燃烧气体分析的制作方法

文档序号:6143007阅读:257来源:国知局
专利名称:燃烧气体分析的制作方法
技术领域
本发明的领域涉及燃烧气体分析,更具体地涉及对燃烧气体进 行的可调二极管激光器光谱分析。
背景技术
对燃烧气体的可调二极管激光器光谱分析是已知的,并且在以 下列举的现有技术中进行了描述,例如Lackner等人,Thermal Science, V.6 , pl3-27, 2002; Allen, Measurement Science and Technology, V.9, p545-562, 1998; Nikkary等人,Applied Optics, V.41(3), p446-452, 2002; Upschulte等人,Applied Optics, V.38(9), pl506-1512 , 1999 ; Mihalcea 等人,Measurement Science and Technology, V.9, p327-338, 1998; Webber等人,Proceeding of the Combustion Institute, V.28, p407-413, 2000; Ebert等人,Proceeding of the Combustion Institute, V.30, pl611-1618, 2005; Nagali等人, Applied Optics, V.35(21), p4027-4032, 1996;以及美国专利7248755、 7244936禾卩7217121。除了现有技术中的显著优点以外,对于针对燃烧气体中的一氧 化碳、气态水和气态烃进行可调二极管激光器光谱同步分析的应用还 存在着关于灵敏度差、背景干扰和温度干扰的显著问题。发明内容本发明是对上述针对燃烧气体中的一氧化碳、气态水和气态烃 利用可调二极管激光器光谱进行的同步分析中所存在的问题的一种 解决方案。通过在2到2.5微米的波长范围内操作可调二极管激光器 改善了分析的灵敏度。即使仅使用单个可调二极管激光器,用于处理 光谱数据的多元处理技术也能允许对一氧化碳、气态水和气态烃进行同时确定。更具体地,本发明是一种用于确定燃烧气体中一氧化碳、 气态水和气态烃的浓度的化学分析方法,该方法包括步骤(a)在 2-2.5微米波长范围内使经波长调制的光从单个可调二极管激光器通 过燃烧气体导向光检测器,以产生燃烧气体的吸收谱;(b)将燃烧 气体的吸收谱数字化;(c)将数字化的吸收谱存储在数字计算机中; (d)在数字计算机中处理数字化的吸收谱以从计算机产生输出来指 示燃烧气体中一氧化碳、气态水和气态烃的浓度。在相关的实施例中,本发明是一种用于对燃烧驱动热处理系统 进行监视和控制以满足效率、环境和操作安全性目标的方法,所述燃 烧驱动热处理系统产生燃烧气体,该方法包括步骤(a)确定燃烧 气体中氧气的浓度;(b)确定燃烧气体的温度;以及(C)通过包含 以下步骤的方法来确定燃烧气体中一氧化碳、气态水和气态烃的浓 度,所述以下步骤为(i)在2-3微米波长范围内使经波长调制的光从单个可调二极管激光器通过燃烧气体导向单个光检测器,以产生燃烧气体的吸收谱;(ii)将燃烧气体的吸收谱数字化;(iii)将数 字化的吸收谱存储在数字计算机中;(iv)在数字计算机中处理数字 化的吸收谱以从计算机产生输出来指示燃烧气体中一氧化碳、气态水 和气态烃的浓度。


图1是烃加工加热器或加热炉的示意图;图2示出了图1的加热器或加热炉的多个关键燃烧参数间的关系;图3a是使用了一个可调二极管激光器气体分析系统的图1中的加热器或加热炉的示意图;图3b是使用了两个可调二极管激光器气体分析系统和一对氧化锆传感器的图1中的加热器或加热炉的示意图;图4是可调二极管激光器气体分析系统的详细示图;图5示出了在759到779nm波长区域中氧气的红外光谱;图6示出了在2280到2630nm波长区域中一氧化碳的红外光谱;图7示出了在1550到1680nm波长区域中一氧化碳的红外光谱; 图8示出了从2324到2328nm范围内C0、H2O和CH4的HITRAN光谱;图9示出了从2301.9到2302.4nm范围内CO、 H20和CH4的 HITRAN光谱;图10示出了在IIO(TC通过一个长通道收集的CO和H20的吸收光谱。
具体实施方式
测量燃烧系统中的气体种类对于安全、环境责任和高效操作都 是非常重要的。而且不仅如此,本发明对于烃加工加热炉和加热器还 具有特别的重要性。用于本发明的特定气体种类及含量测量是氧气(02)、 一氧化 碳(CO)、燃烧气体温度、水(H20)以及诸如甲垸(CH4)之类的 烃(C-H)。现在参考图l,其中示出了烃加工加热器或加热炉10的示意图, 例如乙烯裂化器、炼油加热器、炼油氢化裂化器、炼油液化催化裂化 器和发电蒸汽锅炉。加热器或加热炉IO包括外壳或外壁11、载有例 如要被加热的烃流的导管16,所述加热是通过来自燃烧器12和13 的火焰14和15进行的。现在参考图2,其中示出了对于图1的加热器或加热炉的几个关 键燃烧参数之间浓度对燃烧器气体过量百分比的图示。由本发明进行 的主要操作关系有燃烧器效率(最佳的空气/燃料比例)、燃烧系统 的排放(CO、 C02、 NOx等)、以及安全性监视(火焰丧失、燃料 富集燃烧器状况、产品导管的泄漏或破裂)。燃烧效率需求可被通常概括为通过使燃烧副产品中过量空气量 最低而使燃烧器的空气/燃料比例最优。给到燃烧器的燃料典型地由 处理所需的燃烧率(所需的热量)来决定。给到燃烧器的空气量必须 足够高以进行完全燃烧而不产生过量排放(CO等)和未燃烧燃料 (烃)。过量空气将被火焰加热,这消耗掉了一些热量,这些热量随6后将无法用于燃烧系统的主要目的(诸如裂化给料)。燃烧器的过量空气还将产生NOx排放。图2示出了效率、安全性和排放之间的关 系。排放要求是由操作者或政府权威决定的。在许多情况下,工厂 或单个加热炉/加热器对可以排放的污染物和温室气体的量有一定限 制。主要的污染物为一氧化碳(CO) 、 NOx (—氧化氮+二氧化氮) 以及二氧化碳(C02)。在一些情况下,燃烧器的燃烧率(生产率) 可由保持为低于强制排放限制的需求来限制。对污染物或产生污染物 所需条件进行测量可用来控制和减少排放。燃烧系统的安全操作要求在燃烧系统中不存在爆炸混合物。在 三种普通条件下会出现爆炸混合物。第一种,如果没有将足量空气提 供给燃烧器,则燃烧器中将存在未燃烧燃料。如果随后将过量空气从 燃烧器空气供给器或从空气泄漏处引入系统,则这些未燃烧燃料将被 点燃。第二种,如果燃烧器火焰熄灭(燃烧中断、熄火),则给到燃 烧器的空气/燃料将进入燃烧室,任何随后的点火源都能点燃这些混 合物。第三种,如果加热炉/加热器用于加工烃,产品导管中的泄漏 会将未燃烧的烃引入燃烧室中。如果存在过量空气以及点火源,则会 发生爆炸。对爆炸混合物以及其他条件进行测量能够指示不安全条件 和破坏安全的根源。现在参考图3a,其中示出了使用了一个可调二极管激光器气体 分析系统的图1中的加热器或加热炉的示意图,该可调二极管激光器 气体分析系统包括可调二极管激光器发射单元17和检测器18。现在 参考图4,其中示出了可调二极管激光器气体分析系统的详细示图。 可调二极管激光器气体分析系统包括激光调制器37,其包含可调二 极管激光器。控制单元31包含中央处理单元,其被编程来进行信号 处理(以下将详细描述)以及针对可调二极管激光器和用户界面及显 示器的温度和电流控制。对齐板29和调整杆30使得激光束41对齐。 双处理隔离窗28被安装在一个四英寸管子凸缘40上。窗28之间的 空间被大约每分钟25升的氮气在10磅每平方英寸规格的压力下吹 洗。通过炉壁安装凸缘40。7还参考图4,激光束41穿过燃烧气体并随后通过双处理隔离窗 33到达附近的红外光检测器38。窗33被安装在一个四英寸管子凸缘 39上。窗33之间的空间被大约每分钟25升的氮气在10磅每平方英 寸规格的压力下吹洗。通过炉壁安装凸缘39。对齐板34和调整杆35 使得检测器光学系统与激光束41对齐。检测器电子系统36与控制单 元31通过电缆37a进行电子通信。控制单元31还与用于控制加热炉 10的处理控制系统32进行电子通信(通过电缆38a)。图4所示系 统是能够以商业方式从Analytical Specialties of Houston, Texas得到 的。
图4所示系统是通过测量在激光经过燃烧气体时在光被吸收(消
失)的特定波长处的激光量来进行操作的。 一氧化碳、气态水和烃每 一个都具有能展现唯一精细结构的对红外光的光谱吸收。在高分辨率
的可调二极管激光器37处能够看到光谱各自的特性。
现在参考图3b,其中示出了使用了两个可调二极管激光器气体 分析系统17、 18、 19和20以及一对氧化锆传感器21和22的图1 中的加热器或加热炉的示意图。图3b所示的系统是本发明的一个优 选实施例。能够以多种方式进行氧气测量。两种常见的方法是氧化锆 探针、可调二极管激光器(TDL)光谱法,或者将二者结合起来。本 申请将结合图3b来描述将氧化锆探针与可调二极管激光器光谱法结 合起来的情况。TDL氧气分析器19、 20在从759到779纳米波长范 围内提供一个通道平均氧气浓度,以避免由于燃烧室氧气分布不均匀 而导致的误差。通过测量两个氧气吸收峰值,可计算气体温度并将其 作为输出从分析器提供出去。氧化锆探针提供对氧气的点测量,这可 被用于诊断多燃烧器系统种的局部低效。
还可以使用诸如固态传感器、非分散红外线以及可调二极管激 光器之类的多种分析方法来进行CO测量。本发明的优选实施例使用 TDL光谱法来测量燃烧气体中的CO。通过在2到2.5微米波长范围 内选择适当的吸收线,还能够用单个可调二极管激光器系统来测量 1120和烃(甲烷及其他)。还可以使用多个激光器来提供每个激光器 的单个种类测量,或是提供每激光器的单个与多个种类测量的结合。仍参考图3b,两个独立的二极管激光器分析系统17、 18、 19 和20被用于提供对02、 CO、 H20、气体温度、和未燃烧烃(包括但 不限于甲烷(CH4))的测量。TDL是光学测量方法。被测气体在特 定波长吸收了激光。所吸收的光量是气体浓度、压力、温度和光路长 度的函数。处理加热器/加热炉还具有单个或多个燃烧器12和13, 它们被用于为热处理提供热量。这些燃烧器还被供应空气和燃料,控 制这二者以提供所期望的热量、控制效率、减少排放并保证安全操作。 存在一些潜在操作条件,其中一部分条件将在下面描述,其中,气体 种类测量可被用于满足最大热容量、高效操作(最低的燃烧器燃料成 本)、安全操作(避免加热炉中出现爆炸混合物)、以及减少排放的 目的。
仍参考图3b,在燃烧器12和13被点燃并且在产品导管16中包 含了正被处理的产品这样的正常操作条件下,关键操作参数是在提供 要求热量的同时使过量空气最小、使未燃烧燃料最小、以及保持在排 放限制以内。以上列出的气体测量可用作以下用途。氧气和CO测量 将指示燃烧器效率,不将CO有效水平计算在内的最小氧气浓度可指 示最佳的整体炉用燃料效率。如果在系统中存在多个燃烧器,则通道 平均氧气测量和点源氧气测量的结合可指示局部燃烧器效率。气体温 度测量可指示产品处理可用的热量。CO也可被用作燃烧器燃料(可 燃物)未燃烧并存在于燃烧室中的燃料富集情况的先兆。C-H测量可 被用于指示存在来自于燃烧器的未燃烧燃料。H20测量可被用于计算 效率。氧气测量和CO测量的结合可被用于预报或计算诸如C02和 NOx之类的污染物排放,因为这两个污染物随着燃烧器的空气和燃 料水平的增加而增加。例如NOx是由供给到燃烧器的空气中所存在 的氮气和氧气产生的,增加的过量空气(高于最小所需水平)将导致 NOx的形成增加。
在燃烧器火焰消失或熄火所产生的条件下,气体测量可用作以 下用途。由于存在于燃烧器空气供给中的氧气未被燃烧处理所消耗, 因此氧气水平将升高。随着失去热源(火焰),气体温度水平将迅速 下降。由于气态H20作为燃烧产物而生成,因此气态H20水平将迅速下降。甲垸和其他烃的水平将大量增加。通过提供这些气体测量并 对每一个气体测量进行监视能够推测燃烧器火焰的消失。
在包含有烃的产品导管泄漏所产生的条件下,会监视到以下情 况。由于产品从导管进入燃烧室导致了燃烧室中的烃水平将升高。如 果产品导管中仍有流存在,由于流进入燃烧室导致H20水平将升高。
在这些条件下氧气水平、气体温度和CO水平也会改变并潜在地被用
于诊断和控制。
在包含有非烃流的产品导管泄漏所产生的条件下,会监视到以
下情况。由于流进入燃烧室将导致H20水平升高。在这些条件下氧 气水平、气体温度和CO水平也会改变并潜在地被用于诊断和控制。
本发明的优选实施例使用可调二极管激光器光谱仪来测量氧 气、 一氧化碳、烃(诸如甲烷)、水蒸气和温度。这些测量可被用作 许多燃烧驱动的热处理系统中, 一个示例为炼油处理加热器。
TDL光谱法使用可调二极管激光器作为光源。典型地在恒定温 度下控制该激光器以建立过程波长位置,随后使用基于控制电子学的 电流斜坡来调制该激光器,该调制的结果是在重复范围内(即,针对 氧气的760nm到761nm)进行波长扫描。调制后的激光穿过波束成 形光学系统以及随后的第一处理隔离窗,通过被测量的气体,其中如 果被测量气体存在,则其吸收一部分通过处理传送来的红外光,再经 过另一处理隔离窗,最后到达针对被用于测量的波长而选择的适当的 光敏检测器。由适当的数据获取系统来采样检测器数据,随后由分析 器数字中央处理单元(CPU)来处理该结果。这样的装置的一个示例 是可从Analytical Specialties, Inc of Houston, Texas得至lj的TruePeak Tunable Diode Laser analyze"
用于测量的每一种气体都具有唯一的红外光吸收。图5中示出 一个示例,这是针对氧气的红外吸收光谱。通过选择一个或多个特定 吸收峰值、输入激光经处理所传输的距离以及气体温度和压力,能够 计算和报告通道平均浓度。该通道平均浓度基本上计算了在激光束中
被测量的气体的分子数。通道平均测量与点源测量(使用氧化锆传感 器)相比的一个优点在于测量了所有的分析物,而点传感器只测量一
10小部分的处理,如果分析物被分布在整个处理中,则点测量可能无法 表示整个系统。在一些情况下,通道平均测量和一个或多个点源测量 都是可以被用来例如进行诊断燃烧器故障的。如果要求使用通道测量 和点测量,则可如图3b所示使用这两种测量的结合。
可通过选择图5中所示从759到779nm范围内的任意合适的吸 收峰值来利用这种类型的分析装置进行氧气测量。
还可通过在两个适当的氧气峰值(例如760.55nm和760.56nm) 扫描激光来推断气体温度。氧气吸收峰值强度与气体温度密切相关, 如果选择了谱线强度比温度非常不同的两条谱线,则对这两条谱线进 行测量并比较它们的谱线强度将允许对气体温度进行推测。还可将该 方法用于其他分析物(例如甲烷),本实施例使用氧气峰值来进行温
以类似方法执行一氧化碳(CO)的测量。图6和图7示出了在 两个不同波长区域内的吸收CO峰值。取决于CO测量所需的敏感性 和二极管激光器的成本来选择波长区域。
本发明优选实施例使用22卯到2580nm波长范围内的CO峰值。 将概述两个特定示例,因为它们特别满足在高温下的燃烧分析要求。 对接近燃烧器自身的CO进行测量具有这样的优点,即在最接近燃烧 器时CO水平通常更高,这使得测量和控制更简单。随着燃烧气体进 一步从持续反应的燃烧器系统行进时,该反应导致了低CO水平进一 步来自低温带的燃烧器。此外还减少了测量响应时间。
图8示出了从2324到2328nm范围内CO、H20和CH4的HITRAN 光谱。该波长区域作为一个示例示出了单个二极管激光器可被波长调 制以覆盖CO、 1120和多烃(甲垸在此被用做示例)的吸收波长的区 域。
图9示出了从2301.9至U 2302.4nm范围内CO、 H20和CH4白勺
HITRAN光谱。该波长区域作为另一个示例示出了单个二极管激光器 可被波长调制以覆盖CO、 1120和多烃(甲垸在此被用做示例)的吸 收波长的区域。
图10示出了在U0(TC通过一个长通道在与图9近似相同的波长范围内(2301.9到2302.4nm)釆集的吸收光谱,其中平滑曲线关于 CO和H20 ,而三角标记曲线关于H20 。通过将标准HITRAN光谱与 由操作加热炉测得的光谱进行比较能够看出,背景H20吸收模式与预 期不同。这主要是由于HITRAN最初被设计用于大气监视应用而对于 高温条件并不十分精确。由于长通道(20米)的缘故,背景H20吸收 受CO吸收的影响是显著的。在保持测量完整性的同时,基于简单峰 值高度测量或峰值区域积分的浓度预报是不可能的(或者至少是非常 困难的)。
CLS(经典最小平方)信号处理是对本发明中这一问题的优选解 决方案。优选的是,通过数字计算机来进行信号处理,优选的数字计 算机是可被编程来对存储在数字计算机中的信号执行以下类型分析 的通用数字计算机。CLS是一种使用数学模型来预测每一成分的浓 度水平的多元分析。多元分析包括经典最小平方(CLS)、主成分回 归(PCP)和部分最小平方(PLS) 。 CLS可能是最简单的。需要定 标来得到每种成分的全部光谱,随后为未来的混合测量建立数学模 型。定标是构建数学模型来使仪表输出与样本特性相关的处理。预报 是使用模型来预报给出仪表输出的样本特性的处理。例如,在给定波 长的吸收率可以与分析物浓度相关。为了构建模型,测量仪表对已知 浓度水平的采样的响应并估算它们的数学关系,这使得仪表响应与化 学成分的浓度相关。该模型可被用于使用从未来样本测得的仪表响应 来预报这些样本中的化学成分的浓度。可以考虑多种仪表响应,并且 能够预报多个样本特性。在许多应用中,来自仪表的一种响应与单化 学成分的浓度有关。这被称为单变定标,因为对每个样本只使用一个 仪表响应。多元定标是使来自仪表的多个响应与样本的一个或多个特 性相关的处理。样本例如可以是过程流中多种化学成分的混合,并且 目标是由红外测量来预报流中不同化学成分的浓度水平。
针对CO、H20和诸如CH4之类的特定的烃进行的对穿过各个吸 收峰值的激光波长进行扫描,能够对这些成分进行测量和报告。可能 需要多元模型并将其用于增强测量。当燃烧气体的温度大约为1100 。C时特别推荐以下特定波长(单位为纳米)2302.1; 2303.9; 2319.1;2323.6; 2325.2; 2326.8; 2331.9; 2333.7; 2335.5; 2342.8; 2348.2; 2356.1; 2363.1以及2373.1。当燃烧气体的温度大约为300°C时特别 推荐以下特定波长(单位为纳米):2307.8; 2320.6; 2323.6; 2331.9; 2339.3; 2353.9; 2360.8; 2368.0; 2373.1; 2389.3以及2401.0。因此
有多个可能的波长允许对CO、 1120和烃(诸如CH4)进行同步确定。 最佳波长的选择取决于应用并由试验的合理程度来确定。如期望的灵 敏度、光学通道长度(燃烧炉尺寸)和燃烧气体温度之类的因素是可 变的。
本发明优选实施例的核心特征是在单个分析系统中对氧气、温 度、 一氧化碳、水蒸气和/或烃进行监视。这些测量的结合以及对影 响这些气体测量的处理条件的理解不仅能够使得燃烧效率最优、排放 减少以及安全性监视,而且还能够对各种条件进行分辨。本发明的一 个实施例能够分辨空气富集或燃料富集条件,并且能够分辨如产品导 管泄漏与燃烧器熄火之类的不安全条件。本发明另一个包含了附加点 氧气测量的实施例允许了在多燃烧器系统中进行局部诊断。
结论
总之,容易明了尽管以上结合本发明优选实施例对本发明进行 了描述,能够理解本发明并不限于此,而是意在覆盖包含于权利要求 所定义的发明范围内的全部修改、变形及等同物。
权利要求
1.一种用于确定燃烧气体中一氧化碳、气态水和气态烃的浓度的化学分析方法,该方法包括步骤(a)在2-2.5微米波长范围内使经波长调制的光从单个可调二极管激光器通过燃烧气体导向光检测器,以产生燃烧气体的吸收谱;(b)将燃烧气体的吸收谱数字化;(c)将数字化的吸收谱存储在数字计算机中;(d)在数字计算机中处理数字化的吸收谱以从计算机产生输出来指示燃烧气体中一氧化碳、气态水和气态烃的浓度。
2. 如权利要求1所述的化学分析方法,其中在步骤(d)中所述处理包括多元分析。
3. 如权利要求1所述的化学分析方法,其中所述燃烧气体是由从以下设备构成的组中中选出的一个所进行的处理而产生的乙烯裂化器、炼油加热器、炼油氢化裂化器、炼油液化催化裂化器和发电蒸 汽锅炉。
4. 一种用于对燃烧驱动热处理系统进行监视和控制以满足效率、环境和操作安全性目标的方法,所述燃烧驱动热处理系统产生燃烧气体,该方法包括步骤(a)确定燃烧气体中氧气的浓度;(b) 确定燃烧气体的温度;以及(c)通过包含以下步骤的方法来确定燃 烧气体中一氧化碳、气态水和气态烃的浓度,所述以下步骤为(i)在2-3微米波长范围内使经波长调制的光从单个可调二极管激光器 通过燃烧气体导向单个光检测器,以产生燃烧气体的吸收谱;(ii) 将燃烧气体的吸收谱数字化;(iii)将数字化的吸收谱存储在数字计 算机中;(iv)在数字计算机中处理数字化的吸收谱以从计算机产生 输出来指示燃烧气体中一氧化碳、气态水和气态烃的浓度。
5. 如权利要求4所述的方法,其中使用一个或多个点源氧气传感器来确定燃烧气体中的氧气浓度。
6. 如权利要求4所述的方法,其中通过光谱方式来确定燃烧气 体中的氧气浓度和燃烧气体温度。
7. 如权利要求4所述的方法,其中所述燃烧气体是由从以下设备构成的组中中选出的一个所进行的处理而产生的乙烯裂化器、炼 油加热器、炼油氢化裂化器、炼油液化催化裂化器和发电蒸汽锅炉。
8. 如权利要求4所述的方法,其中燃烧驱动热处理系统利用一个或多个烃燃烧器,并且其中所述确定步骤用于控制燃烧器的空气和 燃料进给速度以改善效率和减少排放。
9. 如权利要求4所述的方法,其中所述确定步骤用于指示燃烧 系统中的不安全条件。
10. 如权利要求4所述的方法,其中燃烧驱动热处理系统利用 多个烃燃烧器和一个处理导管,并且其中所述确定步骤被用来确定从 是否有一个或多个燃烧器是富集的、是否有一个或多个燃烧器已熄 火、以及处理导管是否泄漏构成的组中选择出的一个条件。
11. 如权利要求4所述的方法,还包括使用点源一氧化碳传感 器来确定燃烧气体中的一氧化碳。
全文摘要
一种用于确定燃烧气体中一氧化碳、气态水和气态烃的浓度的化学分析方法。该方法包括以下步骤(a)在2-2.5微米波长范围内使经波长调制的光从单个可调二极管激光器通过燃烧气体导向光检测器,以产生燃烧气体的吸收谱;(b)将燃烧气体的吸收谱数字化;(c)将数字化的吸收谱存储在数字计算机中;(d)在数字计算机中处理数字化的吸收谱以从计算机产生输出来指示燃烧气体中一氧化碳、气态水和气态烃的浓度。
文档编号G01N21/00GK101663573SQ200880006184
公开日2010年3月3日 申请日期2008年2月22日 优先权日2007年2月26日
发明者唐纳德·L·怀亚特, 捷 朱, 特雷弗·S·尼特尔, 艾伦·I·考伊 申请人:横河电机美洲有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1