多参数的细胞识别、分类操作方法及其装置的制作方法

文档序号:6080087阅读:225来源:国知局
专利名称:多参数的细胞识别、分类操作方法及其装置的制作方法
技术领域
本发明涉及到一种生物学微粒的分析方法,特别是对如权利要求1所述的细胞分类器中生物细胞的分析以及如权利要求14所述的相应的分析装置。
米勒在1999年Biosensors&Bioelectronics杂志第14期的第247-256页上曾发表了一篇名为“A3-D microelectrode system for handling and caging single cellsand particles”(“一种用于处理和锁定单个细胞和微粒的3-D微电极系统”)的文章。这篇文章讲到了一种广为人知的分析生物细胞的方法,就是将需要分析的细胞悬浮在微流体系统的载体液中,然后进行介电泳操作和分类。在载体液中,需要分析的细胞首先通过一个漏斗形的介电泳电极装置连成一条线,然后被固定在一个介电泳罩中,从而能够分析到罩中处于停止状态的细胞。针对这个步骤,可以使用的装置有显微镜、分光镜和荧光镜。在分析了介电泳罩中的细胞之后,可以对这些细胞进行分类。为了达到这个目的,操作人员会使用一个分类装置,它由一个在载体液中被顺流而下地安置在介电泳罩后面的介电泳电极装置构成。
上述所描述的分析方法存在着缺点。因为在实际操作中,需要被分析的细胞相互之间往往具有很大的差异。比如某些靶细胞从异质分析中通过一种方法被识别了出来,然后又被隔离,但这些靶细胞往往只占整个分析中很少的一部分。其它的一些细胞不具有所期望的特征或者不再具有活力,也就是所谓的已经死亡。此外,往往会出现这样的情况细胞并没有单个完整分离,而有些细胞将这个系统作为两个或多个细胞的细胞组来通过。这可不是人们所希望得到的结果。但是,针对分格罩中单个细胞或细胞组的详细分析是一个很花费时间的过程,以至于对分格罩中所有细胞的分析可能会持续很长时间。
因此,本发明的目的就是将上述所描述的分析方法进行如下改良,这样就可以避免对介电泳罩中所不需要的以及所不希望的生物细胞(比如死细胞)或细胞团进行分析。
鉴于上述所描述的分析方法,如上所述,本发明的目的将通过权利要求1的特征以及权利要求14的特征(通过相应的分析装置)来完成。
本发明包括一般的技术理论规则,即在分析介电泳罩中悬浮在载体液中的微粒之前进行一次对与载体液一起运动的微粒的预先分析,这样是为了将可以进行其它分析的微粒捕获到介电泳罩中并进行分析。
预先分析可能会涉及到荧光的强度、细胞的生命力和/或“是与单个细胞还是与细胞组有关”的问题。然后需要在预先分析中弄清楚的问题就是这涉及到的是细胞还是物质;有形状和大小的物质是否是进一步分析的原始目标,比如象一些赃物或其它细胞(只要它们区别于靶细胞)。
在本发明的分析方法中,首先进行的是对悬浮在载体液中的微粒的预先分析以及借助预先分析的结果选择一定的微粒,而主分析只在挑选出的并且制动的微粒上进行,这样可以使由于微粒的移动而可能造成操作困难的主分析更有说服力。
在使用本发明的保护范围中,分析者并不需要在主分析之前通过(比如象)将借助预分析结果所挑选出的微粒捕获到介电泳罩中来使它们完全停止下来。相反,在使用本发明的分析方法中也可以将借助于预分析结果所挑选出的微粒只限制在载体液中,这样也可以得到一个有说服力的分析结果。
此外还需说明的是,在使用本发明时必须理解“微粒”这个概念。并且清楚这个概念不仅仅局限于单个的生物细胞。此外,如果微粒包括如生物细胞、生物细胞组、生物细胞组成部分或与生物相关的高分子以及它们各自与其它生物微粒或合成载体微粒结合所形成的微粒等生物物质,那么这个概念还包括能够从中获取特殊利益的合成微粒或生物微粒。合成微粒可以是固体微粒,也可以是被悬浮介质所隔开的液状微粒或多相微粒。这些微粒组成了一个与载体液中悬浮介质相分隔的相位。
更适宜的,本发明根据主要应该进行的是根据主分析的结果对借助于预先分析所挑选出的并且在主分析中得到进一步分析的微粒分类和/或处理。比如在主分析中,不同类型的细胞可以相互加以区别,然后得到相应地分类。但也可以这样做,即通过介电泳元件并根据主分析的结果来处理在预先分析中挑选出来的微粒,同时前面提及的米勒文章中所描述到的介电泳元件也可以得到运用。
预先分析中,可以采用如透射光分析、荧光分析和/或阻抗分光分析的检测方法。但在本发明的优选实施例中,本发明采用了透射光分析和荧光分析。其中,透射光分析,和荧光分析,最好分别在相互隔开的分析玻璃窗(in spatiallyseparated regions of interest)中进行。比如分析透射光测定可以区分活细胞和死细胞,而荧光测定则可以分析出载体液中的悬浮微粒上是否有荧光标记。
如果在预先分析时就在相互隔开的感兴趣区中进行透射光分析和荧光分析这两个步骤,那么只有使透射光感兴趣区的载体液中顺流而上地置于荧光感兴趣区之前时,才是有利的;相反地,但也可以将透射光感兴趣区中的载体液顺流而下地置于荧光感兴趣区之后。
在对与载体液一起运动的微粒作预先分析中,首先应该拍下一幅光学图。这样可以对微粒分类作一个数字化的图象分析。这些微粒主要应从形态上进行分析,这样就可以使单个生物细胞与细胞团区别开来。但是,操作者必须理解上述所描述的“光学图”的概念,并且这个概念不应该局限在传统意义的光学图上。本发明中的“光学图”概念还包括载体液和悬浮在载体液中的微粒的点状或线状信号传感。比如说,光亮可以沿着一条线横向融入到载体液管道中,这样就可以探测到单个细胞并将它们进行分类。
预先分析中对活细胞和死细胞的区别可以在分析透射光时通过计算光学图中的强度分配来进行。分析透射光的一个特殊原则就是“相衬照明”。这样的话,活生物细胞就显示为一个在透射光分析中边缘相对明亮、中心较暗的圈形结构,而死生物细胞在透射光分析中显示的亮度几乎是统一的并且显得比背景的亮度暗。
比如在对微粒进行主分析时,可以将特定的一些分子限制在一个细胞中。这样的话,就可以用荧光色将特定的分子打上标记限制在一个细胞中。这些荧光染料可以是通过生物分子学制成的“绿色荧光蛋白”及其衍生物,即其它自动生成的荧光蛋白。但是,与细胞分子有公用原子价或没有公用原子价的荧光染料也可以作为标记分子的荧光染料。此外,一些其它的荧光物质也可以作为荧光染料,但这些荧光物质应被细胞酶转换为能发出荧光的产品或所谓的“成对FRET”(FRET是取了Fluoreszenz Resonanz Energietransfer这三个词的第一字母,意思为“荧光共振能量转移”)。所使用的荧光染料的状态可以根据其光谱特征或通过生物体发光来加以区分。
根据分子被限制在一个细胞中的情况,还可以弄清楚分子的结构和功能。比如,根据分子在血浆膜,在细胞液,在线粒体,在高尔基体,在核内体,在溶酶体,在细胞核,在纺锤体,在细胞架的储量以及肌动蛋白、微管蛋白共存的情况就可以将它们区分开来。
此外,细胞的形态可以在主分析和/或预先分析中确定,这时也可以使用染料了。
另外,一个细胞群的两种或多种状态也可以在主分析和/或预先分析中区分开来。
在主分析中还可以根据具有荧光标记的分子的移位来确定细胞的信号,比如象在使感受器内在化之前所发生的活化感受器以及在化合Arrestin蛋白之前所发生的活化感受器;又比如象分子从血浆膜到细胞液、从细胞液到血浆膜、从细胞液到细胞核或从细胞核到细胞液。
此外,两个分子之间的相互作用也可以在主分析和/或预先分析中被确定。在这个过程中,至少有一个分子上具有荧光标记,并且两分子之间的相互作用是通过两种荧光颜色的蛋白共存,FRET或荧光寿命的变化来展现的。
但在主分析和/或预先分析中还可以确定细胞在细胞循环中的状态。这时,细胞的形态或细胞染色质的上色情况首先得到了分析。
当然,还可以在主分析和/或预先分析中确定细胞的膜潜能。在这个过程中主要使用了对膜潜能敏感的染料,并且这些染料针对血浆膜潜能和/或线粒体膜潜能很敏感。
在主分析和/或预先分析中还可以弄清楚细胞的活性。在这个过程中,细胞的形态得到了分析,能够区分死细胞和活细胞的荧光物质也运用到其中。
此外,细胞毒素的效应也可以在主分析和/或预先分析中得到分析,并且/或者细胞内的PH值可以被确定。
当然,在主分析和/或预先分析中还可以确定细胞内一个或多个离子的浓度。
在主分析和/或预先分析中弄清楚细胞内酶的活度也是可行的。在这个过程中,主要使用了荧光物质或色原物质,特别是致活酶,磷酸酶或蛋白酶。
另外,细胞(这些细胞可以生成一些诸如蛋白质,缩氨酸,抗体,碳水化合物或脂肪的生化产品)的产量也可以在主分析和/或预先分析中确定。在这个过程中,操作员可以运用上述所描述方法中的一种。
最后,在主分析中还可以确定细胞紧张路径,新陈代谢路径,细胞增长路径,细胞分离路径以及其它信号转移路径。
此外,本发明还包括用于上述分析方法的相应分析装置。
本发明中的分析装置主要是一个光学系统,它是用来给微粒拍图像的。
发明中的这个光学系统是可调的,比如调节放大率,焦点和/或视野或选择一个特定的光学滤色镜。在这个过程中,可以通过一个驱动器(比如电动机)来对光学系统进行调节。
前面已经提到,微粒的制动是通过一个介电泳罩来进行,这个方法是广为人知的。但在本发明的操作中,介电泳罩不仅仅是用来制动将作进一步分析的悬浮微粒,而且还满足开关或转接设备的功能。其原理就是将作进一步分析的悬浮微粒通过介电泳罩由许多输出管道进行输送。介电泳罩的每个电极都是相互独立操作的。此外,介电泳罩应被安置在输出管道的分支点上。
另外,漏斗形的电极装置可以安置在一根或多根输出管道中,这样可以防止输出管道中悬浮微粒的下沉,并且是大有好处的,因为输出管道中的载体液显示的是速度断面图,并且这个剖面图所显示的靠近内壁的流速微不足道,以至于输出管道中微粒的下沉可能会导致内壁的淤积。
另外还存在这样的可能性,即悬浮微粒通过两条分开的载体液线路被输送,然后这两条线路汇入一条共同的载体液线路中。在两条载体液线路的汇入点区域可以安置一道隔离墙。这道隔离墙在共同载体液线路中还要分成两部分通流,然后就对其进行分析。根据这个分析的结果,悬浮在两部分通流中的微粒可以汇集在一起。汇集后的微粒可以通过前面描述的方式固定在一个介电泳罩中,并对其进行详细的分析。最后,从介电泳罩中释放出的细胞可以根据对其中一根输出管道路详细分析的结果来进行输送。
本发明最大的优点就在于,细胞可以在无菌的条件下进行分析,并且能够得到相应的隔离。
本发明其它的一些优点将在如下要求中得到体现。换句话说,这些优点将通过范例及附阐述得更加清楚。即为

图1发明中带有分类芯片的细胞分类器的射流图表图2含有多个介电泳元件的分类芯片的载体液管道图3对图一中细胞分类器的分析光学系统的图表式描述图4区别死生物细胞和活生物细胞的图表图5a-5e对发明中分析方法的举例(以流程框图的形式)图6-9分类芯片中载体液管道二选一的制成形式(含有多个介电泳元件)图1对发明中的细胞分类器作了图表式的描述。细胞分类器借助一块微射流分类芯片1将生物细胞通过介电泳来分类。
关于生物细胞的介电泳作用技术早在米勒1999年发表的名为“A3-Dmicroelectrode system for handling and caging single cells and particles”(Biosensors&Bioelectronics杂志第14期的第247-256页)的文章中就有描述到,以至于下面并没有对分类芯片1的介电泳过程作详细的描述。如有需要,请参阅上述文章。
分类芯片1上的连接口2-6是用来进行流体接触的。同时,连接口2-6的流体接触在DE102 13 272中也被描述到,其内容应归入到当前描述内容中去。
分类芯片1的连接口2是用来吸收含有需要分类的生物细胞的载体液,而分类芯片1的接口3是用来引出被淘汰的生物细胞,并且这些细胞不将在分类芯片1上继续被分析。所被淘汰的生物细胞可以被吸管针7吸收。这支吸管针是与分类芯片1的连接口3相连的。与之相反的是,分类芯片1的出口5是用来引出被选取的有用生物细胞的。这些细胞接下来可以被继续处理或分析。
此外,分类芯片1的连接口4和6是用来输送所谓的鞘液。鞘液的任务就是将选取出的生物细胞引入到分类芯片1的连接口5。如果想了解鞘液的作用方式,请查阅德国专利申报DE 100 05 735。所以,下面将不对鞘液的作用方式作详细的描述。
分类芯片的连接口4和6是通过两条鞘液通道8和9,Y段10和四通筏11与储压器12相连。储压器中存有一些培养鞘液的介质。
压缩空气管道13使储压器12处于超压的状态,以至于储压器12中的缓冲溶液(比如象培养介质)通过Y段10和鞘液通道8和9从四通阀11流向分类芯片1的连接口4和6。
除了利用装有缓冲溶液的储压器12,鞘液也可以通过其它的一些方式来得到实现,比如象用针形泵或蠕动泵。
与之相反的是,分类芯片1的连接口2通过载体液通道14与微粒喷射器相连。
微粒喷射器15通过T段16顺流而上地与载体液注入器17相连。载体液注入器是机械发动,并且注入的是预先规定好的载体液液体。
此外,T段16通过另一个四通阀18和鞘液通道19顺流而上地与三通阀20相连。三通阀20可以冲洗鞘液通道8、9以及运行前的载体液通道14。
三通阀20通过蠕动泵21顺流而上地与三个三通阀22.1-22.3相连。这三个三通阀分别是与针形储备器23.1-23.3连接起来的。针形储备器23.1-23.3是用来输送用于冲洗工作前整个射流系统的填充液。比如,针形储备器23.1内含有浓度为70%的酒精,而针形储备器23.2内含有的填充液就应该为蒸馏水。针形储备器23.3中含有的则为缓冲溶液。
此外,细胞分类器上还有一个多余鞘液的接收容器27和多余填充液的接收容器28。
接下来首先描述的是冲洗过程。此过程是在细胞分类器工作之前进行的,这样就可以清除鞘流通道8和9、载体液通道14和细胞分类器剩余的流体系统中的气泡和脏物。
在执行冲洗的这个步骤时,首先应打开三通阀22.1,并用针形储备器23.1向其注入酒精。同时,蠕动泵21中的酒精应输送到三通阀20中去。酒精既可以用来减少系统(此系统可以建立无菌的分析过程和选择过程)中病菌的数量,还可以完全排除掉射流系统中的空气。
在冲洗的过程中,三通阀20的安置应达到如下效果,即一部分由蠕动泵21输送的填充液继续被填充液通道19输送,而蠕动泵21输送的另一部分填充液到达四通阀11。四通阀11和18被重新安置,这样就可以使填充液通过鞘液通道8和9以及载体液通道14被输送。培养介质继续从储压器12流向接收容器27,这样可以将通道迅速灌满。
在按照前面所描述的步骤用酒精冲洗了细胞分类器后,紧接着进行的是以相同的方法用蒸馏水以及缓冲溶液冲洗细胞分类器。这时,应分别打开三通阀22.2和22.3。
前面所描述的冲洗过程可以将多余的填充液从四通阀18中排到接收容器28中去。
在冲洗过程之后,将三通阀22.1-22.3关闭并切断蠕动泵21。
在开始进行分类时,调节四通阀11的位置使储压器12与Y段10相连。这样一来,储压器12中的培养介质就被处于储压器12中的超强压力压迫到鞘液通道8和9中去了。
在进行分类时,调节四通阀18的位置使T段16与四通阀18之间不存在流体连接。
然后,载体液注入器17所注入的载体液通过T段16流入微粒喷射器15中。同时,生物细胞通过另外一个注射器29被注入到载体液中。接下来,含有生物细胞的载体液通过载体液通道14从微粒喷射器15流向分类芯片的连接口2。
还需提及的是,在微粒喷射器15上还应安装一个温度传感器30,这样是为了分析微粒喷射器15的温度T。
此外,温度调节元件31以“珀尔帖元件”的形式被安置在微粒喷射器15以及分类芯片1的支座上,这样是为了能使微粒喷射器15和分类芯片1变热或冷却。
温度调节器32规定好了加热能量以及冷却能量的大小。它与温度传感器30在入口边相连,并且它还将微粒喷射器15的温度T调节到一个所规定的额定值上。
接下来将结合图2对载体液管道33进行描述。载体液管道被安置在细胞分类器的分类芯片1中,并且被分成两条输出管道34和35。同时,输出管道34与分类芯片1的连接口5相连并用来继续输送挑选出的有用微粒,而输出管道35则与分类芯片1的连接口3相连并用来引出已淘汰的微粒。
在载体液管道33中,漏斗形介电泳电极装置36被顺流而下地安置在分类芯片1的连接口2后。它的作用就是使载体液中的悬浮微粒在载体液管道33中相继连成一条线。
电极装置36准确的技术结构和工作方式在前面提到的米勒的文章中有描述到,其内容与发明中描述到的相同,所以,下面将不再对电极装置36作详细的描述。
介电泳罩37应顺流而下地安置在载体液管道33中的电极装置36后面。它可以捕获载体液33中的悬浮微粒并且将其固定在感兴趣区UF中作进一步详细的分析。如果想了解介电泳罩37的结构和功能,同样请查阅前面提到的米勒的文章。因此,在这里就不再对其作详细的描述。
在载体液管道33的分支区域内,分类装置被顺流而下地安置在介电泳罩37的后面。这个分类装置由一个介电泳电极装置38构成。如果想了解电极装置38的结构和工作方式,同样请查阅前面所引用的米勒的文章。电极装置38将载体液中的悬浮微粒分类到输出管道34或输出管道35中。同时,筛选是根据对固定在罩子37中的微粒进行主分析的结果来执行。
此外,射流引导装置被安置在载体液通道33的分支区域。同样,它由一个介电泳电极装置39组成,其作用就是防止微粒从输出管道35中回流到输出管道34中。这里的电极装置39是一个具有两条腿的V字型装置,同时,它的其中一条边突出在输出管道34中,而其另一条边则突出在输出管道35中。
接下来将借助图2和3对“怎样在分类芯片1中对载体液中的悬浮物进行分析”作详细描述。
在对微粒的预先分析中,首先进行的是在感兴趣区1(即英语中的“感兴趣区域”ROI1)中的透射光分析以及在另一个感兴趣区2(ROI2)中的荧光分析。同时,载体液管道33中的感兴趣区ROI1被顺流向上地安置在用于荧光分析的感兴趣区ROI2之前。
透射光和荧光的分析都是通过图3中图解说明的探测单元D来进行的。这个探测单元上有一个用于抓取图像的CCD相机40。它被安置在分类芯片1下面,并与一个转向后视镜41对准。
在分类芯片1上,发光二极管42作为分析透射光的光源。同时,在发光二极管42和分类芯片1之间有一个聚光透镜43。它可以是一个相衬光圈。
在分类芯片1的下面并且在聚光透镜43的光程内应安装一个物镜44。
在分析透射光时,CCD相机40通过转向后视镜41和物镜44拍下感兴趣区ROI1的图像。
另外,探测单元D上有多个电机械驱动器45.1-45.3。它们可以调节物镜44、滤镜块47以及转向后视镜41。调节物镜44可以改变焦点的放大率,而调节滤镜块47是为了选择不同的滤色镜。调节转向后视镜41则可达到“沿着载体液管道33移动视野”的目的,这样一来,载体液管道33中可能发生的淤积就会很快被识别出来。
探测单元D上有一个光源46(如一个激光器),它可以在分析荧光时刺激荧光。其原理为光源46通过滤镜块47刺激载体液管道33中悬浮的生物细胞的荧光。同时,CCD-相机40会拍下一幅相应的荧光图。
接下来将借助图4来描述生物细胞在透视图中不同的呈现形式。图4的上方呈现了一个活细胞48和一个死细胞49,而下方则展示了活细胞和死细胞在透视图中相应的强度走向50和51。从中可以看出,活细胞48具有一个颜色相对较深的核,而死细胞49的内部则被均匀地照亮。通过这样的比较就能将活细胞48和死细胞49区分开来。
接下来将借助图5a至5e中的流程图来描述本发明的分析方法。
在分析开始时,首先用浓度为70%的酒精溶液,其次用蒸馏水,最后用缓冲溶液冲洗载体液通道14和鞘液通道(enveloping flow line)8、9,这样是为了清洁细胞分类器的射流系统,特别是清除其中的气泡和脏物。
然后,载体液将从载体液注入器17中注射到载体液通道14中去。同时,在鞘液输送以后,需要分析的生物细胞通过微粒喷射器15上的注射器29被注入到载体液中去。
另外,储压器12中用于鞘液的培养介质被压缩空气管道13输送的压缩空气从储压器12中压入到鞘液通道8和9中去。鞘液通道8和9汇入到分类芯片1的连接口4和6中,并且它们还能使分类芯片1挑选出的微粒通过分类芯片1的连接口5继续被输送。
在分类芯片1的载体液管道33中,悬浮微粒首先被电极装置36顺着流向串成一行。(如图中的虚线箭头)然后按时间先后顺序拍下感兴趣区ROI 1中相衬图像B1,……,Bn,这样就可以算出悬浮微粒的运动速度,并且还可以将活细胞和死细胞区分开来。后面还将对此进行更详细的描述。
为了能确定悬浮微粒的运动速度,必须弄清楚每个强度信号I1,……In所对应的相衬图像B1,……,Bn。其具体方法就是将相衬图像B1,……,Bn中的图象强度分栏地(呈直角)与流向统一。每个强度信号I1,……In在每个生物细胞处都有一个信号顶峰,同时,强度信号I1,……In之间的信号顶峰是随着细胞的运动速度和强度信号I1,……In之间时间间隔的推移而推移。
然后,相互关联数φi就可以通过相继出现的强度信号Ii,Ii+1来计算。计算相互关联数φi是为了确定分类芯片1的载体液管道33中细胞的运动速度,这样就可以准确并且准时地操作介电泳罩37去捕获特定的细胞。
接下来,最大值就可以通过每个相互关联数φi(X)并根据载体液管道33在纵向上的推移长度x来算出。
最后,相互关联数最大值的平均数与相衬图像B1,……,Bn之间时间间隔的商就是细胞在载体液管道33中的运动速度V。
在回授的范围内,细胞的运动速度V可以用来作为操作泵的参数。也就是说,V可以用来分析“计算出的和实际的泵率是否相吻合”以及“如果两者不吻合的话,该怎么进行调整”。特别需要指出的是,“系统中是否存在细胞运行极其缓慢(即细胞堵塞)、停止或后退的情况”也可以根据运动速度V来判断。所有这些故障都可以(比如象)通过冲洗系统来消除。
但是,前面所描述的关于细胞运动速度V的确定也可以在感兴趣区ROI1和ROI2外进行。原则上,在整个载体液管道33中或在载体液管道33的任一区域内跟踪细胞运动(也就是英语中的细胞轨迹)是可行的。
此外,强度信号I1,……In的信号形状还提供了关于微粒大小以及细胞可能形成的细胞组的信息。总的来说,分析强度信号对于操作以及自动化整个装置和过程来说是很重要的,这里的装置和过程指的是泵、介电泳电极元件(比如什么时候该“开”,什么时候该“关”)、罩37中图像的拍摄以及试验。
然后,细胞捕获时刻tF可以被算出。它对于操作罩37来说是至关重要的,因为罩37将把进入下一轮主分析的微粒捕获到感兴趣区中去。捕获时刻tF是微粒运动速度V与罩37移动距离的商。
此外,两个相邻微粒之间的距离dp也可以被计算出来。这对于单个细胞与细胞组的区分来说是很重要的。后面还有对此进行的详细描述。
接下来将借助示意图5c对活细胞与死细胞的区分作详细的描述。首先应弄清楚的是每个细胞的边缘点x1,xr。在每个细胞的边缘点上,相衬图像中的强度超过一个预先规定的限定值ITH。
接下来需要分析的是,在细胞边缘点x1,xr之间是否存在一个强度最小值。如果上述情况存在,也就是说最小强度存在,那么这个细胞就是活细胞(如示意图4所示)。如果不存在这样一个值,那么这个细胞就被归入死细胞,这样是为了进行下一步相应的挑选。后面还将对此进行更详细的描述。
在区分了活细胞与死细胞后,按照示意图中5d中的步骤,单个细胞的亮度L可以通过求细胞边缘组X1与Xr之间一个细胞的强度I的积分来算出。
接下来,计算出的细胞亮度L将与最小值Lmin与最大值Lmax相比较。
如果算出的细胞亮度处于这个感兴趣区之内,那么,透射光照明将被关闭,并且光源46将被开启刺激荧光。然后将拍下感兴趣区ROI2中的荧光图以及分析细胞的荧光值IF。
如果算出的细胞亮度处于上述感兴趣区内,那么也可以一直刺激荧光,同时只关闭透射光照明。
如果测出的细胞荧光值IF超过了预先规定的限定值Imin,那么这个细胞就应该具有荧光标记。
如果测出的荧光值IF低于预先规定的限定值,那么可以确定的是,这个细胞不具有荧光标记。
示意图5e中描述了怎样挑选一定的细胞。同时还应考虑到的是活细胞与死细胞的区分以及荧光标记的分析。比如象挑选出具有荧光标记的活细胞,那么其它那些不符合这个标准的细胞就被淘汰了。
然后,通过比较计算出的微粒距离dp与预先规定的最小值dmin来对单个细胞与细胞组进行区分。如果计算值低于最小值dmin,那么这个微粒就是细胞组,于是,分析就到此结束了;如果微粒距离dp大于预先规定的最小值dmin,那么,这个微粒就是单个的细胞,所以,分析就将按照下面所描述的继续进行。
以这种方式所挑选出的细胞将被在某一捕获时刻tF捕获到介电泳罩37中并且被固定在其中,这样就可以对溶解率更高、暴光时间更长的捕获细胞进行主分析。
被挑选出的活细胞(也就是通常情况下带有荧光标记的活细胞)将被电极装置38继续输送到液流管道34中。而被淘汰的死细胞则被输送到液流管道35中。
在感兴趣区UF的主分析中拍摄荧光图像时,就应同时或相继使用一段或多段激发波长。这时,在滤镜块47中也应使用一块合适的二向色镜。而且,一段或多段波长的荧光应同时被引到一个或多个相机上。在滤色镜47中,应使用合适的发射过滤器芯子或发射碎片。这样一来,就可以同时或相继拍出具有多种荧光颜色的细胞的图像。当然,还可以在白光相衬照明的情况下拍出被选细胞的图像。而且必须确定的是,一个或多个不具有荧光标记的细胞是否能依附在一个带有荧光标记的细胞上。因为这是导致具有荧光标记的细胞被污染的原因。
示意图6中所描述的操作范例与示意图2中所描述的操作范例相同,并且相同的零件都是用相同的数字来表示,只是为了区别示意图的顺序而在每个数字后面加上了一个“’”(小撇号)。所以,这里就不再对此进行重复描述了。
这个操作范例的一个特点就在于安置在载体液管道33’入口边上的介电泳电极装置36’的构造更加简单。它使载体液中的悬浮微粒在载体液管道33’中串成了一条线。
这个操作范例的另一个特征就是,一个钩形电极装置52’被顺流而下地安装在载体液管道33’中的电极装置36’后。由于形状的原因,它也被称作为“Hook”(英语中的“吊钩”)。它的作用是将微粒固定并停放。电极装置52’的结构以及工作方式正如米勒在他2002年2月发表的那篇名为“Life Cells in Cellprocessors”(在Bioworld这本杂志上发表的)的文章中所讲,因此,我们在这里就不再对此作详细的描述。如果您想了解相关情况,请查阅米勒的这篇文章。
在载体液管道33’中,还有一个感兴趣区53’处于电极装置52’与介电泳罩37’之间。这个感兴趣区与感兴趣区ROI1与ROI2相似,但却是用来进行预先分析的。
另一个感兴趣区54’被安置在介电泳罩37’中。这样一来,在介电泳罩37’中就可以进行对制动微粒的分析。
这个操作范例的另一个特点就是,在输送所选微粒的液流管道34’中被安置了一个漏斗型的电极装置55’。它的作用与电极装置36’的作用相同。它是用来将液流管道34’中的微粒置中。这样做是很有好处的,因为液流管道34’中的微粒有下沉的趋势,并且有可能会在靠壁的地方淤积,这样就会影响流速。电极装置55’可以防止微粒的下沉,并且还可以将微粒固定在液流管道34’的中间(这里的流速是最大的)。
此外还需提到的是,电极装置36’,52’以及介电泳罩37’被离心地安装在载体液管道33’中。这样安装的结果就是,如果不操控电极装置38’,那么载体液中含有的微粒在被释放后就自动通过介电泳罩37’到达用语输送被淘汰微粒的液流管道35’中。这样做的好处就在于,只有在载体液中含有少量合格的微粒时,才去操作电极装置38’。
示意图7中所描述的操作范例与前面示意图6中所描述的操作范例相同,并且相同的零件都是用相同的数字来表示,只是为了区别示意图的顺序而在每个数字后面加上了两个“’”(小撇号)。所以,这里就不再对此进行重复描述了。
这个操作范例的一个特点就在于,介电泳罩37”被安置在载体液管道33”分成液流管道34”和液流管道35”的分支点上。此外,介电泳罩37”的每个电极都可以分开操作。因此,介电泳罩37”可以执行两个功能,一个就是“罩”的功能(也就是英语中的“Cage”),另一个就是开关(也就是英语中的“Switch”)以及转接设备的功能。介电泳罩37”一方面可以将载体液中的微粒固定在用于分析的感兴趣区54”中,另一方面可以将微粒输送到液流管道34”或35”中。
此外,必须要懂得前面描述中所使用的“分支点”的概念,它不仅仅局限在液流管道的几何交叉点上。当然,将介电泳罩37”以及转接设备顺流而上地安置在两液流管道的交叉点之前也是可以的。比如,分支点的定义也包括所谓的“Separatrix(英语词,译为分界线)”。这里的分界线指的是载体液管道中片流的分界线。
此外,这里的以及下面操作范例中将描述到的电极装置36”,52”,介电泳罩37”以及分析站53”,54”都被安置在载体液管道33”的中心。
示意图8中所描述的操作范例与前面示意图7中所描述的操作范例相同,并且相同的零件都是用相同的数字来表示,只是为了区别示意图的顺序而在每个数字后面加上了三个“’”(小撇号)。所以,这里就不再对此进行重复描述了。
这个操作范例的一个特点就在于介电泳罩37的构造。它只由6个电极所构成。同时,每个电极都可以分开操作,这样就可以选择介电泳罩37到底是作为开关与转接设备,还是作为罩来工作。
最后,示意图9展示了分类芯片中可能的装置的操作范例。两条载体液通道56与57汇成一条载体液通道58,同时,悬浮微粒分别通过载体液通道56与57被输送。
在载体液通道56与57中分别安置一个漏斗型的电极装置59,60,这样是为了将包含在载体液(指的是载体液通道56与57中的载体液)中的微粒置中。
在共同的载体液管道58中,一道隔离墙61被顺流而上地安置在载体液通道56与57的汇合点。这样一来,载体液(指的是载体液通道56与57中的载体液)中的悬浮微粒在载体液通道58中平行并排或相互分离。
在隔离墙61区域,两个感兴趣区62,63处于载体液通道58中。它们是用来为悬浮微粒作预先分析的。这里的预先分析方式与前面示意图2中所描述的分析方式相同。
在载体液通道58中,漏斗型的电极装置64被顺流而下地安置在感兴趣区62与63之后。它的作用是将悬浮在隔离墙61两旁液体中的微粒置中,并将它们输送到介电泳罩65中去。介电泳罩65可以将用于分析(这里的分析是在另一个感兴趣区66中进行)的微粒固定在其中。
另一个电极装置67被顺流而下地安置在介电泳罩65之后。它将载体液中的悬浮微粒在释放后通过罩65并根据感兴趣区66中的分析结果输送到液流管道68、69或70中去。液流管道68和70是用来引出被淘汰的微粒,而液流管道69是用来继续输送被挑选出的微粒。如果被挑选出的微粒被输送到用于输送被淘汰微粒的液流管道68和70中去了,那么这时候就不得不使用电极装置67了。如果没有上述情况发生,那么就不主动使用电极装置67。因此,这个装置只适合在被淘汰微粒很少的分析中使用。
这项发明不仅仅局限于以上所描述的操作范例。大量以此发明思想、发明理念为基础的变体也属于保护范畴。
权利要求
1.一种分析微粒(48,49)、特别是生物微粒(48,49)的方法,其特征在于包括以下步骤将需要分析的微粒(48,49)至少放入一种载体液(carrier flow)中;对与载体液一起运动的微粒(48,49)作至少第一次分析;根据第一次分析的结果选择至少一个微粒(48,49);制动所选择的微粒(48,49);在制动的状态下,对所挑选出的微粒(48,49)作至少第二次分析。
2.根据权利要求1所述的方法,其特征在于所挑选出的微粒(48,49)根据第二次分析的结果被分类和/或处理。
3.根据权利要求1或2所述的方法,其特征在于在第一次分析和/或第二次分析中进行透射光分析和/或荧光分析。
4.根据权利要求3所述的方法,其特征在于在第一个感兴趣区(Region ofinterest,ROI 1)中进行透射光分析,并且在第二个感兴趣区(ROI 2)中进行荧光分析,其中,所述两个感兴趣区(ROI 1、ROI 2)在空间上是相互分离的。
5.根据上述任一权利要求所述的方法,其特征在于在第一次分析中拍摄至少一幅微粒(48,49)的光学图像。
6.根据上述任一权利要求所述的方法,其特征在于在第一次分析中进行一次电性分析和/或电磁分析。
7.根据权利要求6所述的方法,其特征在于在第一次分析中进行一次阻抗分析。
8.根据上述任一权利要求所述的方法,其特征在于在第一次分析和/或第二次分析中对微粒(48,49)进行形态学(morphologically)上的分析和/或根据其大小进行分析。
9.根据上述任一权利要求所述的方法,其特征在于在第一次分析中对载体液中的微粒(48,49)是由单个生物细胞构成还是由多个生物细胞构成进行核查,并挑选出由单个生物细胞所组成的微粒(48,49)进行第二次分析。
10.根据上述任一权利要求所述的方法,其特征在于在第一次分析中对载体液中的微粒(48,49)是活细胞(48)还是死细胞(49)进行核查。
11.根据权利要求10所述的方法,其特征在于在第一次分析中对微粒(48,49)进行透射光分析,其中包括拍下微粒(48,49)的光学图像,并且计算图中微粒(48,49)的强度分配(50,51)。
12.根据上述任一权利要求所述的方法,其特征在于在第一次分析中,通过荧光分析来分析载体液中的微粒(48,49)是否超出了荧光标记的界限值。
13.根据上述任一权利要求所述的方法,其特征在于为了制动从第一次分析中挑选出的微粒(48,49),将它们固定在方格罩(37,37’,37”,37,65)中并且/或者放慢载体液的流速。
14.一种用于分析微粒(48,49),特别是生物微粒的装置,包括用于收容含有悬浮微粒(48,49)的载体液的载体液管道(33,33’,33”,33,58);第一个分析站(ROI 1,ROI 2,53’,53”,53,62,63);对与载体液一起运动的微粒(48,49)作第一次分析;挑选单元(37,37’,37”,37,65);根据第一次分析的结果来挑选微粒,其中,所述挑选单元(37,37’,37”,37,65)包括一个用来制动所挑选出的微粒(48,49)制动装置;第二个分析站(UF,54’,54”,54,66);用来第二次分析制动状态下的所选微粒(48,49)。
15.根据权利要求14所述的一种用于微粒分析的装置,其特征在于第二个分析站(UF,54’,54”,54,66)被顺流而下地安置在第一个分析站(ROI 1,ROI 2,53’,53”,53,62,63)之后。
16.根据权利要求14或15所述的一种用于微粒分析的装置,其特征在于处理装置和/或分类装置(38,38’,67)被顺流而下地安置在第二个分析站(UF,54’,54”,54,66)之后,这样是为了根据第一次分析和/或第二次分析的结果处理和/或分类所挑选出的微粒(48,49)。
17.根据权利要求16所述的一种用于微粒分析的装置,其特征在于处于第二个分析站(UF,54’,54”,54,66)之后(顺流而下)的载体液管道(33,33’,33”,33,58)至少被分成两个液流管道(34,34’,34”,34,35,35’,35”,35),其中,分类装置(38,38’,37”,37)被安置在载体液管道(33,33’,33”,33,58)的分支区域。
18.根据权利要求17所述的一种用于微粒分析的装置,其特征在于所述分类装置(38)上有一个介电分配开关,该介电分配开关被安置在载体液管道(33,33’,33”,33,58)的分支区域。
19.根据权利要求17或18所述的一种用于微粒分析的装置,其特征在于所述引流设备(39)被安置在载体液管道(33,33’,33”,33,58)的分支区域,这样是为了防止载体液和/或微粒(48,49)从两条液流管道(34,35)中的一条回流到另一条中。
20.根据权利要求19所述的一种用于微粒分析的装置,其特征在于所述引流装置(39)上包括一个电极。
21.根据权利要求20所述的一种用于微粒分析的装置,其特征在于所述引流装置上的电极(30)是一个具有两条腿的V字型电极装置,并且所述两条腿在分支液流管道(34,35)中延伸。
22.根据上述任一权利要求所述的一种用于微粒分析的装置,其特征在于所述制动装置(37,37’,37”,37,65)上有一个介电泳罩(dielectric cage)。
23.根据上述任一权利要求所述的一种用于微粒分析的装置,其特征在于聚焦电极(36)被顺流而上地安置在载体液管道(33,33’,33”,33,58)中的第一个分析站(ROI 1,ROI 2)之前。
24.根据上述任一权利要求所述的一种用于微粒分析的装置,其特征在于所述第一个分析站(ROI 1,ROI 2,53’,53”,53,62,63)和/或第二个分析站(UF,54’,54”,54)上都装有一个用于拍照的光学系统(44)。
25.根据权利要求24所述的一种用于微粒分析的装置,其特征在于所述光学系统(44)可以移动,这样是为了至少能够沿着载体液管道(33,33’,33”,33,58)移动图像。
26.根据权利要求25所述的一种用于微粒分析的装置,其特征在于为了能使图像移动,所述光学系统(44)与一个电机械驱动器(45)相连。
27.根据权利要求14至26任一项所述分析装置在医学和/或药物研究和/或诊断学和/或法医学中的用途。
28.根据权利要求14至26任一项所述的分析装置,用于达到分离不同类型细胞的目的,特别是区分程序化死亡细胞(apoptic cell)与坏死细胞以及含有不同基因显现和/或干细胞(stem cell)。
全文摘要
本发明涉及一种分析生物微粒的方法,特别是在细胞分类器中进行操作,该方法包括如下步骤将需要分析的微粒引入一种载体液(carrier flow)中;对与载体液一起运动的微粒作第一次分析;根据第一次分析的结果选择至少一个微粒;制动所选择的微粒(48,49);在制动的状态下,对所挑选出的微粒(48,49)作至少第二次分析。本发明也涉及一种对应的分析装置。
文档编号G01N15/12GK1748136SQ200480003564
公开日2006年3月15日 申请日期2004年2月4日 优先权日2003年2月5日
发明者托斯滕·穆勒, 斯蒂芬·胡墨, 安理特·普怀林, 盖毕力·格热多, 埃克色欧·邦圣, 托马斯·圣利力, 茹蒂杰·迈耶 申请人:埃沃特科技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1