电池放电能力判定方法、电池放电能力判定装置和电源系统的制作方法

文档序号:6123671阅读:148来源:国知局
专利名称:电池放电能力判定方法、电池放电能力判定装置和电源系统的制作方法
技术领域
本发明涉及对向负载供给功率的电池的放电能力进行判定的电池放 电能力判定方法、电池放电能力判定装置和电源系统的技术领域。
背景技术
近年来,为了汽车的安全性能和驾乘感觉等的进一步的提升,搭载于 车辆的电子设备越发增加。另外,为了降低对环境的负荷,不仅是燃料费
的提高,怠速停止(idle stop)等的普及也在进展中。
随着这样的电子设备的增加和怠速停止的普及等,监视电池的状态, 并早期检测异常或充电不足等庐必要性迅速地不断提高。与此相对应,提 出了各种推定电池的劣化状态(SOH)或充电率(SOC)的方法。
在专利文献l中,通过规定的模型计算来计算电池电压,采用该电池 电压根据规定的算出式来计算电池的SOC。在上述的模型计算中,利用少
量元件常数构成的简单的电池模型,通过反馈电池电压的计算结果和所测 定的电池电压,校正所述的元件常数。
另外,在专利文献2中,利用将电池的SOC和电压设为状态变量的 电池的运转状态模型,通过进行基于卡尔曼滤波器的状态推定,来求出电 池的SOC。
即利用上述的电池的运行状态模型来预测电压相对于测定的电流的 的变化,根据预测的电压和测定的电压的差来校正状态变量。由此,获得 状态变量的一个即SOC来作为校正后的结果。
专利文献1:日本特表2004 — 514249号公报
专利文献2:日本特开2002 — 319438号公报
在考虑电池的实际的动作环境的情况下,电流在起动要求的负载中流 动时的响应电压(SOF)是否在负载的可靠动作范围内是最重要的信息。 另外,上述的响应电压根据起动要求时的电池的状态,例如向其他的负载
供给的负载电流的大小等,进行各种变动。
但是,可以提供针对上述响应电压的信息的技术,迄今为止没有被提 出。作为用于实现其的技术,例如一般考虑如下方法将电池作为电气等
效电路模型化,根据该等效电路推定要求的负载电流特性(pattern)流过 时的响应电压,判定所推定的响应电压是否在负载的稳定动作范围内。
在利用上述的等效电路的方法中,需要在广泛的频率区域进行电池的 阻抗测定,按照使测定的阻抗和从所述等效电路算出的阻抗在广泛的频率 区域一致的方式决定等效电路的各元件的常数。
但是,在考虑电池的实际的使用环境的情况下,各元件常数的决定所 需要的在广泛的频率区域的阻抗测定,从测定所需要的时间和计算负荷等 的观点来看也是极为困难的。另外,在预先决定各元件常数并存储的情况 下,也需要随着电池的经年变化等来调整各元件常数,也存在实行极为困 难的问题。
在专利文献1和专利文献2中,只是根据规定的电池模型来推定电池 的SOC,不能预测相对于重新起动负载时的负载电流的响应电压。

发明内容
因此,本发明为了解决这样的问题,目的在于提供一种电池放电能力 判定方法,其能够推定相对于要求负载电流的响应电压来判定电池的放电 能力。
本发明的电池放电能力判定方法的第1形态是根据电池的等效电路判 定该电池的放电能力的电池放电能力判定方法,其特征在于,设定至少将 所述等效电路的元件常数和该元件常数的规定的函数作为要素的状态向 量,测定并求出所述电池的电流和电压,将所述测定出的电流值以及电压
值和以规定的soc算出方法算出的soc作为观测值,据此推定所述状态
向量,将推定的所述状态向量的要素即所述元件常数应用于所述等效电 路,来推定以规定的电流特性进行放电时的所述电池的电压值,通过将推 定的所述电压值与规定的电压允许值进行比较,来判定所述电池的放电能 力。
本发明的电池放电能力判定方法的第2形态是一种电池放电能力判定
方法,特征为从根据电流、电压和充电率(SOC)算出的二次观测值推定 所述状态向量。
本发明的电池放电能力判定方法的第3形态是一种电池放电能力判定
方法,特征为将1以上的频率的阻抗追加到所述观测值的要素,根据所述
测定的电流值和电压值、以所述SOC算出方法算出的SOC和以规定的阻 抗算出方法算出的所述1以上的频率的阻抗来推定所述状态向量。
本发明的电池放电能力判定方法的第4形态是一种电池放电能力判定 方法,特征为所述阻抗算出方法,测定使所述电池放电或充电脉冲电流时 的电流和电压,将所述测定的电流值和电压值分别傅立叶展开,求出与所 述1以上的频率对应的各自的振幅成分,根据所述振幅成分算出所述1以 上的频率的阻抗。
本发明的电池放电能力判定方法的第5形态是一种电池放电能力判定 方法,特征为所述阻抗算出方法测定所述电池对电装设备供给功率时的电 流和电压,将所述测定的电流值和电压值分别进行傅立叶变换并求出与所 述l以上的频率对应的各自的振幅成分,来根据所述振幅成分算出所述1
以上的频率的阻抗。
本发明的电池放电能力判定方法的第6形态是一种电池放电能力判定
方法,特征为所述阻抗算出方法对于进行所述傅立叶展开或傅立叶变换而 求得的所述阻抗(设为Zmes),为了进一步除去与所述电池并联连接的 的电装设备的阻抗(设为Zx)的影响,通过
1/Zmes=l/Zx+1/Zbat 的关系式来算出所述电池的阻抗'Zbat。
本发明的电池放电能力判定方法的第7形态是一种电池放电能力判定
方法,特征为所述元件常数至少对于所述电池的电流值/温度/soc的任意
一项进行规定的校正计算。
本发明的电池放电能力判定方法的第8形态是一种电池放电能力判定 方法,特征为所述SOC算出方法利用所述电池的稳定OCV测定值、电流 累计值、1/V特性中的至少任意一项。
本发明的电池放电能力判定装置的第1形态是根据电池的等效电路来 判定该电池的放电能力的电池放电能力判定装置,具有电流传感器,其
测定所述电池的电流;电压传感器,其测定所述电池的电压;和控制机构, 其根据从所述电流传感器输入的电流值、从所述电压传感器输入的电压值 和以规定的算出方法算出的SOC,推定以所述等效电路的元件常数和该元 件常数的规定的函数为要素的状态向量,将推定的所述状态向量的要素即 所述元件常数应用于所述等效电路,推定以规定的电流特性放电时的所述 电池的电压值,通过将推定的电压值和规定的电压允许值进行比较来判定 所述电池的放电能力。
本发明的电池放电能力判定装置的第2形态是一种电池放电能力判定 装置,特征为所述控制机构将l以上的频率的阻抗追加到所述观测值的要 素,根据从所述电流传感器和电压传感器输入的电流值、电压值、以所述 SOC算出方法算出的SOC和以规定的阻抗算出方法算出的所述1以上的 频率的阻抗,推定所述状态向量。
本发明的电池放电能力判定装置的第3形态是一种电池放电能力判定 装置,特征为具有使所述电池放电或充电脉冲电流的放电电路或充电电 路,所述控制机构,从所述电流传感器和所述电压传感器分别输入通过所 述放电电路或充电电路使所述脉冲电流放电或充电时的电流值和电压值, 将所述电流值和电压值分别进行傅立叶展开,求出与所述l以上的频率对 应的各自的振幅成分,根据所述各自的振幅成分算出所述l以上的频率的 阻抗。
本发明的电源系统的第1形态是具有第9形态到第11形态的任意一 个的电池放电能力判定装置的电源系统。
根据本发明,能够提供一种电池放电能力判定方法,其能够推定相对 于要求负载电流的响应电压来判定电池的放电能力。根据本发明,通过利 用使最佳地学习的等效电路来预测相对于要求负载电流的响应电压,即使 在电池向负载进行供电的负载动作环境下,也能以高精度评价电池的放电 能力。
另外,通过并用规定的频率的阻抗测定,可以进一步提高电池放电能 力的预测精度。进而,根据电池的电流值/温度/soc的任意一项决定等效 电路的元件常数的值,根据利用此的所述等效电路,通过预测响应电压, 能够进一步地以高精度判定电池放电能力。


图1是表示本发明的电池放电能力判定方法的一个实施方式的框图。
图2是表示本发明的电池放电能力判定装置和电源系统的一个实施方 式的框图。
图3是表示电池12的等效电路模型的一个实施例的电路图。
图4是表示设横轴为电流I时的元件常数Ra的变化的图表。
图5是表示设横轴为电流I时的元件常数Rb的变化的图表。
图6是表示设横轴为电流I时的元件常数Ca的变化的图表。
图7是表示设横轴为电流I时的元件常数Cb的变化的图表。
图8是表示目标电流特性(pattern)的一个实施例的图。
图9是表示在图8的目标电流特性下放电时的电压降的预测结果的图。
符号的说明
ll一电源系统,12—电池,13 —交流发电机,14 —电流计,15 —电压 计,16—电池放电能力判定装置,17 —放电电路,18 —线路,19一负载, 21 —等效电路,22、 23 —电路部。
具体实施例方式
参照附图,对本发明的优选的实施方式的电池放鬼能力判定方法、电 池放电能力判定装置和电源系统的构成进行详细的说明。另外,对于具有 相同功能的各构成部,为了简化图示和说明,附加相同符号。
将本发明的电池放电能力判定装置和电源系统的一实施方式在图2表 示。电源系统11具有作为电源的电池12和交流发电机13,在电池放电能 力判定装置16设有用于测定电池12的电流和电压的电流计14和电压计 15。电池放电能力判定装置16所具有的控制机构20以规定的时间间隔, 从所述电流计14和电压计15分别输入电流和电压,基于本发明的电池放 电能力判定方法判定电池12的放电能力。
由控制机构20进行的电池12的放电能力判定方法以规定的等效电路 模型模拟电池12,利用该等效电路推定以规定的电流特性放电时的电压或
电压降,通过将推定的电压或电压降与规定的允许值进行比较来判定电池 12的放电能力。为了能够通过上述放电能力判定方法正确地判定电池12 的放电能力,需要能够精度良好地推定基于所述等效电路的电压或电压 降。
在本发明的放电能力判定方法中,利用电池的规定的等效电路,设定 至少以所述等效电路的元件常数和该元件常数的规定的函数为要素的状 态向量,将测定的所述电池的电流以及电压和以规定的算出方法算出的
soc作为观测值,据此推定所述状态向量,将推定的所述状态向量的要素
即所述元件常数应用于所述等效电路,利用其推定以规定的电流特性放电 时的所述电池的电压值。
将电池12的等效电路模型的一个实施例在图3表示。在图3所示的 等效电路21包括表示电阻的6种元件常数RH、 Ral、 Ra2、 Ra3、 Rbl、 Rb2和表示电容的5种元件常数Cal、 Ca2、 Ca3、 CM、 Cb2。这些元件常
数进一步可以如下地置换。 Ral 二a Ra Ra2二(3 Ra Ra3二y Ra Cal=5 Ca Ca2 = s Ca Ca3 = ; Ca Ca4=r) Ca Ca5 = 0 Ca Rbl=i Rb Rb2二K Rb Cbl二人 Cb Cb2二p Cb Cb3二v Cb
这里,常数a、卩、y、 5、 s、 ;、 T)、 0、 l、 K、人、P、 v可以通过事前 实验等决定作为固定常数。因此,可以推定上式的R^、 Ra、 Ca、 Rb、 Cb
作为元件常数。
在图3的等效电路21中,基于包括元件常数Ra、 Ca的电路部22、 包括元件常数Rb、 Cb的电路部23和RH所引起的电压降AV,在电池12 的电流和电压分别设为I、 V时,可以用
AV二V—OCV (式l) 表示。在本实施方式的控制机构20中,利用等效电路21,将上式的电压 降AV作为二次观测值来推定包括所述元件常数的状态向量,另外,通过 将在该等效电路中规定的电流特性流动时的电压降的预测值AVx与规定 的允许值进行比较,判定电池12的放电能力。
对于在控制机构20执行的电池12的放电能力判定方法,下面利用图 1进行详细的说明。图1是表示本发明的电池放电能力判定方法的一个实 施方式的框图。
为了正确地判定电池12的放电能力,需要精度良好地推定电池12的 等效电路21在以规定的电流特性放电时的电压降AVx。因此,在本实施 方式的电池放电能力判定方法中,以规定间隔的离散时间观测电池,以获 得的观测数据为基础,通过学习等效电路21的元件常数,能够以高精度 来推定电池12的电压降AVx。
作为使等效电路21所包括的元件常数RH、 Ra、 Ca、 Rb、 Cb最优化 的方法,己知例如使用最小自乘运算、扩张卡尔曼滤波、经过适当教育的 神经网络等的方法,在本发明的电池放电能力判定方法中可以使用任意的 方法。在图l所示的本实施方式中,使用最普遍且合适的方法的一种即扩 张卡尔曼滤波。
在扩张卡尔曼滤波运算中,将上述元件常数或由包括其的规定的数式 赋予的值作为状态向量表示,作成观测值向量,该观测值向量以规定的离 散时间间隔测定的电流In和电压Vn以及另外测定或算出的充电率SOCn
为要素,按照使来自所述状态向量的所述观测值向量的期待值误差最小的 方式更新状态向量。
所述扩张卡尔曼滤波运算的一般的方法反复进行雅可比矩阵的更新 —1期前预测一卡尔曼增益计算一滤波运算。由此,可以逐次推定所述状 态向量,可以将等效电路的常数RQ、 Ra、 Ca、 Rb、 Cb更新为最合适的 值来作为所述状态向量的推定结果。
在图1所示的本实施方式中,电池12的状态向量的更新和观测值的
取得经过每时间间隔AT进行。步骤Sl表示时刻从上一次的执行时刻Tn 一I只经过所述时间间隔AT,到达执行时刻Tn。到达执行时刻Tn后,在 步骤S2中进行电池12的测定。
在步骤S2中,输入由电流计14和电压计15第n+l次测定的电池12 的电流In+l和电压Vn+1,并且,以规定的SOC算出方法算出SOCn+l。 作为所述SOC算出方法,例如可以是组合利用电池12的起动初期的稳定 OCV测定值和电流累计值的方法、利用动作环境中的1/V特性的方法等, 可以使用任意的一种。
在本实施方式中,以从基准电压的电压降的大小来判定电池12的放 电能力。即将从以规定的电流特性放电时的从所述基准电压的电压降比规 定的允许值大的情况判定为放电能力不足。作为电池12的电压降,可以 以例如图3所示的等效电路21所记载的AV来进行评价。
在步骤S3中,可以以在步骤S2获得的观测数据In+1 、 Vn+1和SOCn+l 为基础,算出电压降AVn+l。电压降AVn+l可以以次式算出。
△Vn+l=Vn+l—OCVn+l (式2) 这里,OCVn+l可以根据在步骤S2获得的SOCn+l,由次式算出。 OCV=a*SOC+b (式3) 上式是算出在时刻Tn+1的稳定OCV的式子,也可以利用通过实验等 事先作成的值。系数a、 b也可以按照依赖温度等而变化的方式设定为表 格形式或者函数式。
另一方面,在步骤S4中,根据第n次的观测值和上一次的状态向量 推动值进行雅可比矩阵的Fn的更新。本实施方式的雅可比矩阵Fn以 Fn二diag (l—AT/aRa: n SCa: n, l一AT/卩Ra: n sCa: n, 1 —AT/yRa: n ;Ca: n, 1—M7卩Ra: n nCa: n, l一AT/aRa: n 9Ca: n, l一A窗b: n XCb: n, 1 —AT/KRa: n'iiCa: n, l一AT/iRb: n vCb: n, 1, 1, 1, 1, 1)
被赋予。
在步骤S5中,将根据在步骤S3通过测定获得的观测值而计算出的
△Vn+1作为扩张卡尔曼滤波计算上的观测值Yn+1。 Yn+l=AVn+l (式4) 在图3中,例如由于电路部22内的第一RC并联部的电压降AVln表
示为
△VI: n+l=AVln+AT ( In/Cal—Vn/(Ral Cal) }(式5) 所以,设定状态向量XnT为
Xn丁二 (AValn, AVa2n, AVa3n, AVa4n, AVa5n,
AVbln, AVb2n, AVb3n, RH: n,Ra: n, Ca: Rb.' n, Cb: n)
n,
(式6)
设定输入向:
UnT= (At △t ' △t '
1UnT为
In/5Ca: n, At
In/r|Ca: n, At
帥Cb: n, At
In/eCa: n, At In/;Ca: n, In/eCa: n, At 威Cb: n, In/vCb: n, 0, 0, 0, 0, 0)
(式7)
在步骤S6将Xn的一期前预测值Xn+l1 n作为
Xn+ll n=Fn'Xn+Un (式8)算出。
进而,通过设HnT二 (1, 1, 1, 1, 1, 1, 1, 1, In, 0, 0, 0, 0)
(式9),能够表现
系统方程式Xn+l=Fn'Xn (式10)
观测方程式Yn=HnT*Xn (式11)
利用上述状态向量的一期前预测值X n+l| n和观测值Yn+l,在步 骤S7中,通过基于卡尔曼增益计算和功率计算的扩张卡尔曼滤波运算, 逐次地推定最佳状态向量Xn,根据推定的向量X,将所述元件常数更新 为最佳值。
根据利用通过上述扩张卡尔曼滤波运算而更新的所述元件常数的等 效电路21,在步骤S8中,推定以规定的电流特性从电池12放电时的电压 降AVx。所述规定的电流特性例如可以将当前的放电电流性与重新起动的 负载的电流特性相加来决定。
作为具体的计算方法,利用(式5)的关系和规定的电流特性Ix: n+l
的值,能够作为
<formula>formula see original document page 14</formula>逐次地算出。
另外,作为减少计算负载的机构,虽然通过所述方法若干精度会下降, 但通过实验方便地求出如AVx= (Ra+Rb) XIx或AVx二RaXIx、 AVx :RbXIx的AV二G (Ra, Rb, Ix)的关系来算出也完全没有问题。
在步骤S9中,将上述中所预测的电压降AVx与规定的允许值AVlimit 进行比较,在AVx在AVlimit以下的情况下判定为放电能力充分(步骤 S10),另一方面,在AVx比AVKmit大的情况下,判定为放电能力不足 (步骤Sll)。
如利用上述实施方式进行的说明,根据本发明,通过利用使最佳地学 习的等效电路来预测以规定的电流特性放电时的电池的电压或电压降,即 使在该电池向负载进行供电的负载动作环境中,也能以高精度来评价该电 池的放电能力。
以下说明本发明的电池放电能力判定方法的其他的实施方式。在本实 施方式中,追加1以上的频率的阻抗作为观测值,根据由测定获得的所述 阻抗算出例如元件常数的一个即RO。
在本实施方式中,例如通过将元件常数的一个即RH作为由实测求取 观测值,能够如下式那样表示状态向量XT。
<formula>formula see original document page 14</formula>(式13)
如上式所示,在本实施方式中,可以将使进行学习的元件常数限定为Ra、 Ca、 Rb、 Cb这4个,可以期待计算负载的减少和精度的提高。 在这种情况下,通过将各矩阵和向量设定为 <formula>formula see original document page 14</formula>l一AT/KRa: n ^Ca: n, l一ATARb: n vCb: n 1, 1, 1, 1) (式14) UnT= (At In/5Ca—n, At In/sCai, At In/;Ca—n, △t In/r(Ca—n, At 諸Ca—n, At 威Cb—n, △t In/pCbi, At In/vCb—n, 0, 0, 0, 0)
(式15)
HT= (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0)(式16)
能够如以前实施方式一样进行计算。
作为算出所述1以上的频率的阻抗的方法,有如下方法使电池12 放电或充电脉冲电流时的电流和此时的响应电压进行测定,将所述测定的 电流值和电压值分别傅立叶展开,求出与所述l以上的频率对应的各个振 幅成分,根据所述各自的振幅成分算出所述l以上的频率的阻抗。
图2所示的电源系统11具有用于从电池12放电脉冲电流的放电电路 17。另外,使电池12充电脉冲电流的情况下,可以由交流发电机13经由 线路18充电。
作为算出所述1以上的频率的阻抗的其他的方法,在电池12的负载 动作环境中,即在电池12向负载19供给功率的状态下,测定电池12的 电流和电压,将测定的电流值和电压值分别进行傅立叶变换,求出与所述 1以上的频率对应的各自的振幅成分,根据各自的振幅成分可以算出所述 1以上的频率的阻抗。
由于具有并联连接电池12和负载19的并联电路,所以在上述任意的 阻抗算出方法中,均在实车环境中测定所述并联电路的合计阻抗。即在设 电池12的阻抗为Zbat,负载19的阻抗为Zx时,根据测定值算出的阻抗 为次式的Zmes。<formula>formula see original document page 15</formula> (式17)
由于负载19的阻抗Zx与电池12的阻抗Zbat相比非常大,所以由上 式可知,也可以将算出的阻抗Zmes近似地作为电池12的阻抗Zbat。
进而,通过根据(式17),从阻抗Zmes消除负载19的阻抗Zx的影 响,也能够算出电池12的阻抗Zbat。负载19的阻抗Zx也可以存储并使 用通过按每种车辆预先实测而确定的值,也可以在负载动作环境中进行学
习取得。
下面进一步对本发明的电池放电能力判定方法的另外的其他实施方 式进行说明。在上述的实施方式中,直接利用由图1的步骤S7所更新的 所述元件常数,根据等效电路21预测以规定的电流特性放电时的电压降AV。
一般,己知等效电路21的电路常数依赖于放电的电流值而非线性地 变化。因此,在更新决定该电路常数的所述元件常数时的放电电流,与所 述规定的电流特性的电流值较大地不同的情况下,存在着包括基于等效电 路21的电压降的预测值不能忽视的误差的可能性。
因此,在本实施方式中,依赖于所述规定的电流特性的电流值来决定 所述元件常数。将元件常数Ra、 Ca、 Rb、 Cb设为如下述所示的依存于电 流I的函数。
Ra (I) =fl(a) Xexp { —1/f2(a) }十f3(a) Xexp ( —l/f4(a) ) +a (式18)
Ca (I) =f5(b) Xexp { —1/f6(b))十f7(b) Xexp { —l/f8(b) } +b (式19)
Rb(I) =f9(c) Xexp ( —I/fl0(c) } +fll(c) Xexp { —1/fl2(c))十fl3(c) Xexp { —1/fl4(c) } +c (式20)
Cb (I) =d (式21)
上式(式18) (式20)的a、 b、 c、 d为常数,fl fl4作为所述常 数的函数。作为最简单的函数式的例子,例如可以设为如
fl(a)=</> a+Q) (式22) 的一次式。这里,0、 co等的各函数的系数可以预先通过实验等来决定。
将(式18) (式20)的函数的一个实施例在图4 7表示。图4 7 是表示设横轴为电流I时的各元件常Ra、 Ca、 Rb、 Cb的变化的图表。根 据各图表,可以决定(式18) (式20)的函数所包括的常数a、 b、 c、 d和fl fl4。
通过将目标的电流特性的电流代入到如上述所决定的(式18) (式 20)的函数,来决定元件常数Ra、 Ca、 Rb、 Cb的值,利用上述值,通过 等效电路21,能够以高精度预测以所述目标的电流特性放电时的电压降△V。
如上所述,在图8和图9中表示根据(式18) (式20)求出目标 电流特性的电流值的元件常数Ra、 Ca、 Rb、 Cb的值(以下设为Ra—x、 Ca—x、 Rb—x、 Cb—x),并利用此来评价电池12的放电能力的一个实 施例。图8是目标电流特性的一个实施例,图9是表示图8的以目标电流 特性放电时的电压降的预测结果的图。
在图9中,图表31表示利用等效电路21预测的电压降,图表32表 示以图8的电流特性实际放电时的测定结果。以电流In放电时的响应电压 通过(式2)
Vn=OCVn+RQXIn+AVn 求出。这里,AV通过元件常数的值Ra—x、 Ca—x、 Rb—x、 Cb—x和电 流In以及上一次的AVn—l由下式算出。
<formula>formula see original document page 17</formula>)
通过图9,表示了预测结果的电压降31与实际的电压降良好地一致, 可知本实施方式的电池放电能力判定方法能够精度非常良好地判定电池 12的放电能力。
另外,除了上述元件常数,当然,也可以通过对SOC等的其他的参 数进行相同的校正,进一步提高精度。另外,也能够设定电池12的温度 或SOC的函数来代替将上述元件常数作为依赖于电流I的函数,进行与上 述相同的校正。或者,也能够设定电流、温度、SOC的任意两项以上的函数。
权利要求
1.一种电池放电能力判定方法,根据电池的等效电路判定该电池的放电能力,其特征在于,设定至少将所述等效电路的元件常数和该元件常数的规定的函数作为要素的状态向量,测定并求出所述电池的电流和电压,将所述测定的电流值以及电压值和以规定的SOC算出方法算出的SOC作为观测值,据此推定所述状态向量,将推定的所述状态向量的要素即所述元件常数应用于所述等效电路,来推定以规定的电流特性放电时的所述电池的电压值,通过将推定的所述电压值与规定的电压允许值进行比较,来判定所述电池的放电能力。
2. 根据权利要求l所述的电池放电能力判定方法,其特征在于, 根据由所述电池的电流、电压和充电率即SOC算出的二次观测值来推定所述状态向量。
3. 根据权利要求1或2所述的电池放电能力判定方法,其特征在于, 将1以上的频率的阻抗追加到所述观测值的要素, 根据所述测定的电流值和电压值、以所述SOC算出方法算出的SOC和以规定的阻抗算出方法算出的所述l以上的频率的阻抗来推定所述状态B
4.根据权利要求3所述的电池放电能力判定方法,其特征在于,所述阻抗算出方法,测定使所述电池放电或充电脉冲电流时的电流和 电压,将所述测定的电流值和电压值分别傅立叶展开而求出与所述l以上 的频率对应的各自的振幅成分,根据所述振幅成分算出所述1以上的频率 的阻抗。
5.根据权利要求3所述的电池放电能力判定方法,其特征在于, 所述阻抗算出方法测定所述电池对电装设备供给功率时的电流和电 压,将所述测定的电流值和电压值分别进行傅立叶变换并求出与所述l以 上的频率对应的各自的振幅成分,根据所述振幅成分算出所述l以上的频率的阻抗。
6. 根据权利要求4或5所述的电池放电能力判定方法,其特征在于, 所述阻抗算出方法为了对进行所述傅立叶展开或傅立叶变换而求得的设为Zmes的所述阻抗,进一步除去与所述电池并联连接的设为Zx的电 装设备的阻抗的影响,通过 1/Zmes=l/Zx+1/Zbat 的关系式来算出所述电池的阻抗Zbat。
7. 根据权利要求1 6中任意一项所述的电池放电能力判定方法,其 特征在于,所述元件常数至少对于所述电池的电流值/温度/SOC的任意一项进行 规定的校正计算。
8. 根据权利要求1 7中任意一项所述的电池放电能力判定方法,其 特征在于,所述SOC算出方法利用所述电池的稳定OCV测定值、电流累计值、 1/V特性中的至少任意一项。
9. 一种电池放电能力判定装置,根据电池的等效电路来判定该电池的 放电能力,具有电流传感器,其测定所述电池的电流; 电压传感器,其测定所述电池的电压;和控制机构,其根据从所述电流传感器输入的电流值、从所述电压传感 器输入的电压值和以规定的算出方法算出的SOC,推定以所述等效电路的 元件常数和该元件常数的规定的函数为要素的状态向量,将推定的所述状 态向量的要素即所述元件常数应用于所述等效电路,来推定以规定的电流 特性放电时的所述电池的电压值,通过将推定的所述电压值与规定的电压 允许值进行比较来判定所述电池的放电能力。
10. 根据权利要求9所述的电池放电能力判定装置,其特征在于,所述控制机构将1以上的频率的阻抗追加到所述观测值的要素,根据 从所述电流传感器和电压传感器输入的电流值、电压值、以所述SOC算 出方法算出的SOC和以规定的阻抗算出方法算出的所述1以上的频率的 阻抗,推定所述状态向量。
11. 根据权利要求10所述的电池放电能力判定装置,其特征在于, 具有使所述电池放电或充电脉冲电流的放电电路或充电电路, 所述控制机构,从所述电流传感器和所述电压传感器分别输入通过所述放电电路或充电电路放电或充电所述脉冲电流时的电流值和电压值,将 所述电流值和电压值分别进行傅立叶展开或傅立叶变换,求出与所述l以 上的频率对应的各自的振幅成分,根据所述各自的振幅成分算出所述l以 上的频率的阻抗。
12. —种电源系统,具有权利要求9到权利要求11中任一项所述的电 池放电能力判定装置。
全文摘要
在本发明的电池放电能力判定方法中,通过扩张卡尔曼滤波运算,推定最佳状态向量X,根据所推定的状态向量X将等效电路(21)的元件常数更新为最佳的值(步骤S7)。并且,根据利用更新后的元件常数的等效电路(21),推定从电池(12)以规定的电流特性放电时的电压降(ΔV)(步骤S8),来判定电池(12)的放电能力(步骤S9)。
文档编号G01R31/36GK101351720SQ20068005030
公开日2009年1月21日 申请日期2006年12月28日 优先权日2006年1月12日
发明者岩根典靖, 杉村竹三, 藤村幸司 申请人:古河电气工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1