萄糖测定中,血样不是从手指尖或脚趾采集的。例如,根据包装标签,可使用THERASENSEFREESTYLE测量计来从前臂采集和分析血液。由于刺血针抽取的位置,这是一种替代侵入式葡萄糖测定。在这种基于利用刺血针抽血的第一组替代侵入式方法中,替代侵入式和传统侵入式葡萄糖测定之间的主要差别在于从身体获取血液的位置点。其它差别包括诸如刺血针的规格、刺血针穿透的深度、定时问题、获得血液的容积之类的因素,以及诸如氧的分压、海拔高度以及温度之类的环境因素。这种形式的替代侵入式葡萄糖测定包括从手掌区域、拇指根部、前臂、上臂、头部、耳垂、躯干、腹部区域、大腿、小腿以及脚底区域收集的采样。第二组替代侵入式葡萄糖分析器通过它们的采样获取模式来区分。该组葡萄糖分析器具有不使用刺血针而从身体获得生物采样或修改皮肤的表面来收集采样以用于后续分析的共同特征。例如,基于激光刺孔(poration)的葡萄糖分析器利用光子脉冲或流在皮肤表面中产生小孔。在所产生的孔中收集实质上是间质液的采样。对葡萄糖进行后续采样分析构成了替代侵入式葡萄糖分析,不论该采样实际上是否从所产生的孔中取出。第二个共同特征是,使用设备和算法来测定采样中的葡萄糖。在此,术语替代侵入式包括分析诸如间质液、全血、间质液和全血的混合物、以及任选地采样的间质液之类的生物采样的技术。任选地采样的间质液的例子是这样一种采集的液体,其中在所产生的采样中不完全表现出大的或少的移动成份。对于该第二组替代侵入式葡萄糖分析器,采样位置包括手、手指尖、手掌区域、拇指根部、前臂、上臂、头部、耳垂、眼、胸、躯干、腹部区域、大腿、小腿、脚、脚底区域以及脚趾。对于采集替代侵入式测量的采样来说存在许多方法,包括●激光刺孔在这些系统中,将一种或多种波长的光子施加于皮肤,以在皮肤隔层(skinbarrier)中产生小孔。这允许获得小计量的间质液用于若干采样技术;●施加电流在这些系统中,将小电流施加到皮肤,以允许间质液渗透过皮肤;●抽吸(suction)在这些系统中,在皮肤的表面上的局部区域施加部分真空。间质液渗透过皮肤并被采集。在所有上述技术中,分析的采样是间质液。然而,这些相同的技术中的某些可以抽血的方式应用于皮肤。例如,激光刺孔方法可产生血滴。如这里所描述的那样,把不在手指尖或脚趾上使用刺血针而从皮肤抽取生物采样的任何技术称为替代侵入式技术。此外,认识到每一种替代侵入式系统使用不同的采样方法,导致收集到不同子集的间质液。例如,皮肤中的大的蛋白质可能在后面采集到,而较小的、更易扩散的元素可能优先被采集到。这导致以变化的分析物和干扰物浓度采集采样。另一个例子是,可采集到全血和间质液的混合物。可组合利用这些技术。例如,已知为SOFTSENSE(依利诺斯州Abbot公园的ABBOTLABORATORIES有限公司)的SOFT-TACT对皮肤施加抽吸然后进行针刺。尽管采样中存在差别,但是也把这些技术称为替代侵入式技术采样间质液。文中不时地将替代侵入式技术称为替代位置葡萄糖测定或最低限度侵入式技术。最低限度侵入式技术得自于采集采样的方法。如这里所描述的那样,抽取血液或间质液的替代位置葡萄糖测定,即使是微升,也被认为是如上所定义的替代侵入式葡萄糖测定技术。替代侵入式技术的例子包括当不采集手指尖或脚趾时的THERASENSEFREESTYLE、GLUCOWATCH(加利福尼亚雷德伍德市CYGNUS有限公司)、ONETOUCHULTRA(加利福尼亚米尔皮塔斯市LIFESCAN有限公司)以及等同技术。许多技术用于分析用替代侵入式技术收集的生物采样。这些技术中最普遍的是●常规的利用某种改进,可由用于测定血清、血浆或全血中的葡萄糖浓度的大多数技术来分析间质液采样。这些包括电化学、电解酶(electroenzymatic)以及比色方法。例如,上述酶和比色方法也可用于测定间质液采样中的葡萄糖浓度;●分光光度法已发展出利用分光光度法技术的许多用于测定生物采样中的葡萄糖浓度的方法。这些技术包括拉曼(Raman)和荧光,以及使用从紫外线到红外线的光的技术[紫外线(200至400nm)、可见光(400至700nm)、近红外线(700至2500nm或14,286至4000cm-1)以及红外线(2500至14,285nm或4000至700cm-1)]。如这里所使用的,术语侵入式葡萄糖分析器包含了传统的侵入式葡萄糖分析器和替代侵入式葡萄糖分析器。3.非侵入式葡萄糖测定存在许多非侵入式方法用于葡萄糖测定。这些方法变化繁多,但是具有至少两个公共步骤。首先,利用装置来从身体获得信号,而不用获得生物采样。其次,利用算法来将该信号转换成葡萄糖测定。非侵入式葡萄糖测定的一种类型是基于光谱的。典型地,非侵入式装置利用某种形式的光谱学技术来从身体获得信号或谱。利用的光谱学技术包括,但不限于拉曼(Raman)和荧光以及使用从紫外线到红外线的光的技术[紫外线(200至400nm)、可见光(400至700nm)、近红外线(700至2500nm或14,286至4000cm-1)以及红外线(2500至14,285nm或4000至700cm-1)]。在漫反射率模式中,非侵入式葡萄糖测定的特定范围大约是1100至2500nm或其中的范围。K.Hazen,《使用近红外线光谱学技术的生物基质中的葡萄糖测定》(GlucoseDeterminationinBiologicalMatricesUsingNear-InfraredSpectroscopy),博士论文,lowa大学(1995)。重要的是,这些技术与上述列出的传统的侵入式和替代侵入式技术不同在于,询诊的采样是人体原位置的部分,而不是从人体获得的生物采样。典型地,这些模式用于采集非侵入式扫描透射率、透反射率(transflectance)、漫反射率。采集的信号(一般构成光或谱)例如可透射过诸如手指尖之类的身体区域、可漫反射或透反射(transflect)。在此,透反射是指信号的收集不是位于入射点或区域(漫反射),也不是位于采样的另一面(透射),而是位于透射和满反射收集区域之间的身体上的某些点。例如,根据所使用的波长,透反射光进入一个区域中的手指尖或前臂,并一般从离开0.2至5mm的另一区域出来。从而,诸如接近水吸收率最大值的1450或1950nm的光之类的可由身体强烈吸收的光需要在小的径向发散之后被收集,而诸如接近水吸收率最小值的1300、1600或2250nm的光之类的较少被吸收的光可在离入射光子较大径向或透反射距离处被收集。非侵入式技术不限于使用手指尖作为测量位置。用于进行非侵入式测量的替代位置包括手、手指、手掌区域、拇指根部、前臂、前臂的手掌面、前臂的背脊面、上臂、头部、耳垂、眼、舌、胸、躯干、腹部区域、大腿、小腿、脚底区域、以及脚趾。重要的是,非侵入式技术并不是必须基于光谱学技术。例如,生物阻抗计可认为是一种非侵入式设备。在本发明的上下文中,从身体读取信号而不用穿透皮肤和收集生物采样的任何设备称为非侵入式葡萄糖分析器。例如,生物阻抗计是一种非侵入式设备。替代基准方法是一种在不包括手指尖和脚趾的身体部分作出的基准测定。替代基准包括替代侵入式测量和替代位置非侵入式测量。在此,替代位置非侵入式测量是在除手指尖和脚趾以外的生理位置上进行的非侵入式测量。4.用于葡萄糖测定的可植入传感器存在许多用于将葡萄糖传感器植入身体进行葡萄糖测定的方法。这些可植入物可用于采集采样以进一步分析,或可直接或间接从采样获得读数或信号。存在两类可植入的葡萄糖分析器短期和长期。如这里所涉及的,如果设备的一部分穿透皮肤达3个小时以上一个月以下的时间,设备或采集装置至少是短期可植入的(与长期可植入相反)。例如,植入皮下用于整夜采集采样并且被移出并分析代表间质液葡萄糖浓度的葡萄糖含量的引线(wick)被称为是短期可植入的。类似地,置于皮下超过三小时用于直接或间接地读取表示葡萄糖浓度或水平的信号的生物传感器或电极被称为是至少短期可植入的设备。相反,上述描述的基于刺血针、施加电流、激光刺孔或抽吸的技术被称为是传统的侵入式或替代侵入式技术,因为它们不满足三小时和皮肤穿透这两个因素。如这里所述,长期可植入物通过满足必须穿透皮肤和使用达一个月或更长时间这两个标准来区别于短期可植入物。长期可植入物可保留在身体内达许多年。可植入的葡萄糖分析器变化繁多,但普遍具有至少几个特点。首先,至少部分设备穿透皮肤。更为普遍的是,整个设备嵌入身体。其次,装置用于获得身体的采样或直接或间接与身体内的葡萄糖浓度相关的信号。如果可植入的设备采集采样,可在移出人体后收集采样的读数或测量值。或者,可从身体内通过设备来发送读数或信号,或在体内用于诸如胰岛素输送之类的目的。第三,利用算法来将信号转换成与葡萄糖浓度直接或间接相关的读数。可植入的分析器可从包括动脉血、静脉血、毛细管血、间质液以及任选地采样的间质液的一种或多种不同的体液或组织读取信号。可植入的分析器还可从皮肤组织、脑脊髓液、器官组织或通过动脉或静脉来采集葡萄糖信息。例如,可植入的葡萄糖分析器可经皮肤置于腹腔、动脉、肌肉或诸如肝脏或大脑之类的器官中。可植入的葡萄糖传感器可以是人造胰腺的一部分。可植入的葡萄糖监控器的例子如下。CGMS(连续葡萄糖监控系统)的一个例子是基于畅流微灌注术(open-flowmicroperfusion)的一组葡萄糖监控器。Z.Trajanowski、G.Brunner、L.Schaupp、M.Ellmerer、P.Wach、T.Pieber、P.Kotanko、F.Skrabai,《用于葡萄糖浓度的在线连续体外测量的皮下脂肪组织的畅流微灌注术》(Open-flowmicroperfusionofsubcutaneousadiposetissueforon-linecontinuousexvivomeasurementofglucoseconcentration),糖尿病关注(DiabetesCare),201114-1120(1997)。另一个例子利用植入的传感器,它包括生物传感器和电流计传感器。Z.Trajanowski、P.Wach、R.Gfrerer,《用于连续分馏血液采样和连续体外血液葡萄糖监控的便携式设备》(Portabledeviceforcontinuousfractionatedbloodsamplingandcontinuousexvivobloodglucosemonitoring),生物传感器和生物电子学(BiosensorsandBioelectronics),11479-487(1996)。另一例子是MINIMEDCGMS(明尼苏达明尼阿波利斯MEDTRONIC有限公司)。相关技术描述手指尖测量的葡萄糖浓度对比替代采样位置许多作者主张替代位置葡萄糖浓度相当于手指针刺葡萄糖测定。下面归纳了若干例子Szuts等人推断出可测定手臂和手指尖之间的葡萄糖浓度中的可测量的生理学差异,但是发现即使在测量这些差异的受检者中,这些差异在临床上也无关紧要的。E.Szuts、J.Lock、K.Malomo、A.Anagnostopoulos、Althea,《动态葡萄糖条件期间手臂和手指的血糖浓度》(Bloodglucoseconcentrationsofarmandfingerduringdynamicglucoseconditions),糖尿病技术与治疗学(DiabetesTechnology&Therapeutics),43-11(2002)。Lee等人推断出饭后两个小时患者测试会发现他们的前臂和手指葡萄糖浓度之间的小差异。D.Lee、S.Weinert、E.Miller,《前臂对比手指针刺葡萄糖监控的研究》(Astudyofforearmversusfingerstickglucosemonitoring),糖尿病技术与治疗学(DiabetesTechnology&Therapeutics),413-23(2002)。Bennion等人推断出对于使用除手指以外的替代位置测量计和手指上的传统的葡萄糖分析器的患者来说,HbA1C测量中没有显著差异。N.Bennion、N.Christense、G.McGarraugh,《替代位置葡萄糖测试一种转换设计》(Alternatesiteglucosetestingacrossoverdesign),糖尿病技术与治疗学(DiabetesTechnology&Therapeutics),425-33(2002)。这是一个间接指示,即虽然诸如疼痛和测试频率之类的许多附加的因素会影响研究,但是前臂和手指尖葡萄糖浓度是相同的。Peled等人推断出,当预期稳定状态血糖(glycemic)条件且在所有血糖状态下手掌采样产生与手指尖葡萄糖测定紧密的相关性时,前臂的血样的葡萄糖监控是合适的。N.Peled、D.Wong、S.Gwalani,《各种身体位置的毛细管血样中的葡萄糖水平的比较》(Comparisonofglucoselevelsincapillarybloodsamplesfromavarietyofbodysites),糖尿病技术与治疗学(DiabetesTechnology&Therapeutics),413-23(2002)。根据利用静脉注射快速作用胰岛素的研究,Jungheim等人建议,为了避免高血糖症和低血糖症检测中的有风险的延迟,在手臂的检测应限于不包括血糖浓度正在进行快速变化的情况。K.Jungheim、T.Koschinsky,《在手臂的葡萄糖监控》(Glucosemonitoringatthearm),糖尿病关注(DiabetesCare),25956-960(2002);以及K.Jungheim、T.Koschinsky,《通过手臂处葡萄糖监控进行的低血糖症检测的风险性延迟》(Riskydelayofhypoglycemiadetectionbyglucosemonitoringatthearm),糖尿病关注(DiabetesCare),241303-1304(2001)。该研究中对静脉内胰岛素的使用受到了批评,因为它产生了影响所观察的差异的生理学极限。G.McGarraugh,《对Jungheim和Koschinsky的回答》(ResponsetoJungheimandKoschinsky)糖尿病关注(DiabetesCare),2413041306(2001)。平衡方法虽然存在许多报告当从手指尖或替代位置采集时,葡萄糖浓度非常类似,但是已经推荐了许多采样方法来增加采样位置处的局部灌注,以就在采样之前使值平衡。下面归纳出这些方法中的若干压力一种采样方法要求摩擦或向采样位置施加压力,以便在通过刺血针获得采样之前增加局部灌注。这种方法的一个例子是FREESTYLE血糖分析器(THERASENSE有限公司,参见上文),G.McGarraugh、S.Schwartz、R.Weinstein,《使用从前臂和手指提取的血液进行葡萄糖测量》(GlucoseMeasurementsUsingBloodExtractedfromtheForearmandtheFinger),THERASENSE有限公司ART01022版本C(2001);以及G.McGarraugh、D.Price、S.Schwartz、R.Weinstein,《关于手指外葡萄糖测试的生理学影响》(Physiologicalinfluencesonoff-fingerglucosetesting),糖尿病技术与治疗学(DiabetesTechnology&Therapeutics),3367-376(2002)。加热已提出将施加到局部采样的热作为使血管系统和皮肤组织之间的浓度均衡的机制。这可使毛细管扩张,允许更多的血流量,这导致静脉和毛细管葡萄糖浓度的均衡。可选地,诸如烟酸(nicotinicacid)、甲基烟酰胺(methylnicotinamide)、硝酸甘油(nitroglycerin)、组胺(histamine)、辣椒素(capsaicin)、或薄荷醇(menthol)之类的血管舒张剂可用于增加局部血流量。M.Rohrscheib、C.Gardner、M.Robinson,《利用液体空间平衡的非侵入式血液分析物测量方法和装置》(Methodandapparatusfornoninvasivebloodanalytemeasurementwithfluidcompartmentequilibration),美国专利号6,240,306(2001年5月29日)。真空还已利用了在采样采集之前在采样位置处和周围对皮肤施加部分真空。皮肤中的局部变形可允许表皮毛细管更完全地充满。T.Ryan,《牛皮癣中表皮毛细管单元的研究》(Astudyoftheepidermalcapillaryunitinpsoriasis),皮肤病学(Dermatologica)138459-472(1969)。例如,ABBOTLABORATORIES有限公司利用二分之一大气压的真空设备将皮肤向上拉伸3.5mm到它们的设备中。ABBOT保持将该形变,导致增加的灌注,使替代位置和手指之间的葡萄糖浓度均衡。R.Ng,《临床化学和临床毒物学设备专家小组会议上的对FDA的陈述》(PresentationtotheFDAattheClinicalChemistry&ClinicalToxicologyDevicesPanelMeeting),盖瑟斯堡市(Gaithersburg)医学博士(2001年10月29日)。校准葡萄糖分析器需要校准。这对于诸如传统侵入式、替代侵入式、非侵入式以及可植入的分析器之类的所有类型的葡萄糖分析器来说都是事实。与非侵入式葡萄糖分析器相关联的一个事实是它们在本质上是次要的,即,它们不直接测量血糖水平。这意味着,需要一种主要方法来校准这些设备来正确地测量血糖水平。存在许多校准方法。传统侵入式葡萄糖分析器的校准可校准葡萄糖测量计或分析器脱离诸如全血、血清、血浆或这些采样的重建溶液之类的生物采样。此外,可用某一范围的全血采样、重建的全血采样、血液模拟、幻象、或某一范围的化学准备的标准来校准葡萄糖分析器。典型地,这些采样具有跨越葡萄糖分析器的所希望的功能性范围的葡萄糖浓度。对于葡萄糖分析器来说,这大约是70至400mg/dL。某些更进一步进入低血糖症范围,降至40或甚至是0mg/dL,而某些进入到高血糖症范围,直到700或1000mg/dL。替代侵入式葡萄糖分析器的校准替代侵入式葡萄糖分析器利用许多侵入式葡萄糖校准过程。当校准利用诸如血液或间质液之类的生物液体的替代侵入式葡萄糖测量计时,可能要求对传统的校准方法进行相对细微的修改。非侵入式葡萄糖分析器的校准一种非侵入式技术,近红外线光谱学,提供机会进行频繁以及无疼痛的非侵入式葡萄糖测量。这种方法涉及用近红外线(NIR)电磁辐射照射身体上的一点,光波长范围是700至2500nm。根据光与组织的成份的相互作用,光被部分吸收和散射。所采集的实际组织量是受辐射的组织的一部分,光从该部分透反射或漫透射到分光计检测系统。利用近红外线光谱学,需要研究活体内(invivo)近红外线测量和实际血糖值之间的数学关系。这是通过收集活体内(invivo)NIR测量与已直接通过使用如HEMOCUE(YSI股份有限公司,俄亥俄州YellowSprings)或任何适当的和精确的传统侵入式基准设备之类的测量工具而获得的对应的血糖值来实现的。对于基于分光光度计的分析器来说,存在若干单变量的和多变量的方法可用于研究测量的信号和实际血糖值之间的数学关系。然而,所解答的基本公式称为Beer-Lambert定律。该定律规定了吸收率/反射率测量的强度与正被测量的分析物的浓度成比例,如公式3中所示。A=εbC(3)其中,A是给定波长的吸收率/反射率测量,ε是在相同的给定波长处的与所关心的分子相关联的摩尔吸光系数,b是光传播距离,以及C是所关心的分子(葡萄糖)的浓度。化学计量校准技术通过各种信号处理以及包括一个或多个数学模型的校准的方法从测量的光谱中提取葡萄糖信号。所述模型仍然通过以称为校准组的示例性的一组光谱测量和相关联的一组基准血糖值为基础的校准过程来得到开发,所述基准血糖值基于对手指尖毛细管血液或静脉血液的分析。对于校准中的每个采样光谱要求示例性的基准葡萄糖浓度矢量的普通的多变量方法包括部分最小二乘法(PLS)和主分量回归(PCR)。许多其它形式的校准是已知的,如神经网络。由于每一种方法都有误差,因此希望用于测量血糖的主设备尽可能的精确以使得通过所发展的数学关系扩散的误差最小。虽然对于任何FDA批准的血糖监控器都应是合适的假设看上去是合理的,但是对于次级方法的精确验证来说,具有少于5个百分点的百分误差的监控器是令人希望的。虽然正被校准的设备的误差可能增加,但是具有诸如10个百分点的增长的百分误差的测量计也可被接受。虽然很好地理解了上述内容,但是所忽略的一个方面是,与主方法相比较,次级方法要求恒定验证它们是否提供一致的和精确的测量。这意味着,需要一种用于直接检查血糖值和将这些值与给定的次级方法相比较的方法。在质量保证和质量控制程序中,这种监控是明显的。常对校准进行偏差调整。在某些情况中,根据这些次级方法来选择最合适的校准。S.Malin、T.Ruchti,《用于非侵入式血液分析物预测的智能系统》(Intelligentsystemfornoninvasivebloodanalyteprediction),美国专利号6,280,381(2001年8月28日)问题非侵入式葡萄糖分析器的校准必然伴有在传统的侵入式葡萄糖分析器中未观察到的新问题。例如,基于分光镜或分光光度计的非侵入式葡萄糖分析器探测不完全是全血或间质液的采样。光子穿入身体,与身体各层和/或组织相互作用,并且一旦从身体中再度出现时被检测到。因此,存在许多可能的干扰,而这些干扰在准备的基准或校准采样中并不存在。此外,干扰和遇到的基质是活体的一部分,并因此在本质上是动态的。出于这些原因,常利用从手指尖采集的传统侵入式基准葡萄糖测定来试图间接校准。然而,这种方法将与采样基准葡萄糖浓度相关联的误差引入非侵入式分析器。一个关键的误差源在于非侵入式葡萄糖分析器测试的位置处的葡萄糖浓度与利用侵入式技术采集的基准位置的葡萄糖浓度之间的差异。从而,提供用于校准和维护基于信号的分析器的方法,它针对根据与非侵入式采样的位置不同的位置处采集的侵入式基准采样来校准而产生的精确度和准确度的副作用,这是本领域中重要的进步。发明概述本发明提供利用替代侵入式葡萄糖测定或替代位置非侵入式葡萄糖测定,用于校准非侵入式或可植入葡萄糖分析器的方法。在校准中使用替代侵入式或替代位置非侵入式葡萄糖测定使得葡萄糖分析器模型具有最小误差,包括由于采样、方法而造成的误差,以及由于受检者身体中葡萄糖浓度的时间和空间变化而造成的误差。此外,该方法提供将从非侵入式或替代基准测定中测定的葡萄糖浓度转换成传统的侵入式葡萄糖测定。如这里所述,使用替代侵入式或非侵入式葡萄糖测定用于校准还可被理解为包括用于葡萄糖测定、预测、校准转移、校准保持、质量控制以及质量保证。对替代侵入式或替代位置非侵入式基准测定的使用,提供了用于根据反应所观察的基质和由分析器更为精密地测量的变量的葡萄糖测定来进行校准的手段。非侵入式和替代侵入式葡萄糖测定与传统侵入式葡萄糖测定之间的统计相关性可随后用于将替代位置非侵入式或替代侵入式葡萄糖浓度调整到传统的侵入式葡萄糖浓度。本发明还提供一种装置,其中侵入式刺针测量计耦合到非侵入式葡萄糖分析器,用于对嵌入于非侵入式分析器中的校准模型的校准、验证、适应以及安全检查。附图简述图1提供了根据本发明的说明手指尖和前臂之间的葡萄糖浓度中的巨大差异的葡萄糖测量的标图;图2提供了根据本发明的说明与手指尖相比的从前臂测定的葡萄糖浓度中的滞后的葡萄糖测量的标图;图3示出了良好相关的手指尖和前臂葡萄糖浓度的标图;图4说明了根据本发明的说明即使当葡萄糖浓度相对于时间来说处于局部最小值时,手指尖和前臂之间的葡萄糖浓度中的差异所产生的葡萄糖浓度轮廓图形的时滞(historesis)的标图;图5提供了根据本发明的具有相对较大误差的前臂葡萄糖浓度相对于对应的手指葡萄糖浓度的标图6提供了根据本发明的与图5相比较的具有较小误差的前臂葡萄糖浓度相对于对应的对侧前臂葡萄糖浓度的标图;图7示出了根据本发明的使用替代位置葡萄糖测定校准和维护的非侵入式分析器的框图;图8示出了根据本发明的预测的葡萄糖浓度对基准前臂葡萄糖测定的标图;图9示出了预测的葡萄糖浓度对传统侵入式基准葡萄糖浓度的标图;图10提供了根据本发明的说明预测的葡萄糖浓度对手指尖和前臂基准浓度的柱状图漂移(shift)中的统计差异的柱状图;图11提供了根据本发明的说明预测的葡萄糖浓度对手指尖和前臂基准浓度的柱状图大小中的统计差异的柱状图;图12提供了根据本发明的说明衰减(dampened)和滞后的葡萄糖预测对比传统侵入式基准葡萄糖浓度的受检者标图;图13说明了根据本发明的具有衰减和滞后的葡萄糖预测对比传统侵入式基准葡萄糖浓度的一系列受检者的浓度相关性标图;图14示出根据本发明的重叠有传统侵入式葡萄糖测定的滞后和大小经过调整的葡萄糖预测的标图;图15提供了根据本发明的滞后和大小经调整的葡萄糖预测对传统侵入式基准葡萄糖浓度的浓度相关性标图;图16示出根据本发明的预测葡萄糖浓度对传统基准葡萄糖浓度的算法经调整的浓度相关性标图;以及图17示出根据本发明的包括耦合有侵入式(传统或替代)葡萄糖监控器的非侵入式葡萄糖分析器的装置的框图。详细描述本发明减少了用于校准葡萄糖传感器的基准葡萄糖浓度中的误差,并因此导致更为准确、精确和稳固的葡萄糖测量系统。传统侵入式和替代侵入式葡萄糖浓度中的差异一开始,说明了传统侵入式和替代侵入式葡萄糖测定之间的差异。这里说明了来自于诸如前臂之类的位置处的替代侵入式葡萄糖浓度与来自于传统侵入式手指针刺的葡萄糖浓度之间的差异按照至少时间和位置的函数而变化。其它参数包括采样方法、生理学以及葡萄糖分析器仪器。例子#1在第一个例子中,以固定的时间点示出身体位置处的葡萄糖浓度的变化。总共二十个糖尿病受检者遍及两个葡萄糖轮廓图形中的一个,在8个小时的周期中,每个葡萄糖轮廓图形具有两个峰值,从而产生形成图1中部分所示的“M”形状的曲线。从而,从较低的80mg/dL左右的开始的葡萄糖浓度上升到350mg/dL,并在大约4小时期间中返回到大约80mg/dL。紧接着重复该循环以形成“M”形状的葡萄糖浓度轮廓图形。这些轮廓图形交替地由摄入液体形式的碳水化合物(50-100g)或摄入固体形式的碳水化合物(50-100g)结合胰岛素来产生,以形成两个“M”轮廓形状的漂移(excursion)。在整个8小时的周期中,每15分钟测定传统的侵入式手指尖毛细管葡萄糖浓度。每个手指尖测定之后紧跟着替代侵入式毛细管葡萄糖测定,其中采样采集自受检者的右前臂的手掌面然后是左前臂。所产生的数据组包括1920个数据点(20个受检者×3个位置/15分钟×32次抽取/天)。J.Fischer、K.Hazen、M.Welch、L.Hockersmith、J.Coates,《手指尖和左右前臂的手掌面的毛细管血糖浓度比较》(Comparsionsofcapillarybloodglucoseconcentrationsfromthefingertipsandthevolaraspectsoftheleftandrightforearms),美国糖尿病协会(AmericanDiabetesAssociation),第62界年会。可根据L.Hockersmith在美国专利申请序列号09/766,427(2001年1月18日)《测试对象中产生预定形状的血糖轮廓的方法》(Amethodofproducingaglycemicprofileofpredeterminedshapeinatestsubject)中早先提出的过程产生上述的M形状的轮廓,该专利的整体通过被引用而结合于此,就好像在这里完全提出一样。这里给出了从上述研究中得出的四个部分“M”轮廓。在图1中,在前臂测量的替代侵入式葡萄糖浓度展示出具有相对于传统侵入式手指尖葡萄糖浓度的衰减的和滞后的轮廓。对于该个体,当葡萄糖浓度上升时,观察到前臂葡萄糖浓度实际上衰减,低于对应的手指尖葡萄糖浓度。例如,在90分钟标记处,234mg/dL的手指尖葡萄糖浓度分别比123mg/dL的左前臂葡萄糖浓度或114mg/dL的右前臂葡萄糖浓度高出100mg/dL。此外,观察到的手指尖处的峰值葡萄糖浓度295mg/dL比峰值前臂葡萄糖浓度259mg/dL高,且比后者早出现30分钟。最后,前臂葡萄糖浓度相对于手指尖葡萄糖浓度有小的滞后。图2表示出另一葡萄糖轮廓,其中观察到上述刚描述过的许多相同的效应,但程度较低。例如,替代侵入式前臂葡萄糖浓度的上升的葡萄糖浓度仍然小于传统侵入式手指尖葡萄糖浓度的上升的葡萄糖浓度,但差异较小。仍然观察到替代侵入式峰值的衰减和滞后。衰减的一个测量是传统侵入式葡萄糖浓度的范围减去替代侵入式葡萄糖浓度的范围。此外,滞后比前一图中更为明显。图3展示出另一例子,其中前臂葡萄糖浓度循着手指尖葡萄糖浓度的轨迹。最后,图4展示出随着受检者经过随后的葡萄糖漂移(excursion)而产生的时滞(historesis)效应。即前臂中观察到的滞后仍然会在后来的时间观察到。在该情况中,相对于手指尖葡萄糖浓度,葡萄糖最小值处观察到前臂葡萄糖浓度的衰减。上面观察到的效应代表上面所概括的研究中观察到的整个葡萄糖轮廓。如图5中所示,在重叠有克拉克误差格(Clarkeerrorgrid)的浓度相关性标图中,采集自每个受检者的左右前臂的手掌面的替代侵入式葡萄糖测定相对于用于所有受检者的与时间相关的传统侵入式手指尖基准葡萄糖浓度进行绘图。前臂葡萄糖浓度对手指尖葡萄糖浓度的标准误差在37.7mg/dL处相对较大,具有4.43的F值。最佳拟合数据产生0.76的斜率和41.4mg/dL的截距。这与相对于手指尖的衰减的和延时的前臂葡萄糖轮廓相符合,并导致73.8%的点落在Clarke误差格的“A”区域中。在图6中的Clarke误差格上,对于所有受检者,采集自每个受检者的左右前臂的手掌面的葡萄糖测定彼此相对地进行绘图。左前臂葡萄糖浓度对右前臂葡萄糖浓度的标准误差减少到17.2mg/dL,具有16.0的F值。最佳拟合数据产生0.96的斜率和8.3mg/dL的截距。这与左前臂葡萄糖轮廓相对于右前臂葡萄糖浓度的衰减和延时中的减少相符合,并导致百分之95.8的点落在Clarke误差格的“A”区域中。0.96的斜率与低标准误差指示出左右手掌面前臂的毛细管血糖值相似。这些数据暗示出若干结论●在葡萄糖漂移期间,常在未处理的前臂和手指尖的毛细管血糖之间观察到显著的差异;●血糖浓度中的快速变化放大了手指尖和前臂的测量的血糖浓度之间的差异,同时相对误差与葡萄糖浓度成比例;●在血糖浓度的快速变化期间,前臂和手指尖之间的差异引起更多百分比的点落在Clarke误差格的较不希望的区域中。●左右前臂的手掌面的测量的血糖浓度表现为相似;以及●最后,这些发现与前臂相对于手指尖减少的灌注的现象相符合,导致葡萄糖轮廓中的衰减和/或滞后。这些结论与循环生理学著作中的结论以及与替代侵入式葡萄糖分析器的采样方法相关的结论相符合。已报导了20℃时手指中的血流量是33±10mL/g/min,而在腿、前臂和腹部,在19-22℃时,血流量是4-6mL/g/min。V.Harvey,《火花,皮肤与肌肉》(Sparks,Skinandmuscle),《外周循环》(PeripheralCirculation)中,P.Johnson编辑,198页,纽约(1978)。这与局部血糖浓度中观察到的差异相符合。当葡萄糖浓度快速变化时,由于局部组织灌注中的差异,整个身体中局部血糖浓度中产生差异。例如,在手的手指中的血流量大于替代位置中的血流量。这意味着手指尖中的血糖将随着静脉血糖浓度而更为快速地得到均衡。此外,两个位置间的局部葡萄糖浓度中的差异的大小与血糖浓度中的变化速率有关。相反,在稳定状态血糖条件下,整个身体的葡萄糖浓度区域均匀。另一研究展示出前臂的背脊面相对手掌面的葡萄糖浓度中的局部变化与任一前臂区域相对于手指尖观察到的葡萄糖浓度之间的差异相比来说是较小的。J.Fischer、K.Hazen、M.Welch、L.Hockersmith、R.Guttridge、T.Ruchti,《糖尿病患者中手掌面和背脊面毛细管前臂葡萄糖浓度与手指针刺葡萄糖浓度之间的生理学差异》(physiologicaldifferencesbetweenvolaranddorsalcapillaryforearmglucoseconcentrationsandfingerstickglucoseconcentrationsindiabetics),美国糖尿病协会(AmericanDiabetesAssociation),第62界年会(2002年6月14日)。另一研究展示出在诸如前臂的背脊面之类的区域中葡萄糖浓度中非常小的局部变化,其中观察到的误差接近于在基准方法中观察到的误差的规模。观察到前臂中的葡萄糖浓度在前臂的中心点的横向或轴向3英寸内没有变化。除了灌注中的差异之外,在练习或其它活动期间,组织的局部渗透性扩散以及葡萄糖的局部摄入能引起身体中的葡萄糖的非均匀分布。最后,当不是同时测量非侵入式变化和基准葡萄糖浓度时,由于葡萄糖在身体内变化会产生附加误差。生理学下面的生理学解释从这些研究中推导出●在葡萄糖改变的次数期间,手臂上测量的葡萄糖浓度可能滞后于手指尖的葡萄糖浓度;●手指尖和前臂之间的一个良好识别的差异是血流速率;●手指外测试位置的循环生理学中的差异可导致测量的血糖浓度中的差异;●平均来说,手臂和手指葡萄糖浓度近似相同,但是并不是一对一相关。这暗示出传统侵入式葡萄糖浓度和替代侵入式葡萄糖浓度之间的差异在禁食期间和葡萄糖摄取滞后是不同的;●前臂和大腿葡萄糖水平与手指葡萄糖的关系受到邻近于一餐的影响。在正餐后60和90分钟的测试时期期间测量的前臂和大腿结果一致地低于对应的手指结果;●差异与血糖浓度变化反向相关;●快速变化可能产生手指尖和前臂测量的血糖浓度中的显著差异;以及●对于个人,前臂和手指血糖之间的关系可能一致。然而,发现日与日差异的大小变化。最后,在由于锻炼而产生葡萄糖水平降低或由于胰岛素而导致葡萄糖升高的情况下,间质液(ISF)可能引导血浆葡萄糖浓度。利用传统侵入式和替代侵入式葡萄糖浓度中的差异非侵入式测量位置处的葡萄糖水平相对于基准浓度之间的差异提出与校准有关的基本问题。校准一般是数学模型或曲线,用于将诸如吸收率、电压或强度之类的非侵入式测量值转换成葡萄糖浓度的估计。根据由非侵入式变量和通过抽血采集的相关的基准血糖浓度组成的一组成对的数据点,进行校准的确定。基准方法所引起的任何误差扩散到与诸如不确定的、不精确的和/或偏移的校准之类的间接方法相关联的任何误差。方法本发明提供一种根据传统或替代侵入式基准葡萄糖测量来发展校准的方法。基准葡萄糖浓度中的百分误差通过对一个或多个技术应用而得到改进,所述技术提高了基准葡萄糖浓度和传感器测量的变量(这里称为“传感器变量”)中所反应出的葡萄糖浓度之间的对应关系,从而产生了优良的示例性校准数据组,用于计算校准曲线或模型。非侵入式和可植入的葡萄糖分析器要求校准,因为它们依赖于间接来自于血液或组织性质、液体、参数或变量的葡萄糖测量。虽然目标应用一般是光学传感器,但是通过校准测量葡萄糖的任何设备都落在本发明的范围内。这种系统的例子包括●近红外线光谱学(700-2500nm),O.Khalil,《非侵入式葡萄糖测量的光谱学和临床特征》(Spectroscopicandclinicalaspectsofnon-invasiveglucosemeasurements),临床化学(ClinChem),45165-77(1999);●远红外线光谱学;●中红外线光谱学;●拉曼(Raman)光谱学;●荧光光谱学;●光谱振荡热梯度光谱测定法,P.Zheng、C.Kramer、C.Barnes、J.Braig、B.Sterling,《通过振荡热梯度光谱测定法进行非侵入式葡萄糖测定》(Noninvasiveglucosedeterminationbyoscillatingthermalgradientspectrometry),糖尿病技术与治疗学(DiabetesTechnology&Therapeutics),2117-25;●基于阻抗的葡萄糖测定;●核磁共振;●极化光的旋光性;●无线电阻抗;●从皮肤提取的液体;●葡糖氧化酶和酶传感器;●间质液收集技术(如,微刺孔(microporation)或施加小电流)或葡萄糖电极;以及●微量渗析。如先前所述,校准组构成了一组在一个或多个受检者上采集的成对的数据点;并且一般包括跨越预期的葡萄糖变化范围的葡萄糖浓度。每个成对的数据点包括一个基准葡萄糖值和传感器变量的一个相关的值或多个值。所发明的方法依赖于改进可独立或一起使用的校准组的基准值的各种过程。首先是使用包括来自传统侵入式方法或替代非侵入式方法和非侵入式传感器测量的基准葡萄糖值的成对数据点的校准组进行校准的过程。该第一过程基于认识到在稳定状态条件下在整个组织中葡萄糖趋于均匀,以及灌注是导致动态情况下葡萄糖中的差异的主要生理过程。在该第一过程的上下文中,建议许多技术相对于基准值的对应传感器值来改进基准值●在允许测定葡萄糖变化速率的间隔采集成对的数据点。例如,可对四个小时的周期,每15分钟产生传统侵入式葡萄糖测定和非侵入式信号。所产生的校准组限于具有小于规定的最高水平的对应的葡萄糖变化速率的成对的数据点;●在葡萄糖浓度的停滞或慢速变化期间采集校准数据。葡萄糖浓度中的可接受的变化速率是根据基准值中的可容许的误差来确定的。例如,发现0.5mg/dL/分钟的变化速率是可接受的;●在动态条件下,对于使用替代侵入式葡萄糖分析器用于校准并随后用于测量葡萄糖的替代侵入式测量位置来说,测量位置处的循环被扰乱。例如,前臂或替代测试位置中的循环的增强引起局部葡萄糖浓度接近手指的葡萄糖浓度。如上所述,用于扰乱循环的方法可包括超声波、或者引起血管舒张、机械性刺激、部分真空和加热之类的各种表面施用;●根据患者的手指尖或脚趾处的传统侵入式葡萄糖浓度和替代侵入式位置处的替代侵入式葡萄糖测定之间的差异,筛选病人。例如,具有手指尖与通过近红外线设备采样的诸如前臂之类的局部组织体积的葡萄糖浓度之间的显著差异的受检者,将不被用于校准。传统侵入式和替代侵入式测量位置之间葡萄糖浓度中具有小差异的受检者将被用于校准。基于此,为了设备适用于随后的葡萄糖预测,进一步筛选受检者;以及●使用后处理技术,校正葡萄糖浓度的传感器估计。该方法利用通过交叉相关的两个浓度之间的时间超前或滞后的估计,或时间序列分析,以及使用内插过程。类似的校正将校正非侵入式信号相对于传统侵入式信号的衰减。在第二过程中,仔细的位置选择确保了基准值反应出传感器变量中的葡萄糖浓度。根据该过程,从接近于传感器采样位置或被设计/确定为反应采样位置的组织位置处获取血液、血清、血浆、间质抽取或选择性的间质采样。例如,当进行非侵入式(传感器)近红外线测量用于在前臂上校准时,在某些个体中可能从诸如相同前臂之类的替代侵入式采样位置或从另一前臂抽取毛细管血液。以将灌注保持为与非侵入式采样位置相等同的方式来采集血液抽取。注意到,替代侵入式葡萄糖测定从各种深度获得采样。某些从仅靠表皮之下的位置获取间质液,而其它穿透入毛细管血液或皮下液体。因为非侵入式葡萄糖分析器可调节成从不同的深度感测葡萄糖浓度,对基准设备的逻辑选择是从皮肤中的类似深度进行采样的替代侵入式分析器。例如,工作于2100至2300、1550至1800或1100至1350nm范围的近红外线葡萄糖分析器分别从大约1.5、3、5mm的深度获得信号。类似的,工作于1450、1900或2500nm的50nm内的葡萄糖分析器在小于1mm的深度采样。因此,依赖于主要包括表皮的组织体积的非侵入式技术主要间接地测量主要间质葡萄糖浓度,并且可受益于与从皮肤采集血液的替代侵入式葡萄糖分析器相对、从表皮采集间质液的替代侵入式葡萄糖分析器。最后,个体中葡萄糖随时间动态地变化。当不能与传感器变量同时地通过血液或间质采样来采集葡萄糖测定时,由于时间差异,可能产生误差。用于减少该误差的一个技术是基于基准葡萄糖值对采集传感器变量的时间的内插或外插。仪器非侵入式已经报道了用于非侵入式地测量葡萄糖的许多技术,这些技术涉及与组织有关的变量的测量。例子包括但不限于远红外线吸收率光谱学、组织阻抗、拉曼(Raman)和荧光,以及使用从紫外线到红外线的光的技术[紫外线(200至400nm)、可见光(400至700nm)、近红外线(700至2500nm或14,286至4000cm-1)以及红外线(2500至14,285nm或4000至700cm-1)]。这些技术共有共同的特征,即它们是间接的葡萄糖测量。要求校准,以便从随后采集的数据中导出葡萄糖浓度。在过去,使用毛细管手指血糖和静脉血糖来产生这些校准。然而,如已示出的那样,这些传统的侵入式葡萄糖测定并不总是代表采样位置的葡萄糖浓度。许多分光计配置可能用于校准身体区域的非侵入式光谱。典型地,分光计,也称为传感器,具有从源到检测器的一条或多条通路。光源可包括黑体源、钨-卤源、一个或多个LED、或一个或多个激光二极管。对于多波长分光计来说,可使用波长选择设备,或者可使用一系列光纤滤波器进行波长选择。波长选择设备包括诸如一个或多个平面的、凹面的、规则的或全息的光栅。其它波长选择设备包括干涉仪、LED阵列的连续发光元件、棱镜和波长选择滤波器。然而,可改变源,如同改变LED或二极管的点亮一样。检测器可采用一个或多个单元件检测器或一个或多个检测器阵列或束的形式。可从InGaAs、PbS、PbSe、Si、MCT(碲镉汞)等构造出单元件或阵列检测器。诸如光学纤维、透镜以及镜面之类的光学集光器件通常用于分光计的各种配置中,以将来自源的光引导到检测器,用于采样。工作模式可以是透射、漫反射或透反射(transflectance)。由于分光计的整体性能中的变化,常扫描基准波长标准。典型地,在组织的询诊之前或之后即刻采集波长标准,但也可相隔较长时间发生,如当原始生产分光计时。典型的基准波长标准可以是聚苯乙烯或诸如钬、铒或镝的氧化物之类的稀土氧化物。葡萄糖分析器对组织的接口包括患者接口模块,并且诸如近红外线照射之类的光直接或通过光导管、光学纤维、棱镜系统或光引导镜面系统而引导到组织或从组织引导出来。施加有近红外线照射的组织表面的区域和检测到返回的近红外线照射的组织表面的区域是不同的,且相隔确定的距离,并且它们的选择设计成使得对组织体积的定标有助于所关心的特性的测量。患者接口模块可包括托肘、托腕、和/或帮助与选择的照明机构所关心的组织的接口的导管。一般地,在照明机构和所关心的组织之间设置光耦合液,以使得从皮肤表面反射的光谱最小。图7中所示的传感器700的较佳实施例是一种分光镜检查测量系统,它包括钨卤近红外线照射源、经过1100至1900nm光的波长选择滤波器702、用于将源光子传递到活体内(in-vivo)皮肤采样的光学纤维703、对患者的前臂的接口704、用于将从皮肤漫反射的和透反射的照射汇聚到光栅的光学光纤收集器件705、以及检测照射的InGaAs阵列706、用于将产生的信号转换成葡萄糖浓度的电子装置707、以及显示器(未示出)。D.Klonoff,《非侵入式血糖监控》(Noninvasivebloodglucosemonitoring)糖尿病关注(DiabetesCare),203433(1997年3月)。采样位置构成测量探针接触的受检者的身体表面上的点或区域以及由分光计系统照射的特定组织。采用位置的理想性质包括1)同质性,2)不变性;以及3)可取得目标分析物。然而,若干替代采样位置是可能的,包括腹部、上臂、大腿、手(手掌或手背)或耳垂,在较佳实施例中,使用前臂的手掌面。此外,虽然可以漫反射或漫透射模式进行测量,但是较佳方法是漫反射。当被测试的组织区域不受脉动效应影响时,可连续地进行组织扫描,或者可在脉动之间进行扫描。采集的信号(在该例子中为近红外线照射)被转换成电压,并通过模数转换器进行采样,用于在基于微处理器的系统上进行分析,并显示结果。可植入的在另一配置中,植入系统或系统的一部分,直接在身体内的软组织、肌肉、血管或皮肤组织上进行测量。在该配置中,虽然系统或系统的一部分植入于身体内,但是以对于探测的组织非侵入式的方式进行测量。例如,腹膜腔是用于植入的合适位置,探测信号源和检测系统都植入。在较佳实施例中,使用遥测技术将数据或实际的分析物读数传送到身体外的远端位置。可选地,采用经过皮肤的连接器。在传送之后,处理数据或浓度并显示给用户或健康照顾提供者。揭示了植入系统的三种实施例。第一种,消费者型,用于要求对身体分析物(如葡萄糖)进行增强分析的增加的或连续的应用。一种特别有用的应用是对葡萄糖的夜间监控及对低血糖情况的检测或预测。第二种中,系统用于健康照顾设备,且通过计算机或健康照顾提供者监控分析物。植入的系统的第三种实施例用于闭环胰岛素输送系统。在该实施例中,系统是人造胰腺的组成部分,并用于监控葡萄糖水平以确定通过胰岛素泵的胰岛素剂量。在可植入的实施例中,替代侵入式或非侵入式基准葡萄糖浓度或浓度集可连同成对的可植入的信号一起使用,以便校准可植入的葡萄糖分析器。这与如上所述的使用替代侵入式葡萄糖分析器来校准非侵入式葡萄糖分析器实质上相同。在可植入的葡萄糖分析器采样具有类似与替代侵入式位置的灌注的液体或组织的情况中,使用替代侵入式或非侵入式基准是有益的。例如,半可植入的(semi-implantable)设备可置入皮下组织,或可植入的设备可置入腹腔。这些区域都可具有与来自未良好灌注的区域的替代侵入式葡萄糖测定或非侵入式葡萄糖测定相类似的衰减的和滞后的葡萄糖浓度。因此,基准值将更为精确地代表可植入的信号。这将有助于如上所述的校准设计和维护。相对于传统侵入式葡萄糖浓度的替代侵入式的校正在建立葡萄糖校准模型中,必须考虑许多测量参数。测量参数的选择将极大地影响到从随后光谱预测的葡萄糖浓度。例如,对于基于近红外线光谱测量的葡萄糖测定来说,参数包括采样选择、预处理步骤选择、及诸如多变量模型中的若干因素之类的实际模型参数由于传统的和替代测量之间的葡萄糖浓度中的显著差异,选择合适的葡萄糖基准浓度集也是重要的。例如,模型可基于利用来自前臂的背脊面的替代侵入式前臂葡萄糖浓度和来自前臂的近红外线非侵入式葡萄糖测定的校准集。通过使用这种模型来从随后的光谱预测葡萄糖浓度,与校准集基于来自手指尖的传统侵入式葡萄糖测定相比,对大量受检者的后续测量将更为精确地对应于校准集的值。下面更为详细地描述了参数选择的重要性。此外,提供了用于将基于传统侵入式葡萄糖测定的校准集的测量校正为接近基于一组替代侵入式测定的测量。例子对8个月中采集的利用9个仪器从覆盖233个单独就诊者的26个受检者的前臂的手掌面采集的4980个非侵入式光谱,应用单个校准模型。在大约8小时的周期内,对每个受检者每15分钟进行测试。所产生的葡萄糖预测与传统侵入式基准手指尖和替代侵入式基准前臂葡萄糖浓度相比较。图8给出了预测的葡萄糖浓度相对于前臂基准葡萄糖浓度的浓度相关性标图。用于该数据的克拉克误差格分析展示出百分之81.9和百分之17.9的数据分别落入A区域和B区域中。从而,相对于替代侵入式基准前臂葡萄糖浓度,临床上精确地预测出百分之99.8的数据。然而,如图9所示,当相对于对应的传统侵入式基准手指尖葡萄糖浓度绘图时,精确度减少。克拉克误差格分析仍然导致96.9%的数据位于“A”区域或“B”区域;然而,仅有51.5%落入“A”区域内。校正方法遵循●对于每个受检者,对于手指尖和前臂测定,计算预测的葡萄糖浓度相对于基准葡萄糖浓度的滞后。为了说明预测值和基准之间的差异,使用基于交叉协方差的方法,通过使预测值的x轴(时间矢量)滑动固定量以同步预测值和基准值,来计算相位校正。图10表现出所产生的滞后的柱状图。对于前臂,观察到的滞后范围达62分钟。对于相对于前臂和手指尖的比较来说,滞后的峰值分别为大约10和33.6分钟。这指示出该模型实质上对前臂葡萄糖浓度的跟踪比对手指尖葡萄糖浓度的跟踪更好,该模型的结果以前臂葡萄糖浓度来建立。●对于每个受检者,将预测的葡萄糖浓度与手指尖和前臂葡萄糖浓度基准轮廓的每一个进行比较,计算大小校正。大小校正构成了预测值和基准值的葡萄糖浓度范围之间的差异。观察到预测的和基准葡萄糖浓度之间的平均差异对于前臂基准葡萄糖测定来说比对于手指尖基准葡萄糖测定来说更少。对每个受检者的观察,计算预测值的范围对基准值的范围的比值。图11表现出代表大小差异的所产生的比值的柱状图。该柱状图展示出对于前臂葡萄糖浓度范围来说,比值更为接近,对于前臂和手指尖来说峰值分别为0.71和0.55。●未用于该特定模型的第三参数是对葡萄糖轮廓的频率对时间的校正。从而,对于传统侵入式葡萄糖测定和替代侵入式葡萄糖测定来说,葡萄糖增长到峰值的速率和随后下降的速率可能是不同的,并且该轮廓形状差异或周期可得到校正。在这里注意到给出了参数计算的具体例子,但是本领域的技术人员将立即理解到可用许多方法来计算用于表征人口差异的滞后、衰减、及频率参数以及类似参数,其中任一种都与本发明的精神和范围相符合。例如,可用诸如贝塞耳(Bessel)滤波器、时间轴翘曲和再取样、基于小波的模型的开发、以及随后的时间压缩和移位之类的技术来进行校正。类似地,可用将数据集中为均值或单一数据点之后的简单乘法因子、取决于变化速率的乘法因子、取决于时间的乘法因子、取决于组织状态的乘法因子、或取决于糖尿病类型或组织类别的乘法因子来进行大小校正。此外,注意到仍然可以使用不完整的矢量来确定这些或类似的参数。然后,可利用这些参数的一个或多个实现多级校正方法,在一个例子中,移位校正后接着大小校正。首先,从预测时间矢量减去33.6分钟的平均移位值。其次,进行大小校正。一开始,对移位校正的数据进行中心平均。然后,用0.55除所得出的葡萄糖浓度。最后,把移位校正的数据的平均值加到所产生的数据矢量。在这里,把上述产生的具有33.6分钟的移位调整和0.55的缩放因子的参数的二级校正应用到表现出从三个近红外线葡萄糖分析器采集的非侵入式光谱的总共三个受检者的一组7天观察。图12中,给出了手指尖基准葡萄糖浓度和非侵入式预测的葡萄糖浓度轮廓。从前臂采集的光谱预测的非侵入式葡萄糖浓度相对于对应的传统侵入式葡萄糖测定有明显的衰减和滞后。图13中给出了覆盖有克拉克误差格的对应的浓度相关性标图。图14和15中,分别给出了算法校正的葡萄糖轮廓和对应的浓度相关性标图。值得注意的是,已经极大的减少了滞后和衰减。未校正的和校正的葡萄糖浓度的各自的统计显示出精确度方面的明显提高。未校正的和校正的葡萄糖浓度的统计分别是克拉克“A”区域49.7和80.5%;r0.78和0.96,F值2.38和10.9,标准误差54.4和26.0mg/dL。上述说明的二级校正应用于整个数据集。图16中,以重叠于克拉克误差格上的浓度相关性标图表示了校正的预测手指尖葡萄糖浓度。校正的葡萄糖浓度导致97.8%的点落在克拉克误差格的“A”或“B”区域中。校正系数、F值及r值各显示出对应的增加。此外,算法允许在前臂和手指尖葡萄糖浓度之间前后转换。虽然,前面的描述主要针对于包括侵入式基准测量的校准集,本发明的实施例可能采用非侵入式基准测量。上述数据强调了在具有与采样位置相当的灌注的位置处进行基准测量的重要性。因此,前面讨论的原理同样实用于通过实用非侵入式基准测量而不是侵入式基准测量而开发的基准。集成的葡萄糖分析器图17中示出了利用替代侵入式或传统侵入式葡萄糖测定与非侵入式测量相结合的集成葡萄糖分析器1700。本发明包括第一组件1701,测量来自身体的分析信号以确定身体的葡萄糖浓度。上面已经描述了许多非侵入式设备。在本发明的一个实施例中可使用配置用于从前臂采集非侵入式漫反射测量的近红外线分光计。第一组件1701包括用于执行计算机可读指令的控制和处理元件1703,及至少一个存储元件1704如存储器,它具有收录于其中的可执行程序代码,用于将从前臂或其它组织位置采集的一系列反射的近红外线信号转换成对应的一系列血糖值。提供传统侵入式或替代葡萄糖测量的第二组件1702电耦合1706a和b到第一组件。较佳的第二组件提供具有五个百分比的误差或更少误差的测量。上述程序代码还包括代码用于●从传统第二组件1702提取数据;●将从第二组件1702提取的侵入式血糖值存储于第一组件1701的存储元件1704中;以及●使用存储的侵入式血糖值用于校准、校准分配、验证、质量保证过程、质量控制过程、调整、和/或偏置校正,这取决于当前工作模式。例如,在校正的情况中,与非侵入式光谱同时地采集基于手指针刺的血糖值,已形成成对的数据点的校准集。该集用于计算适用于根据诸如光谱之类的非侵入式测量进行血糖测定的数学模型。作为第二个例子,在偏置调整的情况中,与当日的首次非侵入式葡萄糖测定一起采集侵入式血糖测定并用于将非侵入式葡萄糖浓度调整到基准葡萄糖测定。利用调整参数直到采集到新的侵入式基准血糖测定为止。上述程序代码还包括代码用于●将手指针刺血糖值的比较和估计提供给从非侵入式近红外线漫反射测量获得的血糖值。在第一个实施例中,从第一组件1701把信息传递给第二组件1702。可选地,除了第一组件之外,第二组件1702可包含处理和存储元件。非侵入式葡萄糖测量配置成在上述的身体部位工作于上述的模式中(透射、漫反射、及透反射)。最后,虽然较佳实施例采用手指针刺测量,可使用具有足够准确度和精确度的任何测量作为基准测量。常规系统有一个显著的缺陷,其中主设备和次级设备是分开的并相互远离。次级测量必须与主测量相比较以便使次级测量有效。传统上,比较要求消费者从主设备(传统的或替代侵入式葡萄糖分析器)人工地将血糖值输入到次级设备(非侵入式或可植入的葡萄糖分析器)用于比较。这种方法的一个内在风险是将葡萄糖值不正确地输入到次级设备从而导致无效的比较。有利的是,集成的葡萄糖分析器消除了患者人工地输入侵入式测量用于与非侵入式测量比较的必要性。第二个优点是,对两个组件使用单个壳体,有相似的电源和显示器。这导致患有糖尿病的人需要携带的元件更少。另一优点是在非常高或低血糖浓度的情况下,非侵入式葡萄糖分析器不能产生葡萄糖值时,能提供备份的葡萄糖分析器。第三优点是跟踪能力。在建立对诸如偏置的算法的校正中,来自侵入式测量计的基准葡萄糖测定和对应的非侵入式葡萄糖读数之间的时间差异可能是关键的。葡萄糖值和相关时间的自动转移极大地降低了在使用要求这种校正的非侵入式分析器中的风险。最后,将葡萄糖和时间信息转移到非侵入式分析器数字存储装置之中简化了个人或专家的后续分析和数据管理。该技术可在健康照顾设施中实施,包括但不限于医生办公室、医院、诊所、及长期健康照顾设施。此外,该技术将可以由消费者家中使用,这些消费者希望监控他们的血糖水平以判断他们是否得了糖尿病、受损的葡萄糖耐量、受损的胰岛素反应、或他们是否是健康的个体。此外,这样的一种实施例是可能的,其中第一和第二组件是分开的分析器,第一组件配置成非侵入式地测量葡萄糖,第二组件配置成进行替代侵入式或传统侵入式测量。在该实施例中,第一和第二组件通过诸如RS232或USB(通用串行总线)之类的通信接口而电耦合。用于对接电子组件的其它公知方法也适用于本发明,如遥测、红外线信号、无线电波、或其它无线技术。任一实施例通过废除人工数据输入的必要性而提供了消除无效测量的可能性的上述优点。虽然这里参考某些较佳实施例描述了本发明,但是本领域的技术人员将容易地理解到其它应用可代替这里所提出的应用,而不背离本发明的精神和范围。因此,本发明仅由下面包含的权利要求所限制。权利要求1.一种控制对非侵入式葡萄糖分析器的校准中的误差的方法,其特征在于,包括从受检者的身体的替代采样位置处采集一个或多个非侵入式信号;确定与每个非侵入式信号对应的替代基准葡萄糖测量,所述非侵入式信号来自所述身体上具有与所述替代采样位置处的组织基质实质相等或等同的组织基质的替代基准测量位置;以及下述步骤中的任一步骤利用所述一个或多个非侵入式信号和所述基准葡萄糖测量来校准所述葡萄糖分析器;以及利用所述一个或多个非侵入式信号和所述基准葡萄糖测量来维护所述葡萄糖分析器。2.如权利要求1所述的方法,其特征在于,所述对应的基准测量包括替代侵入式或非侵入式测量。3.如权利要求2所述的方法,其特征在于,所述确定替代基准葡萄糖测量的步骤包括使用刺血针;激光刺孔装置;施加电流;以及抽吸装置,中的任一个来确定侵入式基准葡萄糖测量。4.如权利要求3所述的方法,其特征在于,所述确定所述侵入式基准葡萄糖测量的步骤包括使用一组生物采样。5.如权利要求4所述的方法,其特征在于,所述一组生物采样包括下列各组中的任一组一组血样;一组间质液采样;一组选择性采样的间质液采样;一组采样,其中每个采样是血液基质、间质液基质和选择性采样的间质液基质的混合物。6.如权利要求2所述的方法,其特征在于,所述非侵入式基准测量包括下列之一一组基准生物阻抗读数;一组基准拉曼光谱;一组基准荧光光谱;一组基准紫外线光谱;一组基准可见光光谱;一组基准近红外线光谱;以及一组基准红外线光谱。7.如权利要求1所述的方法,其特征在于,所述替代采样位置和所述替代基准测量位置中的每一个包括下列之一头部;耳垂;眼睛;舌头;躯干;腹部区域;手臂;上臂;前臂;前臂的手掌面;前臂的背脊面;手掌区域;腿;大腿;小腿;以及脚底区域。8.如权利要求1所述的方法,其特征在于,所述替代采样位置和所述替代基准测量位置中的每一个包括前臂。9.如权利要求1所述的方法,其特征在于,所述基准区域是位于所述采样区域的大约3英寸的范围内。10.如权利要求1所述的方法,其特征在于,与所述第一区域相比,所述基准区域是位于所述身体的对侧区域的大约3英寸的范围内。11.如权利要求1所述的方法,其特征在于,所述校准的步骤包括下列任一进行部分最小二乘法分析;进行主分量回归分析;以及进行神经网络分析。12.如权利要求1所述的方法,其特征在于,所述一个或多个非侵入式信号包括下列任一一系列透射率测量;一系列透反射率测量;以及一系列漫反射率测量。13.如权利要求12所述的方法,其特征在于,所述一个或多个非侵入式信号包括下列任一一组生物阻抗读数;一组拉曼光谱;一组荧光光谱;一组紫外线光谱;一组可见光光谱;一组近红外线光谱;以及一组红外线光谱。14.如权利要求13所述的方法,其特征在于,所述一组近红外线光谱是从1100至2500nm采集的。15.如权利要求1所述的方法,其特征在于,还包括以下步骤采集预测非侵入式信号;以及根据所述预测非侵入式信号和所述校准的葡萄糖分析器预测葡萄糖浓度。16.如权利要求15所述的方法,其特征在于,所述采集预测非侵入式信号的步骤是在所述身体的预测区域上进行的,所述身体的预测区域包括下列之一头部;耳垂;眼睛;舌头;躯干;腹部区域;手臂;上臂;前臂;前臂的手掌面;前臂的背脊面;手掌区域;腿;大腿;小腿;以及脚底区域。17.如权利要求16所述的方法,其特征在于,所述采集所述预测非侵入式信号的步骤包括下列任一透射率测量;透反射率测量;以及漫反射率测量。18.如权利要求17所述的方法,其特征在于,所述预测非侵入式信号包括下列之一生物阻抗读数;拉曼光谱;荧光光谱;紫外线光谱;可见光光谱;近红外线光谱;以及红外线光谱。19.如权利要求18所述的方法,其特征在于,所述近红外线光谱是从1100至2500nm采集的。20.如权利要求17所述的方法,其特征在于,所述预测区域是所述前臂。21.如权利要求1所述的方法,其特征在于,所述维护的步骤包括下列任一维护葡萄糖校准;调整校准;进行偏置校正;产生校准分配;(文本中的参考专利)进行验证;进行质量保证过程;以及进行质量控制过程。22.一种解决血糖测量中与采样相关的差异的方法,其特征在于,包括提供对葡萄糖测量组之间的关系进行建模的转换,其中每个葡萄糖测量组包括以不同方式采集的采样;以及根据所述转换来转换后续测量。23.如权利要求23所述的方法,其特征在于,所述葡萄糖测量组包括一组替代侵入式测量和一组传统侵入式测量,或者一组非侵入式和一组传统侵入式测量。24.如权利要求24所述的方法,其特征在于,所述关系包括下列任一大小差异;滞后;相位差异;以及宽度差异。25.如权利要求25所述的方法,其特征在于,所述转换含有算法,所述算法包括下列任一步骤用所述大小差异除一组测量;从一组测量减去所述滞后;从一组测量减去所述相位差异;以及用所述宽度差异调整一组替代侵入式葡萄糖浓度。26.如权利要求23所述的方法,其特征在于,所述测量组是在碳水化合物加载之后的周期性测试期间产生的。27.如权利要求23所述的方法,其特征在于,后续测量包括下列任一单一测量;以及成组测量。28.如权利要求22所述的方法,其特征在于,所述转换后续测量的步骤包括下列步骤之一在传统侵入式测量和替代侵入式测量之间转换;以及在从基于替代侵入式测量的校准预测的非侵入式测量和传统侵入式测量之间转换。29.一种用于测量活体内组织分析物的装置,其特征在于,包括配置成产生所述组织分析物的非侵入式测量的第一组件;配置成产生所述组织分析物的侵入式基准测量的第二组件,所述第一和第二电磁耦合;以及使用所述基准测量来优化对所述装置的校准的装置。30.如权利要求29所述的装置,其特征在于,所述组织分析物包括葡萄糖。31.如权利要求30所述的装置,其特征在于,所述第二组件包括下列之一替代侵入式葡萄糖分析器;以及传统侵入式葡萄糖分析器。32.如权利要求30所述的装置,其特征在于,还包括用于存储任何所述测量的存储装置。33.如权利要求32所述的装置,其特征在于,所述优化所述校准的装置包括用于优化所述校准的计算机程序装置,所述程序装置在所述存储装置中实现;以及配置成执行所述程序装置的处理元件。34.如权利要求33所述的装置,其特征在于,所述程序装置包括使用第二校准的程序装置,用来调整下列之一所述装置校准;以及偏置校正。35.如权利要求34所述的装置,其特征在于,所述第二校准用于下列之一中校准分配;验证;质量保证过程;以及质量控制过程。36.如权利要求31所述的装置,其特征在于,所述第一组件包括近红外线葡萄糖分析器。37.如权利要求29所述的装置,其特征在于,所述第一组件和所述第二组件是集成的。38.如权利要求29所述的装置,其特征在于,所述第一组件和所述第二组件是分开的单元。39.如权利要求38所述的装置,其特征在于,所述第一组件和所述第二组件无线电磁耦合。40.如权利要求39所述的装置,其特征在于,所述第一组件和所述第二组件通过遥测、红外线信号、无线电波中的任一个进行电磁耦合。41.一种校准方法,其特征在于,包括用葡萄糖分析器从受检者的身体上的第一区域采集光谱;从所述受检者身体上的第二区域产生对应的基准葡萄糖浓度,从而建立第一组成对的数据点;从所述第一区域采集第二组基准信号,并且使所述第二组基准信号与所述光谱关联,从而建立第二组成对的数据点;从所述第一组成对的数据点和所述第二组所述的数据点确定对应的基准值之间的葡萄糖浓度中的差异;以及根据所述差异从所述第一组中选择成对的光谱和基准葡萄糖浓度的校准组。42.如权利要求41所述的方法,其特征在于,所述信号包括下列之一一组替代侵入式信号;一组非侵入式信号;一组可植入的信号。43.如权利要求42所述的方法,其特征在于,所述一组非侵入式信号包括一组近红外线光谱。44.如权利要求43所述的方法,其特征在于,所述一组近红外线光谱是从大约1150至1850nm的范围内采集的。45.如权利要求41所述的方法,其特征在于,所述基准葡萄糖浓度包括下列之一一组基准传统侵入式葡萄糖浓度;一组基准替代侵入式葡萄糖浓度;一组基准非侵入式葡萄糖浓度。46.如权利要求45所述的方法,其特征在于,所述选择步骤包括在葡萄糖停滞期间选择所述成对的数据点。47.如权利要求41所述的方法,其特征在于,所述选择数据点的步骤包括选择小于10个百分点的差异。48.如权利要求41所述的方法,其特征在于,还包括在采集所述信号之前扰乱所述第一位置处的循环,从而降低葡萄糖浓度中所述差异。49.一种控制可植入葡萄糖分析器的校准中的误差的方法,其特征在于,包括使用所述可植入葡萄糖分析器从受检者身体的第一位置采集一个或多个信号;在具有与所述第一位置处相同或相似的灌注特征的基准测量位置确定与所述信号的每一个相对应的基准葡萄糖测量;以及下述步骤中的任一步骤利用所述一个或多个信号和所述基准葡萄糖测量来校准所述可植入葡萄糖分析器;以及利用所述一个或多个信号和所述基准葡萄糖测量来维护所述葡萄糖分析器。50.如权利要求49所述的方法,其特征在于,所述对应的基准测量包括侵入式或非侵入式测量。51.如权利要求50所述的方法,其特征在于,所述确定替代基准葡萄糖测量的步骤包括使用刺血针;激光刺孔装置;施加电流;以及抽吸装置,中的任一个来确定侵入式基准葡萄糖测量。52.如权利要求51所述的方法,其特征在于,所述确定所述侵入式基准葡萄糖测量的步骤包括使用一组生物采样。53.如权利要求52所述的方法,其特征在于,所述一组生物采样包括下列各组中的任一组一组血样;一组间质液采样;一组选择性采样的间质液采样;一组采样,其中每个采样是血液基质、间质液基质和选择性采样的间质液基质的混合物。54.如权利要求50所述的方法,其特征在于,所述非侵入式基准测量包括下列之一一组基准生物阻抗读数;一组基准拉曼光谱;一组基准荧光光谱;一组基准紫外线光谱;一组基准可见光光谱;一组基准近红外线光谱;以及一组基准红外线光谱。55.如权利要求49所述的方法,其特征在于,所述第一位置包括腹腔。56.如权利要求55所述的方法,其特征在于,所述基准测量位置位于下列之一头部;耳垂;眼睛;舌头;躯干;腹部区域;手臂;上臂;前臂;前臂的手掌面;前臂的背脊面;手掌区域;腿;大腿;小腿;以及脚底区域。57.如权利要求49所述的方法,其特征在于,所述校准的步骤包括下列任一进行部分最小二乘法分析;进行主分量回归分析;以及进行神经网络分析。58.如权利要求49所述的方法,其特征在于,所述一个或多个信号包括下列任一一系列透射率测量;一系列透反射率测量;以及一系列漫反射率测量。59.如权利要求58所述的方法,其特征在于,所述一个或多个非侵入式信号包括下列任一一组生物阻抗读数;一组拉曼光谱;一组荧光光谱;一组紫外线光谱;一组可见光光谱;一组近红外线光谱;以及一组红外线光谱。60.如权利要求59所述的方法,其特征在于,所述一组近红外线光谱是从1100至2500nm采集的。61.如权利要求49所述的方法,其特征在于,还包括以下步骤采集预测信号;以及根据所述预测信号和所述校准的葡萄糖分析器预测葡萄糖浓度。62.如权利要求61所述的方法,其特征在于,所述采集预测非侵入式信号的步骤是在包括腹腔的所述身体的预测区域上进行的。63.如权利要求62所述的方法,其特征在于,所述采集所述预测信号的步骤包括下列之一透射率测量;透反射率测量;以及漫反射率测量。64.如权利要求63所述的方法,其特征在于,所述预测信号包括下列之一生物阻抗读数;拉曼光谱;荧光光谱;紫外线光谱;可见光光谱;近红外线光谱;以及红外线光谱。65.如权利要求64所述的方法,其特征在于,所述一组近红外线光谱是从1100至2500nm采集的。66.如权利要求49所述的方法,其特征在于,所述维护的步骤包括下列任一维护葡萄糖校准;调整校准;进行偏置校正;产生校准分配;进行验证;进行质量保证过程;以及进行质量控制过程。全文摘要用于校准非侵入式或可植入的葡萄糖分析器的方法利用替代侵入式葡萄糖测定或非侵入式葡萄糖测定来校准非侵入式或可植入的葡萄糖分析器。在校准中使用替代侵入式或非侵入式葡萄糖测定允许将由于内建于校准模型中的采样方法,空间和时间变化造成的误差减至最低。另一方法使用非侵入式和替代侵入式葡萄糖测定与传统侵入式葡萄糖测定之间的统计相关性,来将非侵入式或替代侵入式葡萄糖浓度调整到传统侵入式葡萄糖浓度。所述方法提供了用于根据反应出分析器所观察的机体和所测量的变量的葡萄糖测定进行更为精确的校准的方法。葡萄糖分析器将非侵入式手指针刺测量计耦合到非侵入式葡萄糖分析器,用于嵌入于非侵入式分析器中的校准模型的校准、验证、适应和安全检查。文档编号G01N21/27GK1638691SQ03805409公开日2005年7月13日申请日期2003年3月3日优先权日2002年3月8日发明者S·L·莫恩弗瑞,K·H·哈泽恩,T·L·茹齐蒂,T·B·布莱克,J·R·亨德森申请人:三西斯医学股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1