用于汽车中电能存储器件的实时寿命估计的方法和设备的制作方法

文档序号:6128798阅读:144来源:国知局
专利名称:用于汽车中电能存储器件的实时寿命估计的方法和设备的制作方法
技术领域
本发明一般涉及用于电能存储器件的预期寿命估计。
背景技术
各种系统使用能量存储器件向电机提供电能,该电机可操作成提供动力转矩。一种这样的混合动力结构包括双模式复合分离的电动机械传动装置,它利用了从原动机动力源接收动力的输入构件和将动力从传动装置传递到汽车传动系统的输出构件,它们通常与内燃机相结合。第一和第二电动机/发电机可操作地与电能存储器件连接,用于在该存储器件和第一和第二电动机/发电机之间交换电能。提供一控制单元用于调节能量存储器件和第一和第二电动机/发电机之间的电能交换。该控制单元还调节第一和第二电动机/发电机之间的电能交换。
在汽车动力系统中设计考虑的因素之一是能够提供一致的汽车性能和元件/系统的使用寿命。混合动力汽车,更加特别地是其中采用了电池组系统的混合动力汽车给汽车系统的设计者提出了新的挑战和权衡。已经发现,电能存储器件如电池组系统的使用寿命随着电池组的静止温度(resting temperature)的降低而延长。然而,较冷的工作温度限制了电池的充电/放电性能,直到电池组的温度升高。较暖的电池组更加容易向汽车推进系统提供所需的动力,但是持续的较暖的工作温度会导致使用寿命缩短。
现代的混合动力汽车系统管理混合动力系统的工作的各个方面,以获得改进的电池使用寿命。例如,控制电池放电深度,限制安培-小时(A-h)通过量,以及使用对流风扇冷却电池组。汽车工作的周围环境条件在很大程度上被忽略了。然而,周围环境条件对电池的使用寿命有很大的影响。特别地,投放到整个北美的各个地理区域的同一型号的混合动力汽车不可能拥有相同的电池组寿命,即使所有汽车在同一循环下驱动。如果要导出有用的电池寿命的估计,就必须考虑汽车的环境。附加地,顾客预期、竞争和政府法规强加了必需满足的多种性能标准,包括电池组的使用寿命。
电池组使用寿命终止可以用电池组的欧姆电阻来指示。典型地,电池组的欧姆电阻在汽车和电池组的大部分使用寿命期间是平的。然而,这会妨碍在大部分使用寿命中可靠地估计电池组的实时寿命状态(‘SOL’)。相反地,欧姆电阻对指示电池组的使用寿命的初始终止是极其有用的。
因此,需要一种方法和设备,用来对混合动力汽车的电能存储器件提供可靠的实时寿命状态。

发明内容
一种混合动力汽车动力系,包括可操作成与第一和第二电机交换电能的电能存储器件,每一电机操作成将转矩赋予给双模式复合分离的电动机械传动装置,该传动装置具有四个固定的齿轮比和两个连续的可变工作模式。一种确定电能存储器件的寿命状态的方法,包括监控经过电能存储器件的电流,监控电能存储器件的电荷状态,监控在工作的活动周期中电能存储器件的温度,以及监控在工作的静止周期中电能存储器件的温度。该方法还包括根据在工作的活动周期中和在工作的静止周期中电能存储器件的电流、电荷状态以及温度来确定电能存储器件的寿命状态。此外,根据在汽车的活动周期中和在汽车的不活动周期中电能存储器件的电流、电荷状态以及温度来确定电能存储器件的寿命状态。


本发明在某些部件和部件的布置方面采用物理形式,并详细地在随附的附图中描述和示出了这些部件的一个实施例,这些附图构成本发明的一部分,其中图1是根据本发明用于控制系统和动力系的一个示例性结构的示意图;以及图2是根据本发明的算法框图。
具体实施例方式
现在参考附图,其中所示出的仅仅是为了说明本发明的目的,而不是为了限制本发明,图1示出了控制系统和根据本发明的实施例构造的示例性混合动力系统。该示例性混合动力系统包括多个操作成向传动装置提供动力转矩的转矩产生装置,该传动装置向传动动力系统提供动力转矩。该转矩产生装置优选包括内燃机14和第一和第二电机56、72,该第一和第二电机操作成将从电能存储器件74提供的电能转换成动力转矩。该示例性传动装置10包括双模式复合分离的电动机械传动装置,其具有四个固定的齿轮比,其还包括多个齿轮,该齿轮操作成通过包含在该传动装置中的多个转矩传递装置将动力转矩传递到输出轴64和传动系统。示例性传动装置10的机械性质在标题为“具有四个固定比的双模式复合分离的混合动力电动机械传动装置”的美国专利No.6,953,409中详细公开,在此将该专利引入作为参考。
再次参考图1,该控制系统包括通过局域通信网络交互的分布式控制模块结构,用于向动力系统提供行动控制(ongoing control),该动力系统包括发动机14,电机56、72以及传动装置10。
根据本发明的一个实施例可以构造示例性的动力系统。由于来自存储于电能存储器件(ESD)74中的燃料或电势的能量转换,该混合传动装置10从转矩产生装置接收输入转矩,该转矩产生装置包括发动机14和电机56、72。典型地,该ESD74包括一个或多个电池。在不改变本发明的思想的条件下,可以使用能够存储电能并分配电能的其它电能存储器件代替电池。该ESD74优选根据多种因素确定尺寸,该因素包括再生要求、与通常的道路坡度和温度相关的应用问题、以及诸如排放物的推进要求、动力辅助和电灶(electric range)。该ESD74通过直流电线与传动功率变换器模块(TPIM)19高压直流耦合,该直流电线表示为传递导线27。该TPIM19通过传递导线29将电能传递给第一电机56,类似地,该TPIM19通过传递导线31将电能传递给第二电机72。电流可根据ESD74是否被充电或放电而在电机56、72和ESD74之间传递。TPIM19包括一对功率变换器和相应的电动机控制模块,该电动机控制模块配置成接收电动机控制命令并由此控制变换器的状态,从而提供电动机驱动或再生功能。
电机56、72优选包括已知的电动机/发电机装置。在电动机控制中,相应的变换器从ESD接收电流,并通过传递导线29和31向相应的电动机提供交流电流。在再生控制中,相应的变换器通过相应的传递导线从电动机接收交流电流,并向直流电线27提供电流。提供给变换器或者从变换器提供的净直流电流可确定电能存储器件74的充电或放电工作模式。优选地,电机A56和电机B72是三相交流电机,并且变换器包括辅助性三相电力电子器件。
在图1中示出的并在下文描述的部件包括整个汽车控制结构的附属设备,这些部件操作成对这里描述的动力系统提供协调的系统控制。该控制系统操作成收集和综合相关的信息和输入,然后执行算法以控制各个致动器进而获得控制目标,包括一些参数,例如燃料经济性、排放物、性能、驱动性能,以及硬件保护,该硬件包括ESD74的电池和电动机56、72。控制系统的分布式控制模块结构包括发动机控制模块(‘ECM’)23、传动装置控制模块(‘TCM’)17、电池组控制模块(‘BPCM’)21,以及传动功率变换器模块(‘TPIM’)19。混合动力控制模块(‘HCP’)5提供上述控制模块的拱形(overarching)控制和协调。一用户界面(‘UI’)13可操作地与多个装置连接,通常汽车驾驶员可通过这些装置控制或调整动力系的操作,该动力系包括传动装置10。对用户界面13的示例性汽车驾驶员的输入包括油门踏板、刹车踏板、变速齿轮选择器和车辆速度巡航控制。在控制系统内,每一上述控制模块通过局域网(‘LAN’)通信总线6与其他控制模块、传感器和致动器通信。该LAN总线6允许各个控制模块之间的控制参数和命令进行结构化通信。所采用的特殊通信协议是应用特定的。作为实例,一个通信协议是汽车工程师学会J1939。LAN总线和合适的协议在上述的控制模块和其他模块之间提供健壮的消息传送和多控制模块接口,该其他模块可提供诸如防锁刹车、牵引控制和车辆稳定性的功能。
HCP5提供混合动力系统的全部控制,用于ECM23、TCM17、TPIM19以及BPCM21的协调工作。根据来自用户界面13和动力系的各个输入信号,HCP5产生各种命令,包括发动机转矩命令,用于混合传动装置10的各离合器的离合器转矩命令;以及分别用于电机A和B的电动机转矩命令。
ECM23可操作地与发动机14连接,其功能是从各个传感器获取数据,和通过多个离散的电线控制发动机14的各个相应的致动器,该离散电线共同地示出为集合线35。ECM23从HCP5接收发动机转矩命令,并产生轴向转矩请求。为了简单起见,示出的ECM23通常通过集合线35和发动机14双向对接。由ECM23感测的各个参数包括发动机冷却液温度、传动装置的发动机输入速度、歧管压力、环境温度和环境压力。利用ECM2 3进行控制的各个致动器包括燃料喷射器、点火模块和风门控制模块。
TCM17可操作地与传动装置10连接,其功能是从各个传感器获取数据,和向传动装置的离合器提供命令控制信号,即离合器转矩命令。
BPCM21与和ESD74相联的各个传感器交互,以便向HCP5导出有关ESD74的状态的信息。该传感器包括电压传感器和电流传感器,以及可操作成测量ESD74的工作条件的气温传感器,该工作条件例如包括在ESD74的终端(未示出)两端测量的温度和电阻。感测的参数包括ESD电压VBAT、ESD电流IBAT以及ESD温度TBAT。导出的参数优选包括ESD电流IBAT、如可在ESD的终端两端测量的ESD内电阻RBAT、ESD电荷状态SOC以及ESD的其他状态,包括可获得的电能PBAT_MIN和PBAT_MAX。
传动功率变换器模块(TPIM)19包括上述的功率变换器和机械控制模块,该机械控制模块配置成接收电动机控制命令并由此控制变换器的状态,从而提供电动机驱动或再生功能。TPIM19可操作成根据来自HCP5的输入给电机A和B产生转矩命令,该HCP由通过UI 13的驾驶员输入和系统工作参数驱动。电动机转矩由包括TPIM19的控制系统实现,以控制电机A和B。各个电动机速度信号由TPIM19从电动机相位信息或传统的转动传感器导出。该TPIM19确定和传送电动机速度给HCP5。
控制系统的每一上述控制模块优选是通用的数字计算机,其通常包括微处理器或中央处理单元、只读存储器(ROM)、随机存储器(RAM)、电可编程序只读存储器(EPROM)、高速时钟、模数转换(A/D)和数模转换(D/A)电路,输入/输出电路和设备(I/O)以及合适的信号调节和缓冲电路。每一控制模块具有一组控制算法,包括驻留的程序指令和校准,其存储在ROM中并被执行以提供每一计算机的相应功能。各个计算机之间的信息传递优选使用上述的LAN6实现。
在每一控制模块中用于控制和状态估计的算法通常在预置的循环中执行,使得每一算法在每一循环中执行至少一次。利用预置的校准,存储在非易失性存储器件中的算法由一个中央处理单元执行,并操作成监控来自传感器的输入和执行控制和诊断例程,从而控制相应设备的操作。典型地以规则的间隔执行循环,例如在行进的发动机和汽车工作过程中为每隔3.125、6.25、12.5、25和100毫秒。可替换地,响应于发生的事件执行算法。
在汽车的活动工作期间即在当汽车驾驶员使发动机和电机工作时,发生下文描述的动作,典型地是通过一个‘接通’动作。休止周期包括当汽车驾驶员使发动机和电机的工作停止时的时间周期,典型地是通过一个‘切断’动作。响应于通过用户界面13捕获的驾驶员的动作,HCP的监控控制模块5和一个或多个其它控制模块可确定所需的传动输出转矩T0。混合传动装置10的选择性操纵的部件是适当受控的,并操纵成响应于驾驶员的要求。例如,在图1示出的示例性实施例中,当驾驶员已经选择了前进的换档位置并操纵油门踏板或刹车踏板时,HCP5确定汽车如何以及何时加速或减速。HCP5还监控转矩产生装置的参数状态,并确定实现加速或减速的期望速度所需的传动装置输出。在HCP5的指导下,传动装置10在从低到高的输出速度范围上操作以满足驾驶员的要求。
现在参考图2,该显示的示意图示出了一种示例性的方法,该方法用于根据监控的输入实时地估计ESD74的寿命状态。该方法优选作为控制系统的一个控制模块典型地是HCP5中的一个或多个算法执行。该ESD74的估计的寿命状态(‘SOLK’)优选作为纯量值存储在非易失性存储器的位置中,用于参考、更新和重置,这些操作的每一个在汽车和ESD74的寿命中的合适点被执行。
总之,确定SOL的参数值包括实时地监控ESD电流IBAT(安培)、ESD温度TBAT、ESD电压VBAT、ESD电阻RBAT以及ESD的电荷状态。这些参数IBAT、TBAT、VBAT、RBAT用于确定随时间而积分的ESD电流110的参数值,放电深度因数112的参数值,驱动温度因数114的参数值,以及静止温度因数116的参数值。优选地,可通过求和运算使每一上述因数即积分的ESD电流、放电深度、驱动温度因数以及静止温度因数与前面确定的寿命状态因数SOLK组合,从而确定SOL的参数值即SOLK+1,其示出为方框120的输出。优选地,在每一次行程(trip)(限定为发动机的开关周期)中多次执行确定寿命状态因数SOLK的算法。
当汽车驾驶员使发动机和电机工作时,典型地是通过一个“接通”动作,开始启动发动机,此时存在一个初始寿命状态因数SOLK,该因数用于计算SOL的随后的值,其示出为SOLSAVED128。在每一个行程中仅使用该SOLSAVED因数128一次,然后该行程期间在以后的计算中用SOLK+1因数替代,该SOLK+1因数输出自方框120、122和124,并示出为方框130。类似地,在发动机/汽车被初始启动或开动之后在第一次执行计算SOL的算法的过程中仅使用从方框116输出的静止温度因数,正如用INIT方框126所表示的。在随后执行计算SOL的算法时,从SOL的计算中省略静止温度因数。
在算法的每次执行中,估计方框120的输出即SOLK+1以确定其是否已经达到饱和值,如方框122所示。当ESD内电阻RBAT指示ESD74接近寿命终止时,如从方框118输出的,该算法进一步用于‘锁定’或固定SOL的参数值。在任何情况下,都将从方框124输出的SOL值保存在非易失性存储器件中作为SOLK,以便在以后的SOL计算中使用,如用方框130所表示的。下文更详细地描述了该操作。
计算包括放电深度(‘DOD’)的ESD电荷状态(‘SOC’)包括监控在ESD工作的活动和休止周期中的ESD温度。ESD工作的休止周期的特征在于ESD的功率通量微乎其微,而ESD工作的活动周期的特征在于ESD的功率通量不是微乎其微。也就是说,ESD工作的休止周期通常的特征在于没有或者有最小的电流流入或流出ESD。关于与混合动力汽车推进系统相联的ESD,例如ESD工作的休止周期可以和汽车的不活动周期(例如,包括电机的动力系例如在汽车未被驱动以及附属负载断开的周期期间不工作,该周期可以包括这样的周期,即其特征是继续某种控制器操作所需的寄生电流移动,该操作例如包括与本发明相关联的操作)相联。相反地,ESD操作的活动周期与汽车活动的周期(例如,附属负载接通和/或包括电机的动力系例如在汽车被驱动时的周期期间工作,其中电流可以流入或流出ESD)相联。
按照下面的方式导出发动机在起动后初始执行算法的过程中所用的SOLk因数,其在图2中示出为SOLSAVED因数128。当在汽车装配厂最初启动汽车时,将SOLK的参数值初始化为基准值,在该实施例中该基准值等于零。当更换ESD74时,该SOLK的值也可以设定成零。在某些可确认的情况下,该SOLK因数可以减小到非零值,即大于基准值,如在汽车维修的过程中。在这种情况下,使用校准以允许维修区域的构件偏离现有的SOLK因数。这种可确认的情况包括ESD74内模块的部分更换;利用已知的方法刷新ESD74,以便延长ESD的工作寿命;用具有已知SOLK因数的已知系统替换ESD。此外,如图2所示,当ESD在相邻的发动机工作周期之间的休止周期中经受低于校准值的静止温度时,SOLK因数的大小可以减小SOL静止温度因数。
从方框112输出的DOD因数优选包括在控制系统中对于每一ESD74都周知的和可确定的值。DOD的每一参数值包括100%DOD循环的数量测量,即单个ESD被100%放电的次数。例如,已知的是混合动力汽车中典型的镍氢(NiMh)电池系统在700次100%-DOD循环后会失效。当放电的幅度(按%-DOD的方式测量)减小时,已知的是ESD的预期寿命和性能会按指数规律提高。为了说明性的目的,SOL因数的参数值范围与DOD因数在同一数量级内,即0至1000个单位。该SOL因数优选具有足够的分辨率,以捕获每一循环的作用以及有效的静止或休止周期。
优选地在汽车工作过程中确定放电深度(DOD)因数的参数值。该DOD因数包含和合并了大于校准值的所有DOD事件,例如总ESD容量的0.5%。DOD事件包括ESD放电和随后对电荷初始状态的充电的循环。对于每个100%-DOD事件来说,该实施例的DOD因数设定在0.5%的值,因此对于小于100%-DOD的其它DOD事件来说是按比例确定的。DOD因数的参数值的计算包括使用电荷的实际状态SOC作为输入值。SOS的确定是已知的,这里不再描述。
该DOD因数112包括计算延长的静止周期对ESD的SOL的影响。已知的在汽车和其它应用上使用的ESD系统具有可确定的自放电速率。通常已知的自放电速率是每天0.5%,并可根据设备温度即TBAT进行调节。较高的温度通常会导致较高的自放电速率。本发明在汽车停机时确定ESD的SOC,并在随后的启动操作时重新计算SOC,从而确定DOD因数作为来自112的输出,其反映了自放电速率。得到的从方框输出的DOD因数112可在SOL计算中使用,如120所示。
作为实例,可以这样确定DOD因数112的参数值。具有新式ESD的新制造的混合动力汽车的汽车驾驶员会忽略在汽车中放置燃料,并使ESD74从100%完全放电到0%。DOD因数监控器传递为1的值,该值被添加到现有的为0的SOL上,从而获得的SOL近似为1。由于其它计算对SOL因数的贡献,该SOL因数可以略微更大。
作为实例,利用与延长的静止或休止状态有关的特征,可以这样确定DOD因数112的参数值。汽车驾驶员到达机场并关闭当前具有70%SOC的混合动力汽车系统。当消费者返回并启动汽车时,DOD因数监控器检测到60%的SOC。该DOD因数监控器可增加0.2%的值到计算的SOL,该SOL可通过受控的模块校准表获得,该校准表包括与从汽车静止状态导出的寿命成函数关系的%DOD。
监控ESD的电流优选包括在每次实际的充电和放电事件中测量和积分作为时间的函数的电流IBAT的幅度。通常在汽车工作中执行的安培-小时(A-h)监控器110包括测量通过ESD74的电能的累积量。用于追踪电能存储器件的使用的标准方法典型地是通过A-h/mile计算,其利用了IBAT、经过的时间和驱动的汽车里程作为输入参数。特别设计的ESD的投料前生产试验可产生满足ESD74的预期寿命目标所需的典型的平均A-h/mile的量。示例性的A-h监控器实时地计算对SOL120的贡献。A-h贡献可实时地传递数据以更新SOL,或者可替换地,在每一驱动循环的结束时更新SOL。使用追踪ESD用途的A-h/mile方法使得SOL的确定120对静止在零速度的汽车的延长周期更健壮,并在其对SOL的计算的贡献之前调节A-h/mile参数。
作为实例,这样确定A-h监控器110的参数值。驾驶员具有里程为50000英里以及现有的SOL因数为195.987的ESD的混合动力汽车。驱动汽车工作,其中累积计算的A-h/mile值是6.52A-h/mile。利用预先校准的查询表,该监控器为该计算绘图,并确定A-h监控器因数为0.003。将该A-h监控器因数加到SOL,从而变成195.990。
作为另一个实例,利用下面的例外可以确定A-h监控器110的参数值。驾驶员操纵处于空转的示例性汽车,混合动力系统在内燃机运转模式和ESD单独的模式之间循环。该A-h监控器计算第一值,例如32A-h/mile,并利用汽车在零速度被操作的总时间的百分比来校正第一值。
确定在116所示出的静止温度因数的参数值包括在休止周期或静止温度监控中监控ESD的温度,其称为TREST。该静止温度因数优选在发动机/汽车启动时确定,并且仅用于在每一发动机运转循环中第一次执行SOL算法时计算SOLK+1,如用方框126所表示的。在每一发动机运转循环中随后计算SOL时,从计算中省略该静止温度因数。当汽车没有工作时,在代理案号为No.GP-308129、标题为“用于确定温度对混合动力电动汽车中电能存储器件的寿命预期的影响的方法和设备”的美国专利申请No.__/______中详细地公开了一种用于在静止周期中确定ESD温度的示例性方法和设备,在此将其引入作为参考。
影响ESD使用寿命的另一个贡献包括在每个休止或者静止的周期中ESD所经受的条件。本发明根据输入参数TBAT确定ESD的静止平均静止温度,并在此基础上,每当汽车/发动机开始启动时,向SOL施加一个偏差值。由于ESD的寿命数据通常是在大约25C的温度下确定,因此在该水平向静止温度施加零偏差。对于更低和更高的静止温度来说该偏差值按指数规律施加。在一些应用中,由于难以合适地在以后几天中估计汽车的静止温度,因此该算法包括处于大约25C的温度下和处于大约25C的温度附近的较大零偏差区域,同时禁用该监控器的输入,例如静止时间的长度。
确定从方框114输出的驱动温度因数TDRIVE的参数值包括在汽车工作中监控ESD温度TBAT,并优选实时地执行。当操作汽车时,根据ESD温度输入参数TBAT,利用运行中平均温度计算来计算SOL的小分量。这与静止温度监控器的应用类似,但是其幅度更小,并且在目前的应用中执行的计算速度比基准处理小。
从方框118输出的寿命终止电阻监控器,包括监控ESD的电阻RBAT。ESD电阻RBAT的计算优选从ESD电流IBAT和ESD电压VBAT的测量导出。在典型ESD的使用寿命终止附近,在测量到的电阻曲线上存在一个特征‘拐点’,如在119所示出的,该拐点可容易地利用在时间上监控RBAT并优选由控制系统执行的算法来确定。计算出的ESD电阻在其整个寿命期间通常没有使用信息,因为它相对平缓并取决于温度。但是,在寿命终止附近的点处,已知的是电阻RBAT的幅度会在相对短的时间长度上以不典型的方式发生变化。该变化是可通过随时间监控电阻来检测电阻,当电阻值变化的量大于最小量时,如在118所示出的,设定软件标记,并通过锁定或固定SOL的参数值改变算法的运算,如在124所示出的。
特征‘拐点’的检测向汽车控制系统提供信息,这样就允许改进地预测ESD的使用寿命终止(EOL),并给控制系统充分的时间来调节汽车的控制,特别是当有必要时对发动机14和电机56、72的控制。响应于被设定为ESD性能变化结果的软件标记,控制系统的典型动作包括减小对电机56、72的电能限制水平,以延长ESD的使用寿命,从而获得更长的期限来维修/替换ESD。当ESD包括启动发动机14的唯一电能源时,这在较低的环境温度下就变得重要。示例性的电阻监控算法监控ESD的电阻,并且当检测到‘拐点’时,将确定的SOL值增箝位到已知的值,该已知的值由控制系统识别以指示接近或逼近ESD使用寿命终止,该终止是在方框124执行的动作。这里将该值表示为“SOL因数锁定”。
在工作中,当SOL值的参数值低于100%和低于“SOL因数锁定”(例如95%)时,在达到指示使用寿命终止的电阻阈值之前,该参数值在已知的值(例如90%)122处饱和。这为控制系统提供清楚的指示,即ESD74的使用寿命终止快到了,同时显示未知的ESD的残余使用寿命。
已经具体参考了优选的实施例和其变型描述了本发明。在阅读和理解了说明书时可以其作进一步的修改和替换。期望的是包括所有这样的修改和替换,只要它们属于本发明的范围。
权利要求
1.一种确定电能存储器件的寿命状态的方法,该电能存储器件操作成与包括第一和第二电机的混合动力汽车动力系交换电能,每一电机操作成将转矩赋予给双模式复合分离的电动机械传动装置,该传动装置具有四个固定的齿轮比和两个连续的可变工作模式,该方法包括监控经过电能存储器件的电流;监控电能存储器件的电荷状态;监控在汽车的活动周期中电能存储器件的温度;监控在汽车的不活动周期中电能存储器件的温度;以及根据在汽车的活动周期中和在汽车的不活动周期中电能存储器件的电流、电荷状态以及温度来确定电能存储器件的寿命状态。
2.如权利要求1所述的方法,其中监控经过电能存储器件的电流包括计算在工作的活动周期中电流的时间积分。
3.如权利要求1所述的方法,其中监控在汽车的活动周期中电能存储器件的温度包括当至少一个电机工作时监控所述温度。
4.如权利要求3所述的方法,其中监控在汽车的不活动周期中电能存储器件的温度包括当两个所述电机都不工作时监控所述温度。
5.如权利要求1所述的方法,其中汽车活动由接通事件推断。
6.如权利要求1所述的方法,其中汽车不活动由切断事件推断。
7.如权利要求1所述的方法,还包括监控电能存储器件的内电阻,其中确定寿命状态进一步以所述内电阻为基础。
8.如权利要求7所述的方法,其中确定寿命状态包括当所述内电阻指示电能存储器件的寿命的初期终止时将寿命状态固定成一个预定值。
9.如权利要求8所述的方法,还包括当指示电能存储器件的寿命的初期终止时减小电能存储器件的功率极限。
10.一种用于确定电能存储器件的寿命状态的设备,该电能存储器件操作成与包括第一和第二电机的混合动力汽车动力系交换电能,每一电机操作成将转矩赋予给双模式复合分离的电动机械传动装置,该传动装置具有四个固定的齿轮比和两个连续的可变工作模式,该装置包括温度传感器,其适于感测电能存储器件的温度;和基于计算机的控制器,其适于接收表示感测到的电能存储器件温度的信号;所述基于计算机的控制器包括存储介质,该存储介质中具有被编码的计算机程序,所述计算机程序包括用于监控经过电能存储器件的电流的代码;用于监控电能存储器件的电荷状态的代码;用于监控在汽车的活动周期中电能存储器件的温度的代码;用于监控在汽车的不活动周期中电能存储器件的温度的代码;用于根据在汽车的活动周期中和在汽车的不活动周期中电能存储器件的电流、电荷状态以及温度来监控电能存储器件的寿命状态的代码;以及用于根据在汽车的活动周期中和在汽车的不活动周期中电能存储器件的电流、电荷状态以及电能存储器件的温度来确定电能存储器件的寿命状态的代码。
11.如权利要求10所述的设备,其中用于监控电流的代码包括用于在工作的活动周期中计算电流的时间积分的代码。
12.如权利要求10所述的设备,其中该计算机程序还包括监控电能存储器件的内电阻的代码,其中确定寿命状态的代码进一步以所述内电阻为基础。
13.如权利要求12所述的设备,其中确定寿命状态的代码包括当所述内电阻指示电能存储器件的寿命的初期终止时将寿命状态固定在一个预定值的代码。
14.如权利要求13所述的设备,其中计算机程序还包括当指示电能存储器件的寿命的初期终止时减小电能存储器件的功率极限的代码。
全文摘要
一种混合动力汽车动力系包括电能存储器件。根据在工作的活动和静止周期中电能存储器件的电流、电荷状态以及温度来预先地确定电能存储器件的寿命状态。
文档编号G01M17/00GK101086520SQ200710108260
公开日2007年12月12日 申请日期2007年6月7日 优先权日2006年6月7日
发明者A·M·策特尔, A·H·希普 申请人:通用汽车环球科技运作公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1