形状测定装置及形状测定方法

文档序号:6143224阅读:174来源:国知局
专利名称:形状测定装置及形状测定方法
技术领域
本发明涉及一种利用光切断法测定被检测物的三维形状的测定装置及测定方法。
背景技术
一直以来提出了各种测定工业制品等物体的表面形状的技术,其中之一是光学式的三维形状测定装置。光学式的三维形状测定装置也存在各种方式、结构,其中包括以下技术向被检测物投影预定的投影图案(狭缝光或条纹状)并对被检测物摄像,根据该摄像图像计算各图像位置(各像素)距离基准面的高度,测定被检测物的三维表面形状(参照专利文献I)。
在这种装置中,例如构成如下,将由一束狭缝光构成的狭缝状投影图案投影到被检测物表面,在每次使狭缝状投影图案扫描被检测物表面的所有区域时从与投影方向不同的角度拍摄投影到被检测物上的狭缝状投影图案,由该拍摄到的被检测物表面的摄像图像,按照狭缝状投影图案的长边方向的每个像素利用三角测量的原理等计算被检测物表面距离基准平面的高度,求出被检测物表面的三维形状。
图9表示了该构成例,从狭缝状图案投影部51投射狭缝光52,在载置在支撑台56上的被检测物53的表面投影狭缝状投影图案。投影到被检测物53的表面的狭缝状投影图案根据被检测物53的表面三维形状而变形,通过支撑台移动装置(未图示)使支撑台56在与狭缝状投影图案的长边方向不同的方向(例如,图中箭头的方向)移动,在每次使狭缝状投影图案扫描被检测物53表面的所有区域时,由摄像装置55 (例如CCD传感器)经由摄像透镜54从与投影方向不同的角度拍摄变形了的被检测物53的表面,发送到运算处理装置57,在此进行摄像图像数据的计算处理。在运算处理装置57中,通过这样拍摄到的被检测物表面的摄像图像数据,按照狭缝状投影图案的长边方向的每个像素利用三角测量的原理等计算被检测物距离基准平面的高度,进行求出被检测物表面的三维形状的运算处理。
专利文献1: JP特开2000-9444号公报

发明内容
(发明要解决的问题)但是,在利用上述狭缝光投影法的三维测定中存在如下问题,对于向被检测物表面投影的由一束狭缝光构成的狭缝状投影图案,拍摄的狭缝图像当然拍摄一束的狭缝图像,仅成像面上的狭缝图像成像的像素具有信息,进而具有较多的剩余像素。另外,由于狭缝状投影图
案通过一定的亮度分布被投影到被检测物表面,因此根据被检测物表面的性质(表面的倾斜、材质等)的不同,存在着无法获取足够用于被检测物的形状测定的亮度分布的狭缝图像的问题,进而,增大投影系统和摄像系统所成的角度时能够提高测定精度,但存在遮挡增大、无法测定的部分增加的问题。
本发明鉴于上述问题,其目的在于提供一种测定装置及测定方法,能够有效利用成像面上的剩余像素,不受被检测物表面的性质的影响地获取狭缝图像或者减少遮挡地获取狭缝图像,进行正确的三维形状测定。
用于解决问题的手段
为了解决上述问题,本发明的形状测定装置构成为,包括投影部,向被检测物投影由一束狭缝光构成的狭缝状投影图案;狭缝像形成部,由上述投影部投影的上述狭缝状投影图案在上述被检测物上被反射,该反射来的图案图像在与狭缝基线方向垂直的方向上分离,形成多个狭缝像;摄像部,对在上述狭缝像形成部分离并成像的上述多个狭缝像进行拍摄,生成多个狭缝图像;位置调整部,使上述狭缝状
投影图案和上述被检测物在与上述狭缝状投影图案的狭缝基线方向不
同的方向上相对移动;狭缝图像选择部,从由上述摄像部得到的上述多个狭缝图像中,按照狭缝基线方向的每个像素比较各狭缝图像的亮度,按照狭缝基线方向的每个像素选择亮度最适于求出上述被检测物的形状的狭缝图像,取得用于求出上述被检测物的形状的狭缝图像数据;以及形状运算部,利用通过上述位置调整部而相对移动的上述狭缝状投影图案相对于上述被检测物的相对位置以及由上述狭缝图像选择部得到的上述狭缝图像数据,计算上述被检测物的形状。
优选在上述摄像部中,上述多个狭缝图像,第一狭缝图像和使上述第一狭缝图像的亮度分布变化的至少第二狭缝图像在与狭缝基线方向垂直的方向上分离并成像。
优选在上述摄像部中,上述多个狭缝图像,第一狭缝图像和从比上述第一狭缝图像靠近投影光轴侧的位置拍摄的第二狭缝图像在与狭缝基线方向垂直的方向上分离并成像。
优选在上述摄像部中,上述多个狭缝图像,第一狭缝图像和从比上述第一狭缝图像靠近投影光轴侧的位置拍摄且以比上述第一狭缝图像小的数值孔径成像的第二狭缝图像在与狭缝基线方向垂直的方向上分离并成像。
优选在上述摄像部中,使成像面相对于从上述投影部投影的上述狭缝状投影图案在上述被检测物上反射的反射光的光轴倾斜,从而使上述被检测物的焦点面与上述狭缝状投影图案的光轴一致,在上述成像面上将聚焦位置上的至少上述第一狭缝图像成像。
优选通过上述投影部,与上述被检测物同样地在上述校正用板上投影上述狭缝状投影图案,利用由上述摄像部得到的多个校正用狭缝图像,取得上述多个狭缝图像的每个狭缝图像的形状校正系数。
另外,本发明涉及的形状测定方法,利用形状测定装置测定被检测物的三维形状,上述形状测定装置包括投影部,向上述被检测物投影由一束狭缝光构成的狭缝状投影图案;狭缝像形成部,由上述投影部投影的上述狭缝状投影图案在上述被检测物上被反射,该反射来的图案图像在与狭缝基线方向垂直的方向上分离,形成多个狭缝像;摄像部,对在上述狭缝像形成部分离并成像的上述多个狭缝像进行拍摄,生成多个狭缝图像;位置调整部,使上述狭缝状投影图案与上述被检测物在与上述狭缝状投影图案的狭缝基线方向不同的方向上相对移动,该方法的特征在于,通过以下步骤,求出上述被检测物的三维形状由上述投影部向上述被检测物投影上述狭缝状投影图案的步骤;由上述摄像部拍摄在上述狭缝像形成部分离并成像的上述多个狭缝像,生成多个狭缝图像的步骤;从上述多个狭缝图像中,按照狭缝基线方向的每个像素比较各狭缝图像的亮度,按照狭缝基线方向的每个像素选择亮度最适于求出上述被检测物距离基准面的高度的狭缝图像,取得用于求出上述被检测物距离基准面的高度的狭缝图像数据的步骤;以及利用通过位置调整部而相对移动的上述狭缝状投影图案相对于上述被检测物的相对位置以及上述狭缝图像数据,进行上述被检测物的形状测定的步骤。
优选在上述摄像部中生成上述多个狭缝图像的步骤中,第一狭缝图像和使上述第一狭缝图像的亮度分布变化的至少第二狭缝图像在与狭缝基线方向垂直的方向上分离并成像。
优选在上述摄像部中生成上述多个狭缝图像的步骤中,第一狭缝图像和从比上述第一狭缝图像靠近投影光轴侧的位置拍摄且以比上述第一狭缝图像小的数值孔径成像的第二狭缝图像在与狭缝基线方向垂直的方向上分离并成像。优选在上述摄像部中生成上述多个狭缝图像的步骤中,使上述摄 像部中的成像面相对于从上述投影部投影的上述狭缝状投影图案在上 述被检测物上反射的反射光的光轴倾斜,从而使上述被检测物的焦点 面与上述狭缝状投影图案的光轴一致,在上述成像面上将聚焦位置上 的至少上述第一狭缝图像成像。
优选进行上述被检测物的形状测定的步骤包括如下步骤与上述 被检测物同样地由上述投影部在上述校正用板上投影上述狭缝状投影 图案的步骤;由上述摄像部对在上述狭缝像形成部中分离并成像的多 个校正用狭缝像进行拍摄,生成多个校正用狭缝图像的步骤;由上述 多个校正用狭缝图像求出上述校正用板距离基准面的高度的步骤;取 得由上述摄像部得到的上述多个狭缝图像的每个狭缝图像的形状校正 系数的步骤;以及利用上述形状校正系数对由上述多个狭缝图像求出 的上述被检测物距离基准面的高度进行校正,取得正确的上述被检测 物的形状测定结果的步骤。
发明效果
根据如上所说明的结构的本发明,能够提供一种高计测精度的三 维形状测定装置,对于被由一束狭缝光构成的狭缝状投影图案投影的 被检测物,将多个狭缝图像在与狭缝基线方向垂直的方向上分离并成 像,有效地利用成像面上的剩余像素,不受被检测物表面的性质的影 响地取得狭缝图像或者尽量减少遮挡地获取狭缝图像,基于三角测量 的原理求出被检测物的三维形状。


图1是表示本发明的第一实施方式的形状测定装置的结构的概要 结构说明图,图1 (A)是装置整体的说明图,图1 (B)是表示狭缝状 图案投影部的内部结构的说明。
图2是表示上述第一实施方式的形状测定方法的流程图。图3是表示上述第一实施方式的摄像狭缝图像的说明图。 图4是表示上述第一实施方式的校正用狭缝图像的说明图。
图5是表示本发明的第二实施方式的形状测定装置的结构的概要
结构说明图。
图6是表示上述第二实施方式的形状测定方法的流程图。 图7是表示上述第二实施方式的摄像狭缝图像的说明图。 图8是表示上述第一实施方式的平行平面板的调整机构的说明图。
图9是表示现有的形状测定装置的结构的概要结构说明图。 图IO是表示摄像元件的位置和受光光量的关系的图表。
具体实施例方式
以下对本发明的形状测定装置及形状测定的优选的各实施方式进 行说明。
图1表示本发明的第一实施方式的形状测定装置的概要结构,首 先参照图1对该形状测定装置进行说明。
该形状测定装置如图1 (A)所示包括由计算机构成的中央控制 部11;向被检测物20、校正用板30投影狭缝光2的狭缝状图案投影 部l;载置被检测物20、校正用板30的XYZ载物台(支撑台)6;拍 摄来自狭缝状图案投影部1的狭缝光2的反射图案图像的摄像部;驱 动XYZ载物台6 (或上述摄像部、或双方),使其相对于上述摄像部 在XYZ方向上移动的XYZ载物台驱动部12;处理来自上述摄像部的 图像数据并计算被检测物20的形状的运算处理装置7;以及显示由运 算处理装置7求出的被检测物20的形状或形状数据(值)的显示部13。 该形状测定装置由中央控制部11控制。另外,XYZ载物台6构成为可 以将被检测物20在XYZ方向上移动。校正用板30距离XYZ载物台6 的台表面的高度H是已知的,用于形状测定结果的校正。狭缝状图案投影部1的内部结构如图1 (B)所示包括光源la
(例如投影仪);配置在光源la的光轴上、用于通过光源la的光形成 狭缝光2的图案形成单元lb;以及用于将狭缝光2相对于被检测物20 聚光的投光透镜lc。由狭缝状投影图案投影部1投射的狭缝光2向被 检测物20、校正用板30的表面投影狭缝状投影图案。
摄像部包括由远心光学系统构成的摄像透镜(组)3;将在摄像
透镜(组)3成像的反射图案图像分离成多个,用于生成反射图案图像
的平行平面板(平行平板玻璃)4;以及对由摄像透镜(组)3和平行
平面板4分离成多个并成像的反射图案图像进行拍摄的摄像装置5 (例 如二维CCD元件)。由摄像装置5拍摄的图像数据发送到运算处理装 置7,在此进行下文说明的图像运算处理,进行被检测物20的形状测 定。另外,摄像透镜3形成从被检测物20、校正用板30反射的主光线 在光轴外也与光轴平行的光学系统(物体侧远心光学系统)。
另外,该形状测定装置构成为,对由狭缝状图案投影部1投影了 狭缝光2的被检测物20、校正用板30的表面的狭缝状投影图案进行拍 摄的摄像装置5的摄像面与摄像透镜3的主平面(通过摄像透镜3的 中心且垂直于光轴的平面)的交点,位于狭缝光2的光轴上(形成 Shine-proof(发光检验)光学系统)。因此,在摄像装置5中,可以始终 在对焦位置上拍摄由狭缝状投影图案投影部1投影了狭缝光2的被检 测物20、校正用板30的表面的狭缝状投影图案。
狭缝状图案投影部1、摄像部由一个框架一体固定而成,被检测 物20、校正用板30被载置并支撑在XYZ载物台6上,设有使该XYZ 载物台6相对于将狭缝状图案投影部1、摄像部一体结合的框架在与光 轴方向不同的方向上相对移动的XYZ载物台驱动部12。因此,每次由 XYZ载物台驱动部12移动XYZ载物台6时,由狭缝状图案投影部1 向被检测物20、校正用板30投影狭缝状投影图案,其结果是可以在被 检测物20、校正用板30的表面整个区域进行投影。另外,在XYZ载物台驱动部12上安装有用于获得XYZ载物台6及XYZ载物台6上载 置的被检测物20在台移动方向、即狭缝状投影图案在扫描方向的位置 的编码器。
运算处理装置7包括狭缝图像选择部8,从由摄像图像5得到 的摄像图像中按照每个像素选择对计算被检测物20的表面距离基准平 面(XYZ载物台6的台表面)的高度来说为最佳的亮度的狭缝图像; 形状运算部9,利用从狭缝图像选择部8得到的狭缝图像数据和来自安 装在XYZ载物台驱动部12上的编码器的信号(表示狭缝状投影图案 在被检测物20表面上的扫描方向的位置的信号),进行被检测物20 的形状测定;以及形状校正部10,向校正用板30投影与被检测物20 同样的狭缝状投影图案,根据由摄像装置5得到的摄像图像,计算校 正用板30的表面距离台表面的高度,取得形状校正系数,得到被检测 物20的正确的形状测定结果。
以下参照图2的流程图对利用如上构成的形状测定装置进行被检 测物20的形状测定的方法进行说明。
在该测定时,使从狭缝状图案投影部1投射的狭缝光2照射到被 检测物20,在被检测物20的表面投影狭缝状投影图案(步骤Sl)。 这样被投影并从被检测物20的表面反射的反射光(也包含散射光)经 由摄像透镜3及平行平面板4而被聚光,通过摄像装置5对投影到被 检测物20的表面上的狭缝状投影图案进行拍摄(步骤S2)。
平行平面板4的上表面和下表面均形成为反射率为50%的半透明 反射镜,相对于光轴具有倾斜角,位于摄像部内的摄像透镜3和摄像 装置5之间。因此,向被检测物20的表面投影狭缝状投影图案,从被 检测物20的表面反射并由摄像透镜3聚光的光通过平行平面板4,但 此时,在与作为狭缝状投影图案的长边方向的狭缝基线方向垂直的方 向上,等间隔地分割成直接通过平行平面板4的第一反射光;在上表面及下表面各进行一次反射,相对于第一反射光亮度减光为1/4的第 二反射光;在上表面及下表面各进行二次反射,相对于第一反射光亮 度减光为1/16的第三反射光(参照图1及图3)。实际上,还存在第 四、第五反射光,但其相对于第一反射光亮度减光到1/64 (第四反射 光)以下,不适用于进行被检测物20的形状测定,因此在此仅记载至 第三反射光。另外,狭缝基线方向是狭缝状投影图案投影到平面上时 狭缝状投影图案的长边方向。
如图3所示,如上所述通过平行平面板4并被分割的光(第一反 射光、第二反射光、第三反射光)由摄像装置5在与狭缝基线方向垂 直的方向上等间隔地分离并拍摄,能够在摄像装置5中获取第一狭缝 图像Sll、第二狭缝图像S12、第三狭缝图像S13。
平行平面板4相对于光轴的倾斜角决定了第一、第二、第三狭缝 图像(Sll、 S12、 S13)在与狭缝基线方向垂直的方向上的各间隔距离。 必须以使该间隔距离满足如下条件的方式来决定上述倾斜角取足够 大的间隔距离,以达到相邻狭缝图像不会由于被检测物20的表面的倾 斜造成的各狭缝图像的宽度的影响而重叠的程度。但是,若增大上述 倾斜角则各狭缝图像的间隔距离变大,而存在着从光学的像差的观点 来看并不优选的问题。例如,可以在平行平面板4上设置旋转机构以 使上述倾斜角可变,根据被检测物表面的性质(表面的倾斜等)将上 述倾斜角变为必要的最小限度的倾斜角度,从而能够进行更适当的形 状测定。另外,也可以组合2片半透明反射镜或在平行平面板4内部 填充液体,从而使平行平面板4的厚度可变,对于表面的倾斜小的被 检测物的测定,可以减小第一、第二、第三狭缝图像的对焦模糊并进 行测定。
由摄像装置5得到的摄像狭缝图像被发送到运算处理装置7。在 运算处理装置7内的狭缝图像选择部8中,如图3所示,从由摄像图 像5拍摄的第一、第二、第三狭缝图像(Sll、 S12、 S13)中,按照狭缝基线方向的每个像素选择亮度最适于计算被检测物20的表面距离基
准平面(XYZ载物台6的台表面)的高度的狭缝图像(步骤S3)。第 一、第二、第三狭缝图像(Sll、 S12、 S13)是分别对经过平行平面板4 减光了的反射光成像而得到的像进行拍摄而得到的,但在各狭缝图像 中,由于被检测物20的表面的性质(表面的倾斜、材质等)的不同, 在狭缝基线方向的每个像素上亮度也不同。需要从这些狭缝图像中, 按照狭缝基线方向的每个像素选择在与基线方向交叉的方向上的数像 素的像素信号都不饱和的区域的像素。具体来说,选择能够得到具有 图10所示的光量分布的图像的像素。图10的横轴表示在投影有狭缝 图像的区域中与狭缝基线方向交叉的方向上的像素的位置,纵轴表示 受光光量。并且,图中的圆圈表示各像素实际受光的光量。这样一来, 在与狭缝基线方向交叉的方向上,从狭缝基线方向上找出了各像素的 受光光量在饱和亮度值以下的像素。这样,需要按照狭缝基线方向的 每个像素选择狭缝图像(在图3中,选择圆圈内A1 A3的狭缝图像)。
每次通过XYZ载物台驱动部12移动XYZ载物台6(XYZ载物台 6上的被检测物20)以从狭缝状图案投影部1向被检测物20的表面整 个区域投影狭缝状投影图案时,如上所述按照狭缝基线方向的每个像 素选择最适合的亮度的狭缝图像,在被检测物20的表面整个区域取得 用于计算被检测物20的表面距离台表面的高度的狭缝图像数据(步骤 S4)。
在狭缝图像选择部8中,来自安装在XYZ载物台驱动部12上的 编码器的信号(表示载置在XYZ载物台6上的被检测物20在台移动, 方向、即狭缝状投影图案在被检测物20上的扫描方向的位置的信号) 与所选择的亮度最适于计算被检测物20的表面距离台表面的高度的狭 缝图像数据一并被发送到运算处理装置7内的形状运算部9,利用三角 测量的原理,进行被检测物20的形状测定(步骤S5)。此时,在每个 狭缝基线方向上求出狭缝图像的正确的中心位置,然后利用三角测量 的原理进行形状测定。具体来说,如图10所示,由各像素的实际得到的受光光量求出连接各圆圈的曲线,以具有正规分布的亮度分布。并 且,将相当于该曲线的最大值的位置求出,作为狭缝图像的中心位置。 这样一来,可以进行利用了正确的三角测量的原理的形状测定。在受 光光量饱和、或受光光量非常小的情况下,很难求出这种曲线,因此, 像本实施方式这样,由受光光量阶段性地变化的狭缝图像选择能够得 到最佳的光量的部分来进行形状测定,从而可以进行正确的形状测定。
在XYZ载物台6上,与被检测物20—并载置有校正用板30 (距 离XYZ载物台6的台表面的高度H为已知的),通过XYZ载物台驱 动部12在被检测物20的表面上扫描狭缝状投影图案时,在校正用板 30上也同样地投影狭缝状投影图案。从狭缝状图案投影部1投射的狭 缝光2照射到校正用板30,在校正用板30的表面投影狭缝状投影图案, 来自校正用板30表面的反射光通过摄像透镜3及平行平面板4聚光, 通过摄像装置5对投影到校正用板30表面的狭缝状投影图案进行拍 摄。
校正用板30表面(投影有狭缝状投影图案的面)如图4所示,为 了应对由于被检测物20的表面性质(表面的倾斜、材质等)的不同引 起的各反射光的亮度的不同,在与狭缝基线方向垂直的方向上设有层 次(在校正用板30表面设有层次,以得到层次I与第一狭缝图像的被 选择的部分A1、层次II与第二狭缝图像的被选择的部分A2、层次III 与第三狭缝图像的被选择的部分A3分别对应的摄像图像),在层次I、 II、 III中,第I、第II、第III校正用狭缝图像分别由摄像装置5拍摄。
通过摄像装置5在各层次位置上得到的第I、第II、第III校正用 狭缝图像,被发送到运算处理装置7内的形状校正部10。形状校正部 10用于校正位于被检测物20和摄像装置5之间的光学系统(摄像透镜 3、平行平面板4)的歪斜。通过形状校正部IO利用与如上所述为了进 行被检测物20的形状测定而选择的第一、第二、第三狭缝图像(图3 中的A1 A3的狭缝图像)的亮度对应的各校正用狭缝图像(在图4中,选择圆圈内的B1 B3的狭缝图像),计算校正用板30的表面距 离基准平面(XYZ载物台6的台表面)的高度,对于各狭缝图像的选 择部分,取得相对于已知的校正用板的表面距离台表面的高度H的比 例,作为形状校正系数(步骤S6)。
艮口,在上述说明中,作为为了进行被检测物20的形状测定而选择 的第一狭缝图像(图3中Al的狭缝图像)所对应的形状校正系数Ch H/L1,第二狭缝图案(图3中A2的狭缝图像)所对应的形状校正系数 C2=H/L2,第三狭缝图像(图3中A3的狭缝图像)所对应的形状校正 系数C3二H/L3。在此,Ll、 L2、 L3是利用与第一、第二、第三狭缝图 像(图3中的Al、 A2、 A3的狭缝图像)的亮度对应的各校正用狭缝 图像(图4中的B1、 B2、 B3的狭缝图像)计算出的校正用板30的表 面距离台表面的高度。
如上所述,利用由狭缝图像选择部8选择的狭缝图像数据,利用 各形状校正系数对由形状运算部9计算出的被检测物20的表面距离台 表面的高度进行校正,取得被检测物20的正确的形状测定结果(步骤 S7)。
如上所述,来自被检测物20的表面的反射光将由摄像透镜3聚光 的光经由平行平面板4分割成各自亮度不同的光束,对在与狭缝基线 方向垂直的方向上距离预定间隔而成像的各狭缝图像,由摄像装置5 进行拍摄。这样,利用从由摄像装置5拍摄的各狭缝图像中按照狭缝 基线方向的每个像素选择出的亮度最适于计算被检测物20的表面距离 台表面的高度的狭缝图像而得到狭缝图像数据,以及来自安装在XYZ 载物台驱动部12上的编码器的狭缝状投影图案在被检测物20表面上 的扫描方向的位置信号,进行被检测物20的形状测定。进而,利用距 离XYZ载物台6的台表面的高度H已知的校正用板30,取得与为了 进行被检测物20的形状测定而选择的各狭缝图像的亮度对应的形状校 正系数,利用形状校正系数对上述求出的被检测物20的表面距离台表面的高度进行校正,从而可以取得被检测物20的正确的形状测定结果。 因此,对于由狭缝状图案投影部1投影了由一束狭缝光2构成的
狭缝状投影图案的被检测物20,可以在摄像部中,利用摄像透镜3和 平行平面板4,在与狭缝基线方向垂直的方向上分离并成像多个狭缝图 像,有效地利用成像面中的剩余像素,而不受被检测物表面性质影响 地获取狭缝图像,并基于三角测量的原理求出被检测物20的三维形状。
在下文中,图5表示了本发明实施的第二方式的形状测定装置的 概略结构,首先,参照图5说明该形状测定装置。另外,在以下的本 发明实施的第二方式中,对于具有与上述实施的第一方式相同的功能 的各部件标以相同的部件标号,并省略其说明。
该形状测定装置包括由计算机构成的中央控制部11;向被检测 物20、校正用板30投影狭缝光2的狭缝状图案投影部1;载置被检测 物20、校正用板30的XYZ载物台(支撑台)6;对来自狭缝状图案投 影部1的狭缝光2的反射图案图像进行拍摄的摄像部;驱动XYZ载物 台6 (或上述摄像部、或双方),使其相对于上述摄像部在XYZ方向 上移动的XYZ载物台驱动部12;处理来自上述摄像部的图像数据并计 算被检测物20的形状的运算处理装置7;以及显示由运算处理装置7 求出的被检测物20的形状或形状数据(值)的显示部13,该形状测定 装置由中央控制部ll控制。
摄像部包括由远心光学系统构成的第一摄像透镜3a;设置在比 第一摄像透镜(组)3a靠近狭缝光2的光轴(投影光轴)的位置的第 二摄像透镜(组)3b;以及对分别经由第一摄像透镜3a及第二摄像透 镜3b形成的反射图案图像进行拍摄的摄像装置5 (例如二维CCD元 件)。由摄像装置5拍摄的图像数据被发送到运算处理装置7,在此进 行如下所述的图像运算处理,进行被检测物20的形状测定。另外,第 一摄像透镜3a及第二摄像透镜3b形成为从被检测物20、校正用板30反射的主光线在光轴外也是与光轴平行的结构(物体侧远心光学系 统)。
另外,该形状测定装置构成为,对由狭缝状图案投影部1投影了
狭缝光2的被检测物20、校正用板30的表面的狭缝状投影图案进行拍 摄的摄像装置5的摄像面与第一摄像透镜3a的主平面的交点,位于狭 缝光2的光轴上(形成Shine-proof光学系统)。因此,在摄像装置5 中,可以始终在对焦位置上拍摄由狭缝状投影图案投影部1投影了狭 缝光2的被检测物20、校正用板30的表面的狭缝状投影图案,第一摄 像透镜3a的数值孔径NAl (例如NAh0.02 0.03)可以取较大的值。
第二摄像透镜3b具有比第一摄像透镜3a小的数值孔径NA2 (例 如,NA2=0.01 0.005),位于比第一摄像透镜3a靠近狭缝光2的光轴 (投影光轴)的位置。第二摄像透镜3b没有形成Shine-proof光学系统, 但包括第二摄像透镜3b的摄像部构成被检测物20侧远心光学系统, 因此,第二摄像透镜3b的景深可以取比较深的值。
以下参照图6的流程图对利用如上构成的形状测定装置进行被检 测物20的形状测定的方法进行说明。
该测定时,使从狭缝状图案投影部1投射的狭缝光2照射到被检 测物20,并在被检测物20表面投影狭缝状投影图案(步骤S1)。
如图7所示,这样被投影并从被检测物20的表面反射,经由第一 摄像透镜3a聚光的第一反射光和经由第二摄像透镜3b聚光的第二反射 光,在摄像装置5中作为第一狭缝图像S11 (第一反射光形成的摄像图 像)、第二狭缝图像S12 (第二反射光形成的摄像图像),在与狭缝基 线方向呈预定角度的方向(另外,在本实施方式中为垂直方向)上分 离预定间隔,而分别被拍摄(步骤S2)。在摄像装置5中拍摄到的第一狭缝图像Sll、第二狭缝图像S12的 在与狭缝基线方向呈预定角度的方向上的预定间隔由第一摄像透镜
3a、第二摄像透镜3b各自的数值孔径或设置位置决定,必须以满足如
下条件的方式决定上述数值孔径或上述设定位置取足够大的间隔距
离,以达到两狭缝图像不会由于被检测物20的表面的倾斜造成的各狭 缝图像的宽度的影响而重叠的程度。
由摄像装置5得到的摄像狭缝图像被发送到运算处理装置7。在 运算处理装置7内的狭缝图像选择部8中,由摄像装置5拍摄的第一 狭缝图像Sll、第二狭缝图像S12中,按照狭缝基线方向的每个像素选 择亮度最适于计算被检测物20的表面距离基准平面(XYZ载物台6的 台表面)的高度的狭缝图像(步骤S3)。
第二摄像透镜3b的数值孔径NA2比第一摄像透镜3a的数值孔径 NA1小,因此,由第二反射光成像的图像的亮度比由第一反射光成像 的图像的亮度小。因此,第一狭缝图像SU、第二狭缝图像S12由互不 相同的亮度的反射光拍摄而成,但各狭缝图像的狭缝基线方向的每个 像素根据被检测物20的表面性质(表面的倾斜、材质等)的不同,亮 度也不同。另外,第二摄像透镜3b位于比第一摄像透镜3a靠近狭缝光 2的光轴(投影光轴)的位置,因此第一狭缝图像S11与第二狭缝图像 S12相比,摄像部对于被检测物20的拍摄角度的影响(遮挡)小,能 够获得稳定的摄像狭缝图像。
因此,按照狭缝基线方向的每个像素,从各狭缝图像中选择每个 狭缝基线方向上预先设定的预定值(亮度最适于计算被检测物20的表 面距离台表面的高度的范围)内的亮度的狭缝图像。
每次由XYZ载物台驱动部12移动XYZ载物台6上的被检测物 20以通过狭缝状图案投影部1将狭缝状投影图案投影到被检测物20的 表面整个区域时,按照狭缝基线方向的每个像素选择如上所述的最适合的亮度的狭缝图像,在被检测物20的表面整个区域获取用于计算被检测物20的表面距离台表面的高度的狭缝图像数据(步骤S4)。在狭缝图像选择部8中,来自安装在XYZ载物台驱动部12上的 编码器的信号(表示载置在XYZ载物台6上的被检测物20在台移动 方向、即狭缝状投影图案在被检测物20表面上的扫描方向的位置的信 号)与所选择的亮度最适于计算被检测物20的表面距离台表面的高度 的狭缝图像数据一并被发送到运算处理装置7内的形状运算部9,利用 三角测量的原理,进行被检测物20的形状测定(步骤S5)。在XYZ载物台6上,与被检测物20 —并载置有校正用板30 (距 离XYZ载物台6的台表面的高度H为已知的),通过XYZ载物台驱 动部12在被检测物20的表面上扫描狭缝状投影图案时,在校正用板 30上也同样地投影狭缝状投影图案。从狭缝状图案投影部1投射的狭 缝光2照射到校正用板30,在校正用板30的表面投影狭缝状投影图案, 从校正用板30表面反射并经由第一摄像透镜3a聚光的第一反射光和经 由第二摄像透镜3b聚光的第二反射光分别生成的图像分别被摄像装置 5拍摄,而拍摄投影到校正用板30表面的狭缝状投影图案。以下,与上述实施的第一方式同样地,通过形状校正部10获得与 为了进行被检测物20的形状测定而选择的的第一狭缝图像Sll、第二 狭缝图像S12的亮度对应的各校正用狭缝图像,计算校正用板30的表 面距离台平面的高度,对于各狭缝图像的选择部分,取得相对于已知 的校正用板的表面距离台表面的高度H的比例,而作为形状校正系数 (步骤S6)。如上所述,利用由狭缝图像选择部8选择的狭缝图像数据,并利 用各形状校正系数对由形状运算部9计算出的被检测物20的表面距离 台表面的高度进行校正,取得被检测物20的正确的形状测定结果(步 骤S7)。如上所述,来自被检测物20的表面的反射光,经由第一摄像透镜3a聚光的第一反射光、和经由数值孔径比第一摄像透镜3a小且位于更 靠近狭缝光2的光轴(投影光轴)的位置的第二摄像透镜3b聚光的第 二反射光所分别生成的图像,由摄像装置5在与狭缝基线方向呈预定 角度的方向上距离预定间隔拍摄,而作为各狭缝图像。这样,利用从 由摄像装置5拍摄的各狭缝图像中按照狭缝基线方向的每个像素选择 出的亮度最适合计算被检测物20的表面距离台表面的高度的狭缝图像 而得到狭缝图像数据,以及来自安装在XYZ载物台驱动部12上的编 码器的狭缝状投影图案在被检测物20表面上的扫描方向的位置信号, 进行被检测物20的形状测定。进而,利用距离XYZ载物台6的台表 面的高度H已知的校正用板30,取得与为了进行被检测物20的形状 测定而选择的各狭缝图像的亮度对应的形状校正系数,利用形状校正 系数对上述求出的被检测物20的表面距离台表面的高度进行校正,从 而可以取得被检测物20的正确的形状测定结果。因此,对于由狭缝状图案投影部1投影了由一束狭缝光2构成的 狭缝状投影图案的被检测物20,可以在摄像部中,利用第一摄像透镜 3a、第二摄像透镜3b,在与狭缝基线方向呈预定角度的方向上分离并 成像多个狭缝图像,并有效地利用成像面中的剩余像素,而无遮挡地 获取狭缝图像,并基于三角测量的原理求出被检测物20的三维形状。 另外,为了防止多个狭缝图像重叠,分离多个狭缝图像的方向优选在 与狭缝基线方向垂直的方向上分离并成像。另外,本发明并不限于上述各实施方式,在其要旨的范围内可以 进行各种变形。例如,在图8中示出了带有调整机构的形状测定装置, 该调整机构能够通过使第一实施方式的平行平面板4倾斜来调整狭缝 图像的间隔。平行平面板4如图所示具有以中心轴4a为旋转中心进行 倾斜的倾斜机构。该倾斜机构可以由未图示的带电动马达的旋转轴或 者可以进行外部操作的旋转把手调整。可以通过该倾斜机构使摄像装置5 (二维CCD传感器)的摄像面上的狭缝像(Sll、 S12、 S13)的间 隔变化(图8的虚线所示的光线)。狭缝像间隔比狭缝像的宽度越宽 越好,但为了通过本发明进一步扩展更宽的动态范围,狭缝像的数目 越多越有利。狭缝像的宽度可以通过被检测物表面相对于测定装置的 倾斜角来改变。因此,在被检测物20表面的倾斜浅的情况下,由于狭 缝像不粗,因而可以改变平行平面板4的倾斜度,减小狭缝像之间的 距离。相反,在被检测物20表面的倾斜深的情况下,狭缝像变粗,因 而可以改变平行平面板4的倾斜度,增大狭缝像之间的距离。如上所 述,也可以构成为能够变更平行平面板4的倾斜角的装置。
权利要求
1.一种形状测定装置,其特征在于,包括投影部,向被检测物投影由一束狭缝光构成的狭缝状投影图案;狭缝像形成部,由上述投影部投影的上述狭缝状投影图案在上述被检测物上被反射,该反射来的图案图像在与狭缝基线方向垂直的方向上分离,形成多个狭缝像;摄像部,对在上述狭缝像形成部分离并成像的上述多个狭缝像进行拍摄,生成多个狭缝图像;位置调整部,使上述狭缝状投影图案和上述被检测物在与上述狭缝状投影图案的狭缝基线方向不同的方向上相对移动;狭缝图像选择部,从由上述摄像部得到的上述多个狭缝图像中,按照狭缝基线方向的每个像素比较各狭缝图像的亮度,按照狭缝基线方向的每个像素选择亮度最适于求出上述被检测物的形状的狭缝图像,取得用于求出上述被检测物的形状的狭缝图像数据;以及形状运算部,利用通过上述位置调整部而相对移动的上述狭缝状投影图案相对于上述被检测物的相对位置以及由上述狭缝图像选择部得到的上述狭缝图像数据,计算上述被检测物的形状。
2. 根据权利要求1所述的形状测定装置,其特征在于, 在上述摄像部中,上述多个狭缝图像,第一狭缝图像和使上述第一狭缝图像的亮度分布变化的至少第二狭缝图像,在与狭缝基线方向 垂直的方向上分离并成像。
3. 根据权利要求l所述的形状测定装置,其特征在于, 在上述摄像部中,上述多个狭缝图像,第一狭缝图像和从比上述第一狭缝图像靠近投影光轴侧的位置拍摄的第二狭缝图像,在与狭缝 基线方向垂直的方向上分离并成像。
4. 根据权利要求l所述的形状测定装置,其特征在于,在上述摄像部中,上述多个狭缝图像,第一狭缝图像和从比上述 第一狭缝图像靠近投影光轴侧的位置拍摄且以比上述第一狭缝图像小 的数值孔径成像的第二狭缝图像,在与狭缝基线方向垂直的方向上分 离并成像。
5. 根据权利要求1至4中任一项所述的形状测定装置,其特征在于,在上述摄像部中,使成像面相对于从上述投影部投影的上述狭缝 状投影图案在上述被检测物上反射的反射光的光轴倾斜,从而使上述 被检测物的焦点面与上述狭缝状投影图案的光轴一致,在上述成像面 上将聚焦位置上的至少上述第一狭缝图像成像。
6. 根据权利要求1至5中任一项所述的形状测定装置,其特征在于,通过上述投影部,与上述被检测物同样地在上述校正用板上投影 上述狭缝状投影图案,利用由上述摄像部得到的多个校正用狭缝图像, 取得上述多个狭缝图像的每个的形状校正系数。
7. —种形状测定方法,利用形状测定装置测定被检测物的三维形 状,上述形状测定装置包括投影部,向上述被检测物投影由一束狭 缝光构成的狭缝状投影图案;狭缝像形成部,由上述投影部投影的上 述狭缝状投影图案在上述被检测物上被反射,该反射来的图案图像在 与狭缝基线方向垂直的方向上分离,形成多个狭缝像;摄像部,对在 上述狭缝像形成部分离并成像的上述多个狭缝像进行拍摄,生成多个 狭缝图像;位置调整部,使上述狭缝状投影图案和上述被检测物在与 上述狭缝状投影图案的狭缝基线方向不同的方向上相对移动,该形状 测定方法的特征在于,具有以下步骤而求出上述被检测物的三维形状由上述投影部向上述被检测物投影上述狭缝状投影图案的步骤; 由上述摄像部拍摄在上述狭缝像形成部分离并成像的上述多个狭 缝像,生成多个狭缝图像的步骤;从上述多个狭缝图像中,按照狭缝基线方向的每个像素比较各狭 缝图像的亮度,按照狭缝基线方向的每个像素选择亮度最适于求出上 述被检测物距离基准面的高度的狭缝图像,取得用于求出上述被检测 物距离基准面的高度的狭缝图像数据的步骤;以及利用通过位置调整部而相对移动的上述狭缝状投影图案相对于上 述被检测物的相对位置以及上述狭缝图像数据,进行上述被检测物的 形状测定的步骤。
8. 根据权利要求7所述的形状测定方法,其特征在于, 在上述摄像部中生成上述多个狭缝图像的步骤中,第一狭缝图像和使上述第一狭缝图像的亮度分布变化的至少第二狭缝图像,在与狭 缝基线方向垂直的方向上分离并成像。
9. 根据权利要求7所述的形状测定方法,其特征在于, 在上述摄像部中生成上述多个狭缝图像的步骤中,第一狭缝图像和从比上述第一狭缝图像靠近投影光轴侧的位置拍摄且以比上述第一 狭缝图像小的数值孔径成像的第二狭缝图像,在与狭缝基线方向垂直 的方向上分离并成像。
10. 根据权利要求7至9中任一项所述的形状测定方法,其特征在于,在上述摄像部中生成上述多个狭缝图像的步骤中,使上述摄像部 中的成像面相对于从上述投影部投影的上述狭缝状投影图案在上述被 检测物上反射的反射光的光轴倾斜,从而使上述被检测物的焦点面与 上述狭缝状投影图案的光轴一致,在上述成像面上将聚焦位置上的至 少上述第一狭缝图像成像。
11. 根据权利要求7至IO中任一项所述的形状测定方法,其特征在于,进行上述被检测物的形状测定的步骤包括如下步骤与上述被检测物同样地,由上述投影部在上述校正用板上投影上 述狭缝状投影图案的步骤;由上述摄像部对在上述狭缝像形成部中分离并成像的多个校正用狭缝像进行拍摄,生成多个校正用狭缝图像的步骤;根据上述多个校正用狭缝图像求出上述校正用板距离基准面的高 度的步骤;取得由上述摄像部得到的上述多个狭缝图像的每个的形状校正系 数的步骤;以及利用上述形状校正系数对由上述多个狭缝图像求出的上述被检测 物距离基准面的高度迸行校正,取得正确的上述被检测物的形状测定 结果的步骤。
全文摘要
本发明提供一种形状测定装置及形状测定方法。上述装置包括向被检测物(20)投影狭缝光的狭缝状图案投影部(1);该狭缝光在被检测物(20)上反射,将反射来的图案图像在与狭缝基线方向垂直的方向上分离并形成多个狭缝像的摄像透镜(3)和平行平面板(4);拍摄该多个狭缝像,生成多个狭缝图像的摄像装置(5);使狭缝光和被检测物(20)在与狭缝光的狭缝基线方向不同的方向上相对移动的XYZ载物台驱动部(12);按照狭缝基线方向的每个像素比较各狭缝图像的亮度,按照狭缝基线方向的每个像素选择亮度最适于求出被检测物(20)的形状的狭缝图像,取得用于求出被检测物(20)的形状的狭缝图像数据的狭缝图像选择部(8);以及利用狭缝光相对于被检测物(20)的相对位置和狭缝图像数据来计算被检测物(20)的形状的形状运算部(9)。
文档编号G01B11/25GK101652626SQ200880011148
公开日2010年2月17日 申请日期2008年3月18日 优先权日2007年4月5日
发明者山田智明 申请人:株式会社尼康
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1