多目标定位系统以及基于功率控制的多路访问控制方法

文档序号:5841918阅读:145来源:国知局

专利名称::多目标定位系统以及基于功率控制的多路访问控制方法
技术领域
:本发明一般地涉及用于多目标定位系统的多路访问控制。更具体而言,本发明提出了一种分布式的基于功率控制的多路访问控制方法,用于在自治目标定位系统中同时跟踪多个目标所携带的标签设备(tag)。
背景技术
:目标定位系统是一种被广泛用于多种应用领域的技术,例如用于办公室、医疗机构、安全保障部门、矿场、地铁、智能建筑、宾馆等等。一种成功的目标定位系统所必须具备的特征包括多路访问控制能力,利用这种机制,用户可以同时定位多个移动目标。这对于很多基于定位的应用都是一种普遍需求。定位系统应该能够同时定位所有访问者并据此提供向导信息。例如,在医院环境中,在同一诊疗室中可能存在多个病人、医生或医疗设备,因而需要对这多个目标进行跟踪。再比如办公室、地铁、智能建筑和宾馆等其他应用情形,也都需要对多个目标进行同时跟踪。针对移动目标跟踪需求,已经提出一种自治超声波室内跟踪系统(AUITS),用于实现高精确度、高鲁棒性并且对用户友好的目标定位与跟踪。该系统采用一种独立定位器(POD),并可以使用超声波信号的到达时间(T0A)结果来进行距离测量。所述独立定位器P0D是一种将多个超声波接收器集成于一体的具有固定拓扑结构的定位设备,其可以根据用户需求被容易地安装在任何地方。POD具有可伸縮结构,当使用时,POD可以打开并伸出若干像伞的骨架一样的可伸縮杆,在每个杆的末端有一个超声波接收器。由于展开的POD的拓扑是固定的,因此这些接收器的空间坐标可以容易地计算出,因此不再需要对超声波接收器的坐标进行手工校准。除此之外,由于接收器都位于一个设备上,因此不再需要复杂的基于无线的信令和网络协议。在图1所示的多目标定位系统中示出了两个P0D,即R1和R2。关于AUITS系统和P0D的详细描述,可以参考同样由本发明的发明人提出的题为"独立定位器以及自治超声波定位系统和方法"、申请日为2008年1月29日的中国专利申请No.200810006317.O,该申请的全部内容通过引用被结合于此,以用于所有目的。为了简化起见,这里以AUITS系统和POD定位设备为例描述本发明。但是,从下文给出的详细描述中可以发现,本发明的原理和技术方案并不仅仅局限于这样的AUITS系统和POD定位设备,而是可以被更广泛地应用到其他常用的室内定位系统和定位设备,只要这样的系统和定位设备能够具有实现目标跟踪的功能即可。图1示出具有多个标签设备和多个P0D的AUITS系统的一个示例,在该示例中,示出了两个P0D和三个标签设备。但是显而易见,POD和标签设备的数目并不局限于所示示例。POD具有固定的结构拓扑并可被容易地安装在监视环境中,它由位于中心节点处的射频(RF)收发器和位于周围叶节点处的多个超声波(US)接收器构成。标签设备T1、T2和T3被附接到由POD所跟踪的移动目标,并且包含RF收发器和US发射器。如图1所示,当该AUITS系统被使用时,标签设备向POD发送RF和US信号。RF信号被用于时间同步和标签设备标识,而US信号被用于测量标签设备和US接收器之间的距离。然后,基于到POD上多个US接收器的距离测量,标签设备(即目标)的位置可以由POD计算出。本发明将主要针对诸如AUITS系统之类多目标定位系统的多路访问控制问题。在AUITS系统中,多路访问控制(MAC)协议的设计是非常重要的,其允许多个POD在它们的工作范围内准确而有效地检测所有标签设备。如果没有有效的MAC协议,则会给AUITS之类的多目标定位系统带来各种各样的问题。例如,无论在RF还是US传输中都可能发生信号冲突,从而导致不准确的TOA测量并带来定位误差。如果发生信号冲突,冲突信号所占据的时间将被浪费掉,从而导致较低的容量。还有,为了实现更大的容量和更好的覆盖,可能需要部署多个POD。但是由于无法同时跟踪多个标签设备,因此密集部署的POD无法得到充分的利用,从而造成POD资源的浪费。这些问题的出现将给AUITS系统应用带来极大挑战。但是,这些问题仅仅是一些表象问题,要想设计出有效的MAC协议,还需要进一步分析和解决隐藏在这些表象问题之后的本质问题,例如下面将描述的隐藏节点(HN)问题和暴露节点(EN)问题。图2A和2B分别是用于说明HN问题和EN问题的示意图。1.隐藏节点(HN)问题MAC设计的基本需求是要解决信号冲突问题,也就是说,MAC应该能够防止由于HN问题所引起的相互干扰的标签设备的同时发送。如图2A所示,HN问题发生在两个标签设备T1和T2向同一接收器R(例如POD)同时发送信号,而Tl和T2之间无法感测到彼此的流量的情况下。HN问题将导致定位误差和低容量问题。假设Des表示标签设备的载波感测半径,DT表示标签设备的发射距离,则产生HN问题的条件如下式所述i|<"(1)7,-7|<Z)r要想克服HN问题,传统做法是增大D^以使得D^>2DT。但是,增大载波感测半径可能导致另一严重问题,即随后将描述的暴露节点(EN)问题。另外,关于AUITS系统,其中采用两种物理信号,即RF和US信号,来进行目标跟踪。因此,在进行抗冲突协议设计时,RF和US信道都应该被考虑到。另外,由于RF和US通常是从标签处成对发射的并且US信号的传播速度远远低于RF信号且US信号不能被编码,因此在设计MAC协议的过程中,上述特性都需要被协同考虑。2.暴露节点(EN)问题除了要避免信号冲突之外,MAC协议的另一重要需求是效率问题,即,理想的MAC协议应该能够充分利用RF和US信道的时空复用,以便使得AUITS系统能够被允许尽可能多地同时跟踪多个标签设备。为了实现这一点,MAC协议还需要被设计成能够抵抗暴露节点(EN)问题。如图2B所示,EN问题发生在一条期望的链路由于对当前链路的载波感测而被禁止的情况下。但是,在此情况下,期望的链路实际上不会与当前链路造成冲突。在图2B的示例中,当标签设备T2希望向定位设备R2发送信号时,其感测到标签设备Tl的活动流量。为了避免冲突,T2不再向R2发送信号。实际上,从T2到R2的传输将不会干扰到T1到R1的当前传输。从而,导致了EN问题的发生。EN问题将造成POD资源的浪费和低容量问题。产生EN问题的条件如下式所述与解决HN问题的方法相反,要想克服EN问题,传统做法是要减小Dcs。因此,利用传统做法将难以找到同时解决HN问题和EN问题的一种有效的平衡方法。另外,在MAC协议设计中还要考虑另一重要因素,即公平性(fairness)。所谓公平性是允许AUITS中的不同标签设备在统计上具有类似的机会被定位到,而不希望某些标签设备被频繁地定位到,而其他标签设备却很少被定位到。基于以上分析,在设计和开发MAC协议的过程中,既要确保避免RF和US信号的信号冲突,提高系统的时空复用能力,还要保持AUITS中多标签跟踪的公平性。这也正是本发明所要达成的目标。自1970年以来,针对网络和无线网络通信已经提出过多种MAC协议,例如带有冲突避免的载波感测多路访问(CSMA/CA)、时分复用(TDMA)等等。这些MAC协议设计的动机是要实现移动节点和基站之间的数据通信。这些MAC也可以被应用于单信号定位系统,例如仅基于RF的室内定位系统和仅基于超声波的室内定位系统。例如,在Proc.IEEEINFOCUM,2000中P.Bahl等人提出一禾中RADAR系统,参见"RADAR:AnIn-BuildingRF-basedUserLocationandTrackingSystem"。这是一种802.11无线网络的基于接收信号强度的定位系统,其同样使用802.11WLAN的MAC协议。另外,S.Holm等人提出的题为"Asystemandmethodforpositiondeterminationofobjects"的专利No.W003/087871Al提出一种"Sonitor"系统,该系统是仅基于超声波信号的室内定位系统,能够实现房间粒度的定位精度。具体而言,"Sonitor"系统使用超声波信号的编码与载波调制,实现超声载波监听,以实现多路访问技术来向标签设备分配超声波信道。如果US信道空闲,标签设备则向接收器发送唯一信号,随后接收器读取该信号,检测到达时间,并将检测结果转发到中央服务器。然而,上述传统的MAC协议都无法被直接应用到基于多信号的室内定位系统。在基于多信号的室内定位系统中,针对MAC协议设计,不同物理信号信道需要被综合考量。例如对于AUITS系统,其中采用两种信号(即RF和US信号)来进行目标跟踪,就无法适用传统MAC协议设计。针对这一问题,现有的最接近的解决方案是B.Nissanka等人提出的"Cricket"系统(参见2000年8月于美国波士顿举行的第六届移动计算和网络国际会议会刊中发表的文章"TheCricketLocation-SupportSystem")。该文献通过引用被整体上结合于此,以用于所有目的。Cricket系统包含一组被安装在建筑物中的独立的、不相连的发射器。每个发射器既可以发射RF信号也可以发射US信号。图3示出Cricket系统的简化结构框图。在图3所示系统中示出发射器310和接收器320。Cricket系统采用的是基于随机化(randomization)的MAC协议,其中每个发射器的两次发射尝试之间的时间间隔按[T1,T2]ms内的均匀分布来随机选择。如图3所示,发射器310利用随机延迟装置311来设置不同信标的发射时间。因此,不同信标的广播在统计上是独立的。在随机延迟之后,发射器310的信道监听装置312在Dus时间内感测RF载波。Dus是使得超声波消失的预期时间间隔。这样做的目的是防止新发送的RF+US信号与来自其他发射器的现有RF+US信号发生冲突。在Dus期间,发送判决装置313检测信道以判断信道是否空闲,如果在Dus期间信道一直空闲,发送判决装置313则指示信号发送装置314发送新的RF+US信号。否则,发射器继续等待随机延迟时间,直到信道空闲为止。图3中还示出了作为定位设备一端的接收器320。接收器320包含信号接收装置322,用于接收来自发射器的RF+US信号,以及位置计算装置323,用于根据信号检测结果来计算目标的位置。但是,Cricket系统所采用的基于随机化的MAC协议仍就无法解决HN问题和EN问题。首先以图2A所示的情况为例,并参考图3所示Cricket系统的结构框图,图4A示出了针对HN问题的时序图。Tl和T2首先执行随机延迟,并随后在Dus时间内感测RF载波。由于T1和T2两者都无法感测到彼此的发射信号,因此两者都决定向P0DR发送信号。进而,由Tl和T2发送的RF+US信号将在接收器R处发生冲突。实际上,Cricket系统是应用"丢弃"方法来应对HN问题的。就是说,如果接收器R在Dus期间接收到多于一个RF消息,接收器则无法确定US信号是对应于哪个RF消息的,进而接收器R将丢弃US信号和RF消息。虽然这样的处理可以消除由信号冲突所导致的定位误差,但是信道容量和资源利用效率却变得相当低。再以图2B所示情况为例,Cricket系统也同样存在EN问题。如图4B所示,Tl和T2首先执行随机延迟。然后,Tl在Dus时间内感测RF载波,并决定向PODRl发送RF+US信号,从而建立路径LT1,K1。随后,T2将感测到Tl的流量,从而不再向R2发送信号。这样一来,从T2到R2的期望传输由于载波感测而被禁止。但是,实际上,1^^并不会与LT1,K1相冲突,这会导致信道资源的浪费。迄今为止,Cricket系统尚未提到如何解决EN问题。其它相关的现有技术还包括题为"Detectionsystemfordeterminingpositionalandotherinformationaboutobjects"的美国专利No.6,493,649所提出的"Bat"系统。该相关申请的内容通过引用被结合于此,以用于所有目的。"Bat"系统在房间天花板上部署多个超声波接收器,以用于监控。这些接收器被布置成阵列形式并通过有线网络被连接到控制基站。一个超声波发射器被附接到将被跟踪的目标。在Bat系统中,使用的是集中式TDMA型MAC协议,其中所有目标发射器均被预先注册以向其分配一个时隙用于定位。周期性地,基站通过RF信号广播目标的ID标识符。同时,基站经由有线网络向所有超声波接收器发送同步脉冲。当目标收听到其自己的ID广播时,则发射超声波信号。关于Bat系统的TDMA型MAC协议,其缺点在于中央基站的维护需要大量计算成本,并且所有目标的标签设备需要在自举(bootstrap)阶段被注册到系统。这样一来则难以在工作中向系统添加新的标签设备。因此系统的灵活性大大降低。另外,Bat系统的关键问题在于资源的时空复用性能很差。为了跟踪单独的目标标签,需要所有定位设备等待特定标签在其时隙中执行信号发射。但是,实际上,只有很少量定位设备可以检测和感测来自该标签设备的信号,而大量其他设备在此期间只能一直处于空闲(IDLE)状态。
发明内容本发明提出了一种用于多目标跟踪与定位的基于功率控制的多路访问控制方法和系统,以及用于多定位设备(例如P0D)与多标签设备跟踪情形的MAC协议。本发明的设计理念在于避免现有技术中存在定位信号(例如RF+US信号)冲突问题、提高无线信道的时空复用以及消除EN和HN问题。根据本发明第一方面,提出了一种用于多目标定位系统的基于功率控制的多路访问控制方法,所述多目标定位系统包含多个携带有标签设备的目标和一个或多个用于定位目标的定位设备,其中每个标签设备包含存储单元,用于存储定位设备列表,该列表用于记录定位设备的状态信息,所述方法包括标签设备间歇性地广播信道请求分组(CRP);接收到CRP的空闲定位设备广播信道分配分组(CAP),所述CAP被用于向广播CRP的标签设备分配信道,并被用于通知关于所述定位设备的信息;接收到CRP的各个标签设备根据CRP的内容来更新定位设备列表;并且所述标签设备通过参考定位设备列表来调整CRP的发射功率。另外,在一个实施例中,接收到CRP的标签设备在发现CRP所携带的标签设备标识符(TagID)与其本身的标识符相匹配的情况下,将启动随后定位信号(RF+US信号)的发射。定位设备(例如P0D)可以通过接收定位信号来计算目标的位置。根据本发明第二方面,提出了一种能够实现基于功率控制的多路访问控制的多目标定位系统,该系统包括由多个目标所携带的多个标签设备和用于定位所述目标的一个或多个定位设备其中所述标签设备包括存储装置,用于存储定位设备列表,该列表用于记录定位设备的状态信息;信道请求装置,用于间歇性地广播信道请求分组(CRP);定位设备列表更新装置,用于根据接收自定位设备的信道分配分组(CAP)的内容来更新所述定位设备列表;以及发射功率调整装置,用于通过参考所述定位设备列表来调整CRP的发射功率,并且所述定位设备包括状态响应装置,用于接收来自所述标签设备的CRP,并当所述定位设备处于空闲状态时,在其覆盖范围内广播所述CAP,其中CAP被用于向广播CRP的标签设备分配信道,并被用于通知关于所述定位设备的信息。在多目标定位系统中,标签设备被附接到被跟踪的移动目标,并且每个标签设备可以包含RF收发器和US发射器。作为示例,多个POD被安装在监视环境中作为定位设备。如上所述,POD由位于中央的RF收发器和围绕该RF收发器布置的若干US接收器构成,并且POD具有固定的结构拓扑。这里描述的POD仅仅作为定位设备的示例,本领域技术人员可以意识到,本发明也可以应用于领域内公知的其他定位设备。与现有技术相比较,本发明所提出的技术能够使得目标所携带的标签设备知晓在其附近的定位设备(即POD)的状态。因此,标签设备可以智能地调整发射功率,以将RF+US信号发送到离它最近并且处于空闲状态的POD。从而,RF和US信道可以被充分利用,同时可以避免信号之间的冲突。本发明的技术使得标签设备具备智能化是通过在每个标签设备中设置定位设备列表来实现的,标签设备可以通过与POD之间的在线CRP-CAP交换过程将附近POD的信息记录到定位设备列表中。通过查询定位设备列表以获取其中POD的状态信息,标签设备可以自治地确定何时发射CRP以及自适应地调整发射功率。在自举阶段,所有标签设备的定位设备列表均为空,并且CRP的发射功率采用缺省值。在每次发射定位信号RF+US之前,所有标签设备广播CRP以竞争RF信道。在POD接收到CRP之后,POD很快向其覆盖范围内的所有标签设备响应CAP。发射CAP的目的在于两个方面,一是告知发送CRP的标签设备可以发射用于定位的RF+US信号,即向该标签设备分配信道,二是通知其覆盖范围内的所有其他标签设备该POD在与对其分配了信道的标签设备传输RF+US信号期间将处于繁忙状态。基于CAP,无论分配了信道还是未分配信道的标签设备都可以根据CAP的内容来更新其各自的定位设备列表中的POD信息。在定位设备列表中,P0D信息例如包括P0DID、到POD的距离、POD状态等等。到POD的距离例如可以通过RF信号的射频信号强度(RSS)来测量,而PODID和POD状态可以从CAP消息的内容中得知。接下来,所有没有被分配信道的标签设备将减小CRP的发射功率并继续尝试广播CRP,以求从其它更近的POD获得可能的信道分配。降低发射功率的目的也在于两个方面,一是减小通信范围以寻找更近的POD,二是避免与现有的RF+US传输发生冲突。通过POD与标签设备之间的几轮CRP-CAP交换,每个标签设备可以找到其附近的所有POD并构建可以持续在线更新的定位设备列表。当定位设备列表不为空时,对于每次CRP发射,标签设备将自适应地选择CRP的发射功率以向最近的POD发射CRP。POD与标签设备之间的CRP-CAP交换使得当CAP的发射半径满足一定条件时,可以避免HN问题。更确切地讲,如果CAP的发射半径大于CRP的最大传输距离,本发明的MAC方法则不存在HN问题。因此,本发明的MAC方法可以有效地防止相互干扰的标签设备的同时传输。关于HN问题将参考随后"具体实施方式"部分中给出的实施例来更详细的描述。另外,在本发明的MAC方法中,载波感测不再作为发射判决的证据。通过基于CRP-CAP交换的信道分配过程,在传输链路没有冲突的情况下,无论发射器是否感测到彼此的活跃流量,都可以通过智能地选择发射功率来同时建立所有传输。因此,可以有效地避免EN问题。关于EN问题也将参考随后"具体实施方式"部分中给出的实施例来更详细的描述。在本发明中,可以确保在任何时间每个接收器只与一个发射器通信,从而使得不会发生RF和US冲突问题。另外,由于标签设备可以智能地选择最近的空闲POD,并且可以适当地调整发射功率以避免与其它标签设备发生冲突,因此可以实现不同标签设备和POD之间的同时连接。因此,与现有技术相比,可以大大提高系统的时空复用能力。结合附图,从下面对本发明优选实施例的详细描述,将更好地理解本发明,附图中类似的参考标记指示类似的部分,其中图1是示出多目标定位系统的示意图;图2A是用于说明隐藏节点(HN)问题的示意图;图2B是用于说明暴露节点(EN)问题的示意图;图3是根据现有技术的多目标定位系统的结构框图;图4A是示出图3所示现有系统遭遇HN问题时的情况的时序图;图4B是示出图3所示现有系统遭遇EN问题时的情况的时序图;图5是实现根据本发明的基于功率控制的多路访问控制的多目标定位系统500的结构框图;图6是示出信道请求分组(CRP)和信道分配分组(CAP)消息的数据结构的图;图7是示出图5所示系统的工作过程的流程图;图8是示出标签设备一侧的工作过程的流程图;图9是示出定位设备(POD)—侧的工作过程的流程图;以及图IOA和图IOB是用于说明根据本发明的多目标定位系统的工作过程的一个示10例,其中示出两个标签设备Tl和T2和两个定位设备PODRl和R2的工作情形。具体实施例方式图5示出根据本发明的多目标定位系统500,其能够实现基于功率控制的多路访问控制。为了便于说明,图5仅仅示出一个标签设备(发射器)510与一个定位设备(接收器)520之间的交互,但是系统500包含多个标签设备和多个定位设备,并被设计用于"多标签设备+多定位设备"应用情形下的同时多目标定位。这里,定位设备520例如是POD设备。在系统500中,标签设备510被附接到被跟踪的移动目标,并且每个标签设备都可以包含RF收发器和US发射器(图中未示出)。多个定位设备POD520被安装在监视环境中(例如天花板上),用于跟踪和定位环境中的多个移动目标。POD由位于中央的RF收发器和围绕RF收发器布置的多个US接收器(图中未示出)构成。如图5所示,标签设备510包括信道请求装置511、发送判决装置512、定位信号发送装置513、定位设备列表更新装置514和发射功率调整装置515,以及用户记载附近POD状态的定位设备列表516。相应地,定位设备(P0D)520包括状态响应装置521、定位信号接收装置522和位置计算装置523。图7是示出图5所示系统500的工作过程的流程图。下面将参考图5和图7来描述根据本发明的能够实现基于功率控制的多路访问控制的多目标定位系统500的工作原理。首先,在步骤701a中,标签设备510利用信道请求装置511间歇性地广播信道请求分组(CRP)。CRP消息的数据结构在图6中示出。如图6所示,CRP消息包含CRP_TYPE601以及TagID602,其中CRPJTPE601标识出消息类型,并且TaglD602是标识发射该CRP的标签设备的标识符。CRP消息广播用于在向相邻的POD发送定位信号(即RF+US数据)之前请求无线信道。在本发明中,当信道请求装置511广播CRP时,CRP的发射功率需要根据不同情况进行调整。即,信道请求装置511按照经发射功率调整装置515调整后的发射功率来广播CRP消息。在一个实施例中,发射功率调整装置515可以根据定位设备列表516的内容来自适应地调整发射功率。例如,当定位设备列表516为空时,发射功率调整装置515获取初始发射功率P。,并且信道请求装置511以初始发射功率P。广播CRP消息。当定位设备列表516不为空并且定位设备列表516中的最近定位设备RnMMSt处于空闲状态时,发射功率调整装置515调整发射功率以使得信道请求装置511向该最近定位设备RMmst广播CRP消息。另外,当定位设备列表516不为空但定位设备列表516中列出的最近定位设备R^^t处于繁忙状态(BUSY)时,发射功率调整装置515减小发射功率以使得信道请求装置511以更低的发射功率广播CRP消息,以便找到更近的POD可用于定位。这时,作为示例,标签设备可以选择CRP消息的发射时间。如果标签设备在以更低的发射功率广播CRP消息之后没有找到更近的定位设备,标签设备则可能不再减小发射功率,而是等待定位设备列表516中的最近定位设备Rnearest由繁忙状态(BUSY)转换为空闲状态(IDLE)。然后,发射功率调整装置515再调整发射功率以使得信道请求装置511向该最近定位设备RMarest广播CRP消息。然后,在步骤701b中,POD520接收CRP消息。接收到CRP消息的POD520随后判断其自身的工作状态是否处于空闲之中(步骤702b)。如果否,POD520则在步骤704b中丢弃该消息。如果P0D520正处于空闲中,状态响应装置521则在随机延迟后广播信道分配分组(CAP)作为响应。CAP响应被用于分配信道以及向标签设备告知POD的状态。CAP消息的数据结构如图6所示。CAP消息可以包括CAP—TYPE603、P0DID604、TagID605和Status606。其中,CAPJTPE603用于标识消息类型,PODID604是用于标识发射该CAP消息的POD的标识符,TagID605是POD要向其分配信道的标签设备的标识符,即作为CAP消息所响应的CRP消息的发送者的标签设备的标识符,并且Status606指示该POD的状态是繁忙(BUSY)还是空闲(IDLE)。当CAP响应被标签设备所接收时,POD与该标签设备之间的距离以及POD的状态被标签设备获知。在步骤702a中,CAP响应被POD覆盖范围内的标签设备所接收。接收到CAP消息的标签设备随后利用发送判决装置512判断POD是否向自已分配了信道以及是否可以发送定位信号RF+US数据(步骤703a)。作为示例,在步骤703a中,发送判决装置512判断CAP消息中所包含的TagID是否与其自身的标识符(例如本地地址)相匹配。如果匹配,则说明该CAP消息是针对该标签设备所发出的CRP消息的响应并且POD已经对其分配了信道。在此情况下,该标签设备可以利用定位信号发送装置513向相应的POD发射RF+US信号(步骤704a)。发送自标签设备的RF+US数据随后在步骤705b中被POD所接收并被用于计算目标的位置。在标签设备向POD发送RF+US数据之后,在步骤705a中,标签设备利用定位设备列表更新装置514来更新定位设备列表516。同样地,在步骤703a处,如果标签设备确定该CAP消息不是向其分配信道的消息,标签设备则不发送RF+US数据。但是,在此情况下(步骤703a处的"否"),标签设备仍然要求更新其存储的定位设备列表516。定位设备列表516是由标签设备所维护的动态列表,用于监视附近POD的实时信息。定位设备列表516可以根据CAP消息的内容被更新。定位设备列表516的数据结构例如如下表1<table>tableseeoriginaldocumentpage12</column></row><table>其中,NAV表示相应POD的繁忙时间间隔。利用定位设备列表516中的上述信息,标签设备可以智能地选择发射目标以及自适应地调整发射功率。标签设备与POD之间的距离可以基于RF信号的接收信号强度(RSS)以及自由空间的传播模型来测量。即距离DKSS可以通过以下等式计算<formula>formulaseeoriginaldocumentpage12</formula>其中,m表示路径损耗率,P(d。)是在某一参考距离d。下的信号功率,并且P^是接收器处的接收信号功率。定位设备列表516在标签设备接收到CAP消息时被更新。如果发射CAP消息的POD尚未包括在定位设备列表516中,该标签设备则向定位设备列表516添加一个新的P0D条目。否则,标签设备仅仅根据CAP消息的内容来更新定位设备列表516中的相应条目的内容。当CAP消息被接收到时,定位设备列表516中相应POD条目的最后一个属性NAV可以例如被设置为50ms。这意味着在接下来的50ms时间间隔内该POD将处于繁忙状态。返回图7,定位设备列表516在标签设备每次接收到来自POD的CAP消息时均被更新,无论该CAP消息是否是针对该标签设备发出的并向该标签设备分配信道。在步骤706a中,标签设备的发射功率调整装置515周期性地参考定位设备列表516来调整CRP消息的发射功率。作为示例,在本发明中将RF+US信号用作定位信号,其中,RF信号用于时间定位,而US信号用于距离测量。由于基于RF+US数据的定位方法属于本领域常用的公知技术,这里不再对此进行赘述。在步骤705b中,RF+US数据被POD520的定位信号接收装置522所接收。然后,在步骤706b中,POD判断定位信号中所包含的PODID是否与其自身的ID相匹配。如果不匹配,POD则丢弃该RF+US数据(步骤708b)。如果匹配,在步骤707b中,POD则利用位置计算装置523来根据RF+US数据计算目标的位置。这里,作为示例,位置计算装置523可以采用US信号的到达时间(TOA)结果、到达时间差(TDOA)结果或者到达角(AOA)结果来计算目标的位置。由于上述这些目标定位方法属于本领域常用的公知技术,这里不再赘述。图8和图9分别是示出标签设备一侧和定位设备POD—侧的工作流程。首先,如图8所示,标签设备的工作流程主要包含两个主要任务,即CRP发射和CAP处理。在图8所示流程图中,步骤801a-806a对应于CRP发射的过程,并且步骤801b_804b对应于CAP处理的过程。CRP发射主要实现的是信道请求和自适应发射功率控制的功能,而CAP处理主要实现的是发送判决和定位设备列表在线更新的功能。1.CRP发射CRP消息被标签设备间歇性地重复广播。标签设备在每次广播CRP消息之前可以延迟一定的随机时间。在每次延迟计时器期满(步骤801a)时,标签设备的CPU被中断以处理该计时器期满事件。此时,CRP消息将被发送以用于信道请求。如上所述,CRP的发射功率是根据定位设备列表516的当前状态来自适应地调整的。发射功率的调整过程如下(1)如果标签设备的定位设备列表为空(步骤802a的"是"),则选择缺省的初始发射功率P。来发射CRP消息(步骤803a)。(2)如果定位设备列表不为空(步骤802a的"否"),则在步骤804a处判断定位设备列表中列出的最近的定位设备PODRi是否空闲。如果最近的PODRi空闲,标签设备则在步骤805a处调整其功率以向该最近的空闲PODRi广播CRP。CRP的发射功率可以基于从标签设备到该最近的POD的距离来确定。(3)如果定位设备列表不为空(步骤802a的"否"),并且最近的PODRi处于繁忙状态中(步骤804a的"否"),标签设备则设置更小的功率来广播CRP以发现可能的更近的POD(步骤806a)。例如,标签设备可以根据定位设备列表中列出的各个POD的距离Dl,...Dn,确定一个更小的通信距离cKmin(Dl,...,Dn),并以发射功率PT=P(d)广播CRP消息,其中P(d)是覆盖距离d的最小功率。这样一来,标签设备可能找到更近的未知POD。13在每次发射CRP之后,标签设备可以设置另一随机延迟,并在该延迟期满之后发射下一CRP消息(步骤807a)。2.CAP处理如图8所示,CAP在标签设备处作为中断事件被处理。CAP消息是从某一POD发送的用于响应某一标签设备的信道请求的消息。如图6所示,CAP消息在其有效载荷部分可以包含四个变量,即CAP_TYPE、PODID、TagID和Status,其中PODID指示该CAP消息的发送者;TagID指示作为该CAP消息的预期接收者的标签设备;并且Status指示发射者POD的状态。CAP消息可以被用于信道分配和定位设备列表的更新。当标签设备接收到CAP消息时(步骤801b),标签设备将根据CAP消息的内容来执行不同的处理程序。(1)如果CAP消息中的TagID与标签设备的本地地址相同(步骤802b中的"是"),则意味着该CAP消息恰好是响应该标签设备的信道请求的消息。在此情况下,标签设备将确定发送RF+US数据(步骤803b)。随后,在步骤804b中,定位设备列表根据CAP消息的内容被更新。由于标签设备于POD之间将进行RF+US传输,因此标签设备知道在接下来的50ms中POD将处于繁忙状态。因此,标签设备可据此更新其定位设备列表中的POD信息。例如,在此情况下的更新过程如下a)如果定位设备列表中不存在相应的POD条目,则在定位设备列表中添加一个新的条目,并标记以PODID。从标签设备到POD的距离可以通过RSSI来测量。POD的状态被设置为繁忙(BUSY)并且POD的NAV被设置为50ms。b)如果定位设备列表中已经存在相应的POD条目,则该条目的信息被更新。距离被重置为新的测量结果。POD的状态被设置为繁忙(BUSY)并且POD的NAV被设置为50ms。(2)如果CAP消息中的TagID与标签设备的本地地址不同(步骤802b中的"否"),则意味着该CAP消息是响应其他标签设备的信道请求的消息。在此情况下,标签设备不发射RF+US数据,而是直接更新定位设备列表(步骤804b)。根据CAP消息,标签设备可以知道其他标签设备在随后的50ms中正在与该POD通信,并且标签设备与POD之间的距离可以通过RSSI来测量。因此,可以据此更新定位设备列表。例如,在此情况下的更新过程如下a)如果定位设备列表中不存在相应的POD条目,则在定位设备列表中添加一个新的条目,并标记以PODID。从标签设备到POD的距离可以通过RSSI来测量。POD的状态被设置为繁忙(BUSY)并且POD的NAV被设置为50ms。b)如果定位设备列表中已经存在相应的POD条目,则该条目的信息被更新。距离被重置为新的测量结果。POD的状态被设置为繁忙(BUSY)并且POD的NAV被设置为50ms。如上所述,无论是否发送RF+US数据,标签设备中的定位设备列表都可以被更新。这可以帮助标签设备持续地更新附近POD的信息。RF信号的发射功率于CRP的发射功率相同,也可以在CRP发射过程中被自适应地确定。图9示出POD设备一侧的工作流程。根据POD所接收的消息种类的不同,该工作流程可以被划分成两个分支CRP消息处理和RF+US数据处理。在POD中,CRP消息和RF+US数据例如都可以作为中断事件被处理。l.CRP消息处理在步骤901a中,当CRP消息检测事件被触发时,CRP消息根据POD的状态被处理。1)如果POD的当前状态为空闲(步骤902a中的"是"),POD则在一定随机延迟之后发出CAP消息(步骤903a)。在CAP消息中,TagID被设置为CRP中的TagID,并且Status被设置为空闲(IDLE)。CAP消息被用于告知POD的状态并向标签设备分配信道。这意味着信道请求成功并且标签设备可以发送RF+US数据。这里,POD在发射CAP消息前添加一随机延迟,以避免同时的CAP响应冲突。2)如果POD的状态为繁忙(步骤902a中的"否"),CRP消息则被丢弃。在此情况下,POD不对CRP消息作出响应。这样做是为了确保如果POD发送CAP,则成功地向标签设备分配了RF+US信道。2.RF+US数据处理在接收到RF+US数据(步骤901b)时,POD检查RF消息中的PODID是否与其本地地址相同(步骤902b)。如果是,POD则基于RF+US数据计算目标的位置。例如,POD可以基于US数据的TOA结果来计算目标的位置。如果在此情况下,RF消息中的PODID与本地地址不同,POD则丢弃RF+US数据。通过以上处理,POD可以对多个标签设备的位置进行定位。图IOA和图IOB给出了根据本发明的基于功率控制的MAC如何工作的一个示例。在该示例中示出了包含两个标签设备Tl和T2以及两个PODRl和R2的情形。首先,参考图10A。最初,标签设备T1和T2的定位设备列表均为空。在图10A中,标签设备Tl首先以缺省功率PT=P。广播CRP消息(如图10A中实线所示步骤1)。然后,定位设备Rl接收CRP并检查其自身的状态。由于此时Rl处于空闲状态,因此其广播CAP消息以向其覆盖范围内的标签设备(即T1和T2)告知其自身的状态并向标签设备Tl分配信道(如图10A中虚线所示步骤2)。CAP消息随后被Tl和T2所接收。由于CAP中的TagID=T1,因此T1被分配信道。随后,标签设备T1以功率PT发射数据消息(RF+US)(如图10A中点划线所示步骤3)。由于标签设备Tl和T2都从定位设备Rl接收到CAP消息,因此无论其是否判定发射定位信号,都要更新其存储的定位设备列表。标签设备Tl和T2在定位设备列表中添加新条目Rl,该条目"状态"=BUSY(繁忙)、NAV=50ms、"距离"=DKSSI。定位设备Rl将接收来自标签设备Tl的RF+US消息,检测TOA并测量从Tl到Rl的距离。在图10B所示状态中,定位设备Rl已经处于繁忙状态,并且Rl已经存在于标签设备Tl和T2的定位设备列表中。由于来自Rl的CAP消息中包含的TagID#T2,因此标签设备T2不会向Rl发送数据。标签设备T2减小发射功率PT,以使得PT<PK1,这里PK1是到标签设备R1的功率电平。然后,标签设备T2以该减小的功率PT广播CRP消息(如图IOB中实线所示步骤6)。定位设备R2接收到来自T2的CRP消息。由于此时R2处于空闲状态,因此其广播CAP消息以告知其自身的状态并向标签设备T2分配信道(如图IOB中虚线所示步骤7)。CAP消息被标签设备T2所接收。由于CAP消息中的TaglD二T2,因此T2被分配以无线信道。因此,T2以功率PT发射数据消息(RF+US)(如图10B中点划线所示步骤8)。然后,标签设备T2更新其定位设备列表以添加新条目R2,该条目"状态"=BUSY(繁忙)、NAV=50ms、"距离"二DKSSI。定位设备接收到来自T2的RF+US消息,检测TOA并测量从T2到R2的距离。以上参考图IOA和IOB描述了根据本发明的基于功率控制的MAC的一个示例。但是,本发明的应用并不局限于这样的示例。例如,本发明可被应用于其他任意包含多个标签设备和多个定位设备的多路访问情形。根据本发明的基于功率控制的MAC可以有效的解决EN问题和HN问题。1.针对EN问题首先,再次参考图2B以及等式(2)描述的EN问题。假设Tl、T2、Rl和R2满足暴露节点条件并且标签设备Tl正在向定位设备Rl发射信号,如图2B所示。在诸如CSMA之类现有技术中,由于标签设备T2能够感测到标签设备Tl的活跃流量,因此标签设备T2无法直接与定位设备R2通信。但是,实际上,两条传输链路Tl到Rl和T2到R2可以同时发生而不会产生冲突。因此,EN问题将导致无线信道资源的浪费。在根据本发明的基于功率控制的MAC中,由于载波感测不再被作为发射判决的证据,因此即使标签设备T2可以感测到标签设备Tl的活跃流量,标签设备T2也仍旧会向其希望的定位设备R2发射RF+US数据。就是说,在根据本发明的基于功率控制的MAC中,虽然标签设备T2可以感测到标签设备Tl的活跃流量,但是从T2到R2的通信链路仍旧可以根据CRP-CAP交换过程和定位设备列表的内容来成功地建立,而不管标签设备之间是否能够感测到彼此。对于图2B所示示例,在标签设备T2中的发射判决存在以下两种情况1)如果来自Rl的CAP消息没有被T2接收到,T2则根据定位设备列表选择CRP消息的发射功率并广播CRP消息以请求信道。当CRP消息被R2接收到时,R2将回复CAP消息以向T2分配信道。因此,可以同时建立两条链路Tl—Rl和T2—R2。2)如果来自Rl的CAP消息被T2接收到,T2则得知Rl正处于繁忙状态。根据EN条件,如果T2到R2的链路可实施并且不会与链路T1到R1冲突,则一定有|T2-R2<|T2-R1|。根据本发明的基于功率控制的MAC将进行功率适配,从而标签设备T2减小发射功率以广播CRP消息来请求信道。当CRP被R2接收到时,R2将回复CAP消息以向T2分配信道。因此,可以同时建立两条链路Tl—Rl和T2—R2。由此可见,对于上述两种情况,在EN条件下,都可以成功地建立同时链路。因此,根据本发明的基于功率控制的MAC可以有效地解决EN问题。2.针对HN问题再次参考图2A以及等式(1)描述的HN问题。如图2A所示,在诸如CSMA之类的现有技术中,由于Tl和T2无法感测到彼此的流量,因此它们将向定位设备R同时发射信号并因此导致R处发生信号冲突。但是,在根据本发明的基于功率控制的MAC中,如果标签设备Tl向定位设备R发射CRP消息,定位设备R则回复CAP消息。我们只需要将CAP消息的传播半径设置为大于Tl和T2两者的发射半径,则Tl和T2两者都将接收到来自定位设备R的CAP消息。因此,标签设备T2将不向定位设备R发送消息以避免与链路Tl—R发生信号冲突。由此可见,在根据本发明的基于功率控制的MAC中,只要满足以下条件就可以有效地避免HN问题其中DfflP是CAP分组的传输半径。在应用中,可以选择DCAP大于标签设备的最大发射距离,从而使得在根据本发明的基于功率控制的MAC中,避免HN问题的条件可以被容易地满足。因此,在本发明中,可以确保在任何时间每个接收器只与一个发射器通信,从而使得不会发生RF和US冲突问题。另外,由于标签设备可以智能地选择最近的空闲定位设备,并且可以适当地调整发射功率以避免与其它标签设备发生冲突,因此可以实现不同标签设备和定位设备之间的同时连接。因此,与现有技术相比,可以大大提高系统的时空复用能力。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本发明的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本发明的精神之后,作出各种改变、修改和添加,或者改变步骤之间的顺序。本发明可以以其他的具体形式实现,而不脱离其精神和本质特征。例如,特定实施例中所描述的算法可以被修改,而系统体系结构并不脱离本发明的基本精神。因此,当前的实施例在所有方面都被看作是示例性的而非限定性的,本发明的范围由所附权利要求而非上述描述定义,并且,落入权利要求的含义和等同物的范围内的全部改变从而都被包括在本发明的范围之中。权利要求一种用于多目标定位系统的基于功率控制的多路访问控制方法,所述多目标定位系统包含多个携带有标签设备的目标和一个或多个用于定位目标的定位设备,其中每个所述标签设备包含存储单元,用于存储定位设备列表,该列表用于记录定位设备的状态信息,所述方法包括所述标签设备间歇性地广播信道请求分组;接收到所述信道请求分组的空闲定位设备广播信道分配分组,所述信道分配分组被用于向广播所述信道请求分组的标签设备分配信道,并被用于通知关于所述定位设备的信息;接收到所述信道分配分组的各个标签设备根据所述信道分配分组的内容来更新所述定位设备列表;并且所述标签设备通过参考所述定位设备列表来调整所述信道请求分组的发射功率。2.如权利要求1所述的方法,其中所述信道请求分组包含用于标识所述标签设备的标识符。3.如权利要求1所述的方法,其中所述信道分配分组包含用于标识所述标签设备的标识符、用于标识所述定位设备的标识符以及所述定位设备的状态信息。4.如权利要求1所述的方法,其中所述定位设备列表包含多个条目,每个条目对应于一个定位设备,并由如下项目构成所述定位设备的标识符;所述定位设备距所述标签设备的距离;所述定位设备的状态;以及所述定位设备的繁忙时间间隔。5.如权利要求3所述的方法,其中更新所述定位设备列表的步骤包括在所述定位设备列表中搜索所述信道分配分组中所包含的定位设备标识符;如果在所述定位设备列表中未找到与所述定位设备标识符相应的条目,则在所述定位设备列表中添加与所述定位设备相关的条目;以及如果在所述定位设备列表中找到与所述定位设备标识符相应的条目,则更新相应条目中的项目。6.如权利要求3所述的方法,还包括所述标签设备在接收到所述信道分配分组之后,将其中包含的标签设备标识符与其自身的标识符相比较,如果两者匹配,所述标签设备则随后向所述定位设备发送定位信号;并且所述定位设备利用所述定位信号来确定携带所述标签设备的目标的位置。7.如权利要求6所述的方法,其中所述定位信号是超声波信号和射频信号。8.如权利要求7所述的方法,所述定位设备根据所述定位信号的到达时间(T0A)结果来计算所述目标的位置。9.如权利要求4所述的方法,其中调整所述信道请求分组的发射功率的步骤包括当所述定位设备列表为空时,以初始发射功率广播所述信道请求分组;当所述定位设备列表不为空并且所述定位设备列表中的最近定位设备处于空闲状态时,调整发射功率以向该最近定位设备广播所述信道请求分组;并且当所述定位设备列表不为空但所述定位设备列表中列出的最近定位设备处于繁忙状态时,减小发射功率来以更低的发射功率广播所述信道请求分组。10.如权利要求9所述的方法,其中如果所述标签设备在以所述更低的发射功率广播所述信道请求分组之后没有找到更近的定位设备,所述标签设备不再减小所述发射功率,而是等待所述定位设备列表中的最近定位设备由繁忙状态转换为空闲状态时,调整发射功率以向该最近定位设备广播所述信道请求分组。11.一种能够实现基于功率控制的多路访问控制的多目标定位系统,该系统包括由多个目标所携带的多个标签设备和用于定位所述目标的一个或多个定位设备,其中所述标签设备包括存储装置,用于存储定位设备列表,该列表用于记录定位设备的状态信息;信道请求装置,用于间歇性地广播信道请求分组;定位设备列表更新装置,用于根据接收自定位设备的信道分配分组的内容来更新所述定位设备列表;以及发射功率调整装置,用于通过参考所述定位设备列表来调整所述信道请求分组的发射功率,并且所述定位设备包括状态响应装置,用于接收来自所述标签设备的所述信道请求分组,并当所述定位设备处于空闲状态时,在其覆盖范围内广播所述信道分配分组,所述信道分配分组被用于向广播所述信道请求分组的标签设备分配信道,并被用于通知关于所述定位设备的信息。12.如权利要求11所述的系统,其中所述信道请求分组包含用于标识所述标签设备的标识符。13.如权利要求11所述的系统,其中所述信道分配分组包含用于标识所述标签设备的标识符、用于标识所述定位设备的标识符以及所述定位设备的状态信息。14.如权利要求11所述的系统,其中所述定位设备列表包含多个条目,每个条目对应于一个定位设备,并由如下项目构成所述定位设备的标识符;所述定位设备距所述标签设备的距离;所述定位设备的状态;以及所述定位设备的繁忙时间间隔。15.如权利要求13所述的系统,其中所述定位设备列表更新装置包括搜索装置,用于在所述定位设备列表搜索所述信道分配分组中所包含的定位设备标识符;添加装置,用于如果所述搜索装置在所述定位设备列表中未找到与所述定位设备标识符相应的条目,则在所述定位设备列表中添加与所述定位设备相关的条目;以及更新装置,用于如果所述搜索装置在所述定位设备列表中找到与所述定位设备标识符相应的条目,则更新相应条目中的项目。16.如权利要求13所述的系统,其中所述标签设备还包括发送判决装置,用于在从一定位设备接收到所述信道分配分组之后,将其中包含的标签设备标识符与其自身的标识符相比较,以判定是否发送定位信号;以及定位信号发送装置,用于在所述发送判决装置确定所述信道分配分组中包含的标签设备标识符与该标签设备自身的标识符相匹配时,向所述定位设备发送定位信号,并且所述定位设备还包括定位信号接收装置,用于接收来自所述标签设备的所述定位信号;以及位置计算装置,用于利用所述定位信号来确定携带所述标签设备的目标的位置。17.如权利要求16所述的系统,其中所述定位信号是超声波信号和射频信号。18.如权利要求17所述的系统,其中所述定位设备根据所述定位信号的到达时间(T0A)结果、到达时间差(TD0A)结果或到达角(A0A)结果来计算所述目标的位置。全文摘要本发明提供了一种多目标定位系统以及基于功率控制的多路访问控制方法。根据本发明的多目标定位系统包括由多个目标所携带的多个标签设备和用于定位目标的多个定位设备,其中每个标签设备包含定位设备列表,用于记录定位设备的状态信息。根据本发明,标签设备间歇性地广播信道请求分组(CRP);接收到CRP的空闲定位设备在其覆盖范围内广播信道分配分组(CAP),以向广播CRP的标签设备分配信道,并通知定位设备的信息;接收到CAP的标签设备根据CAP的内容来更新定位设备列表;并且标签设备通过参考定位设备列表来自适应地调整CRP的发射功率。利用本发明,可以有效地避免现有技术中存在的EN和HN问题,并解决信号冲突和增强系统的时空复用能力。文档编号G01S5/20GK101726738SQ20081017361公开日2010年6月9日申请日期2008年10月30日优先权日2008年10月30日发明者王永才,赵军辉申请人:日电(中国)有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1