用于检验分解器输出信号可信度的方法

文档序号:6165943阅读:105来源:国知局
用于检验分解器输出信号可信度的方法
【专利摘要】本发明涉及一种用于检验分解器(21)的输出信号(u1,u2)的可信度的方法,利用该方法可以确定机器(R)的两个节肢(3-7)相对于彼此的角位置。
【专利说明】用于检验分解器输出信号可信度的方法
【技术领域】
[0001]本发明涉及一种用于检验分解器的输出信号的可信度的方法。
【背景技术】
[0002]为了确定机器的两个可相对于彼此关于转动轴转动的部件的角位置,使用所谓的分解器(Resolver)。具有可相对于彼此转动的部件的机器例如是机器人。机器人通常是处理机器,其装备有适用的工具并在多个运动轴上特别是关于方向、位置和工作进程是可编程的,以对对象自动进行处理。机器人通常包括具有多个节肢的机器人臂和可编程控制器(控制装置),该控制器在运行期间控制或调节机器人臂的运动过程。驱动器例如是电驱动器,而节肢可相对于彼此关于转动轴可转动地受到支承。
[0003]由专利文献EP2211148A2本领域技术人员可了解分解器。分解器是指一种电磁测量变换器,用于将两个彼此相对运动的部件的角位置变换为电输出信号。两个彼此相对运动的部件例如是两个关于转动轴可转动地受到支承的节肢或者电机的转子,其相对于电机的定子转动。输出信号通常是两个相移90°的正弦电信号,尤其是两个相移90°的正弦电压,据此可以确定角位置的模数(modulo) n,在此,n是所谓的分解器的极对数,其可以由线圈绕组的排列得到并且是较小的正自然数,并且也可以是I。

【发明内容】

[0004]本发明的目的在于给出一种用于检验分解器输出信号可信度(Plausibilitaet)的改进的方法。这种可信度检验特别是能够根据极对的数量n>l的分解器的测量值(这至少适用于在机器人中常见的分解器),推断出实际的电机角度,而不仅仅是如同现有技术那样只得到模数n。
[0005]本发明的目的通过一种用于检验分解器输出信号可信度的方法实现,利用该方法可以确定机器的两个关于转动轴可转动地受到支承的节肢相对于彼此的角位置,该方法具有以下步骤:
[0006]在机器正常运行之前,确定所用分解器的特征参数,这使得能够根据电机位置计算出所期望的分解器输出信号的有效范围,
[0007]在机器正常运行期间并借助于分解器产生两个输出信号,利用该输出信号可以确定两个节肢相对于彼此的角位置,
[0008]将至少一个输出信号与配属于分解器的所讨论的输出信号的额定值进行比较,或者将两个输出信号的组合与这两个输出信号的组合的额定值进行比较,以及
[0009]当所讨论的输出信号不同于其额定值、至少小于一预设的值时,或者当这两个输出信号的组合不同于这两个输出信号的组合的额定值、至少小于一预设的值时,只使用输出信号来确定两个节肢相对于彼此的角位置。
[0010]本发明的另一方面涉及一种机器,其具有:至少两个相对于彼此关于转动轴可运动的节肢;和具有电机的驱动器,用于使节肢彼此相对运动;与电机耦合的分解器,用于确定电机的转子相对于其定子的角位置;和与驱动器以及分解器相连接的控制装置,用于根据本发明的方法确定两个节肢相对于彼此的角位置。根据本发明的机器特别是工业机器人,这种工业机器人具有包括多个节肢的机器人臂和用于使节肢运动的驱动器以及与驱动器相连接的控制装置,将该控制装置设计为,控制用于使节肢彼此相对运动的驱动器。[0011]使用分解器确定两个节肢相对于彼此的角位置对于本领域技术人员而言原则上是公知的。在此分解器是一种测量变换器,用于将两个可彼此相对运动的部件的角位置转换为电输出信号。两个可彼此相对运动的部件例如是两个关于转动轴可转动地受到支承的节肢或相对于电机定子转动的电机转子。
[0012]这两个节肢例如可以借助于机器的电机彼此相对运动,从而使分解器的输出信号与电机转子相对于其定子的角位置相对应。优选将至少一个关于电机的至少一个完整的电机旋转的分解器输出信号或两个输出信号的组合与对应的额定值进行比较。在一个完整的电机旋转中,电机的轴或转子相对于电机的定子转动360°。
[0013]分解器包括例如两个错开90°的绕组和可关于转动轴旋转的另一绕组。在分解器的运行中,向其另一绕组施加交变电压,由此在固定的绕组中分别感应出彼此相移90°的交变电压。这两个交变电压是两个固定绕组或分解器的输出信号。由于通常这些绕组中的若干个会旋转偏移n倍(在此,该倍数相当于伺服电机中的极对的数n)地设置,因此所产生的输出信号在理想化的制造的情况下会以1/n电机旋转为周期重复地进行,因此,理想化制成的极对数为n的分解器理论上只能作为用于1/n电机旋转的绝对值产生器。
[0014]在理想化的或理想设定的分解器中,其输出信号准确地相位错移90°,并产生相同振幅且周期为1/n电机旋转的正弦输出信号。如果将该输出信号标准化,则在正确工作的理想化分解器中,输出信号的平方和始终为1.0。
[0015]但是,真实的部件,包括真实的解析器在实践中与理想化的部件或者说理想设定的部件是有所不同的。例如,实际的分解器的输出信号并非精确的相位错移90°,因此输出信号的平方和也不会总是正好为1.0。同样,极对的n倍排列通常不是精确对称的。这意味着,极对数为n的分解器的输出信号不是以1/n电机旋转为周期(不考虑其它干扰),实际上是以I次电机旋转为周期。尽管信号以近乎1/n电机旋转为周期,但是在实际的周期性在I次电机旋转时才作为干扰被忽略,相比于对其进行有益的分析,其更可能会导致问题。
[0016]如果所期待的分解器输出信号是已知的,则根据本发明将至少一个输出信号与配属于分解器的该所讨论的输出信号的额定值进行比较。特别是可以利用两个输出信号在极值位置上的绝对值,以在分解器的特定状态下唯一地推断出角位置,尤其是电机的角位置。
[0017]如果所讨论的输出信号与其额定值最大相差预先设定的值,则将该输出信号用于角度计算,否则不予采纳。因此,这表现出对分解器输出信号的可信度测试或者说可信度检查。
[0018]该预设值例如是可预期的最大噪声,其会影响到输出信号。
[0019]替代地可以采用两个输出信号的组合,并与这两个输出信号的组合的额定值进行比较。输出信号的组合的一个例子是输出信号的平方和。
[0020]在根据本发明方法的一种优选实施方式中,将输出信号标准化。输出信号的组合就是经标准化的输出信号的平方和,而两个输出信号的组合的额定值f满足以下条件:
[0021]f = I+a ? sin (x+b)[0022]其中,参数a是具有小于零的正值的常数,参数b是恒定值,它们可以根据分解器的制造公差取得,额定值f说明了电机转子的角位置。
[0023]参数a和b例如可以借助于参数识别方法,通过分析以下条件来确定:
[0024]U12+^2 = I+a ? sin (x+b)。
[0025]其中,U1和U2是分解器的输出信号,X表不电机角,也就是在一次电机旋转过程中从0到2 的运行。特别是对于参数识别来说,电机转子至少转动一个完整的旋转。
[0026]在根据本发明方法的一种变形中,该方法具有以下方法步骤:
[0027]通过对输出信号的特别是循环采样,生成离散的分解器输出信号,
[0028]确定电机在至少一个完整的电机旋转期间在所有理论上可能的离散角位置的额定值,
[0029]将离散输出信号的标准化的平方和与相应的额定值进行比较,以及
[0030]对于那些所讨论的标准化输出信号的平方和与额定值最大相差一个预设值的离散输出信号,只使用离散输出信号来确定电机转子相对于定子的角位置。
[0031]优选利用分解器的角位置的范围,在该范围内角位置的对应关系是唯一的,或者至少不会有两个关于一个完整的电机旋转的假设都是不可信的。
[0032]在根据本发明方法的一种变形中,为了实现对可信的分解器输出信号的预选,可以只使用那些位于[1-a-r,1+a+r]范围内的标准化的输出信号。
[0033]在根据本发明方法的一种实施方式中,为了使根据本发明的机器即使在分解器的输出信号不可信的情况下也能够运行,只要所讨论的标准化的输出信号的平方和与额定值的差大于预设值,就对两个节肢相对于彼此的当前角位置实行估测。
[0034]在根据本发明方法的一种实施方式中,为了识别在电源电压中断期间分解器的转动(Verdrehung),可以执行以下步骤:
[0035]存储已确定的角位置,
[0036]在确定角位置所需要的电源电压发生故障、并在该电源电压可再次使用之后,将直接在所述电源电压可再次使用之后所确定的角位置与直接在电源电压发生故障之前所存储的角位置进行比较,并
[0037]根据比较结果确定分解器在电源电压发生故障期间是否发生转动。
【专利附图】

【附图说明】
[0038]下面参照附图对本发明的实施例进行说明。其中,
[0039]图1示出了一种具有机器人臂和控制装置的机器人,
[0040]图2示出了具有一个极对的分解器,
[0041]图3示出了具有三个极对的理想分解器的输出信号,
[0042]图4示出了具有三个极对的真实分解器的输出信号。
【具体实施方式】
[0043]图1以透视图示出了具有机器人臂2的机器人I。
[0044]在本实施例中,机器人臂2包括多个依次设置并通过关节相连接的节肢。在此,节肢特别是指固定的或可移动的支架3和可相对于支架3围绕垂直轴Al转动地受到支承的转盘4。在本实施例中,机器人臂2的其他节肢包括摇臂5,悬臂6和优选为多轴的机器人手7,机器人手7具有设计为法兰的固定装置,用于固定未示出的末端执行器。摇臂5在下端部上,例如在未详细示出的摇臂轴承头上围绕优选为水平的轴A2可摆动地支承在转盘4上。悬臂6围绕同样优选为水平的轴A3可摆动地支承在摇臂5的上端部上。悬臂6在端侧支承具有优选为三个轴A4、A5、A6的机器人手7。
[0045]为了使机器人I或其机器人臂2运动,机器人以公知的方式包括与控制装置9相连接的驱动器,这些驱动器特别是电驱动器。在图1中只示出了这些驱动器的几个电机10、
11。在控制装置9上运行计算机程序,控制装置9在机器人R运行期间通过计算机程序控制机器人,使法兰8或所谓的工具中心点执行预先规定的运动。控制装置9根据需要调整驱动器,这在理论上是为本领域技术人员所公知的。
[0046]为了确定机器人臂2的各个节肢相对于彼此的角位置,机器人臂2包括在图2中示出的分解器21,其以本领域技术人员所公知的方式设置在使各个节肢运动的电机10、11上。分解器有时也被称为角度编码器。
[0047]人们可以将分解器理解为一种电磁测量变换器,尤其是用于将两个可彼此相对运动的部件的角位置转换为电输出信号。两个可彼此相对运动的部件例如可以是两个关于转动轴可转动地受到支承的节肢或者相对于电机定子转动的电机转子。
[0048]在该极对数为I的分解器的实施例中,分解器21具有特别是圆柱形的壳体22,在该壳体中,设有两个相对于壳体22固定、彼此错开90°的绕组(第一绕组23和第二绕组24)。分解器21还具有一个可关于转动轴旋转的三极对的另一绕组25。例如,如果电机10配备有分解器21,则另 一绕组25随电机10的转子或轴相对于电机定子转动。
[0049]在分解器21的运行中,向其另一绕组25施加交流电压,由此在固定绕组23、24上分别感应出交流电压,这两个交流电压彼此相位错移90°。这两个交流电压是两个固定绕组23、24的输出信号七、U2,在此将第一绕组23的输出信号标记为U1,并将第二绕组24的输出信号标记为u2。分解器21与控制装置9相连接,由此可以使控制装置9获得分解器21的输出信号Ul、U2以用于分析。
[0050]假设该分解器21是理想部件,则其固定绕组23、24精准地错开90°地设置,并生成具有相同振幅的输出信号Ul、u2。这在图3中示出,其中,第一信号U1为余弦,而第二信号U2为正弦。在此输出信号Up U2描述了所讨论的电机10、11的轴或转子的状态(数学表达:轴的一次旋转相当于2 )。如果将输出信号七、~标准化,则其振幅是相同的,为1.0,并且输出信号Ul、u2例如为:
[0051]U1 = cos (X)
[0052]U2 = sin (x)。
[0053]这样,控制装置9可以利用这两个输出信号Ul、ii2计算所讨论的电机10、11的转子
相对于其定子的角位置。
[0054]此外,对于标准化的输出信号Ul、U2,其平方和始终等于1.0,即:
[0055]f理想0
[0056]其中,是可信度信号,根据对该信号的分析可以推断出所测得的输出信号Ul、U2是否正确,即,通过分析这两个标准化的输出信号Ul、u2的平方和是否等于1.0或近似等于1.0来得出。[0057]但是在实践中,真实的部件、也包括真实的分解器21与理想化的部件或者说理想设定的部件是不同的。图4至少近似地示出了输出信号U1、U2和极对数为3 (针对21的修改,在此为简单起见使用了(较少感兴趣的)极对数I)的真实分解器的可信度信号f的值的曲线,该曲线并不是完全旋转对称地具有三个周期。由此将至少近似地得到以下所期待的
可信度信号:
[0058]f = U12+^2 = I+a ? Sin (x+b)
[0059]其中,参数a是具有小于零的正值的常数,参数b是恒定值,它们可以根据分解器2的制造公差基本上随机地取得,b特别是位于0.2 的范围内,X表示电机角度。
[0060]在本实施例中,需要提前为每个所使用的分解器21确定参数a、b并存储在控制装置9中。这些参数例如在参数识别的框架中例如通过消除误差计算来确定,在此,例如随着所讨论电机10、11的至少一个、优选为多个轴的旋转记录下各个可信度信号f,然后进行分析。在本实施例中,这将由控制装置9利用合适的计算机程序自动执行。
[0061]此外,可以给定边界值,特别是噪声边界值r,其优选小于参数a,并表示所讨论的分解器21的通常预期的最大信号噪声。特别是在运用统计方法时,该噪声边界值r也可以大于或等于参数a,从而仍然能够使用原则上所描述的方法。
[0062]在本实施例中,在控制装置9上运行的是用于处理输出信号Ul、U2的计算机程序。为了实现此目的,首先例如借助于A/D转换器对输出信号Ul、U2采样,然后根据需要利用模拟和/或数字滤波器进行滤波。特别是以足够高的频率对输出信号Ul、U2进行循环采样。最后利用计算机程序对采集到的输出信号UpU2做进一步处理。
[0063]如果采用噪声边界值r,则可以将在控制装置9上运行的计算机程序设计为,其首先对输出信号Up U2或者这两个信号的组合进行第一可信度检验,并且例如仅采用对于所确定的标准输出信号UpU2的值,值f=Ul2+i!22位于范围[l-a-r,l+a+r]内的、采集的输出信号的值来确定所讨论的电机10、11的转子相对于其定子的角位置。
[0064]如果所确定的值位于范围[1-a-r, 1+a+r]之外,则放弃采集的输出信号U1'U2,即不将其用于确定所讨论的电机10、11的转子相对于其定子的角位置。这特别是示出了对所讨论的分解器21的输出信号Ul、U2的第一可信度检验。然后,对于那些位于范围[1-a-r,1+a+r]内的所讨论的分解器21的标准化的输出信号ul、u2,控制装置9确定配属于分解器
21的分解器角度@9?!,也就是说,所讨论的电机10、11的、以极对数n为模的转子相对于其
定子的相应角位置。这例如通过以下公式得到:
[0065]
【权利要求】
1.一种用于检验极对数为n的分解器(21)的输出信号U1, U2)的可信度的方法,利用该方法可以确定机器(R)的两个关于转动轴(A1-A6)可转动地受到支承的节肢(3-7)相对于彼此的角位置,该方法具有以下步骤: 在所述机器(R)正常运行期间并借助于所述分解器(21)产生两个输出信号(Ul,u2),利用这些输出信号确定所述两个节肢(3-7)相对于彼此的模数为n的角位置; 将所述输出信号(U1, U2)中的至少一个与对应于所述分解器(21)的所讨论输出信号U1,U2)的额定值进行比较,或者将所述两个输出信号(Ul,U2)的组合与这两个输出信号U1,U2)的组合在所有n个相应于所确定的模数为n的位置的角位置上的额定值(f)进行比较,当所讨论的输出信号U1, U2)在这些n种情况的至少一种情况下与其额定值最大相差一预设值时,或者当所述两个输出信号U1, U2)的组合在这些n种情况的至少一种情况下与所述两个输出信号U1, U2)的组合的额定值(f)最大相差一预设值(r)时,只采用输出信号Cu1, U2)用于确定所述两个节肢(3-7)相对于彼此的模数为n的角位置。
2.如权利要求1所述的方法,其中,所述预设值是最大预期噪声,所述输出信号U1,U2)或所述两个输出信号U1, U2)的组合受该最大预期噪声(r)的影响。
3.如权利要求1或2所述的方法,其中,所述两个节肢(3-7)通过所述机器(R)的电机(10,11)相对于彼此运动,并且所述分解器(21)的输出信号(Ul,U2)与所述电机(10,13)的转子相对于其定子的角位置相对应,并且特别是对所述电机(10,11)的至少一个完整的电机旋转的输出信号(U1, U2)进行分析。
4.如权利要求3所述的方法,其中,将所述输出信号(Ul,U2)标准化,所述输出信号U1,u2)的组合是经标准化的输出信号 的平方和,所述两个输出信号(Ul,U2)的组合的额定值(f)满足以下条件:
f = I+a ? sin (x+b) 其中,参数a是具有小于零的正值的常数,参数b是恒定值,它们可以根据所述分解器(21)的制造公差获得,而所述额定值(f)描述所述电机(10,11)的转子相对于其定子的角位置。
5.如权利要求4所述的方法,具有以下步骤: 借助于参数识别方法,通过分析以下规定来确定所述参数a和b: uX = I+a ? sin (x+b)。
6.如权利要求3或4所述的方法,具有以下方法步骤: 通过对所述输出信号U1, U2)的特别是循环采样,生成所述分解器(21)的离散输出信号(U1, U2), 确定所述电机(10,11)在一个完整的电机旋转期间的所有理论上可能的离散角位置的额定值(f), 将所述离散输出信号(UpU2)的标准化的平方的和与相应的所述额定值(f)进行比较,并 对于那些所讨论的标准化的输出信号U1, u2)的平方和与所述额定值(f)最大相差为所述预设值(r )的离散输出信号(U1,U2),只采用离散输出信号(U1,U2)来确定所述电机(10,11)的转子相对于其定子的角位置。
7.如权利要求3至6中任一项所述的方法,具有以下方法步骤:只米用位于[1-a-r, 1+a+r]范围内的标准化的输出信号(U1, u2)。
8.如权利要求1至9中任一项所述的方法,具有以下方法步骤: 当所讨论的所述标准化的输出信号U1, U2)的平方和与所述额定值(f)相差大于所述预设值(r)时,对所述两个节肢(3-7)相对于彼此的当前角位置实行估测。
9.如权利要求1至8中任一项所述的方法,具有以下方法步骤: 存储所确定的角位置, 在确定角位置所需的电源电压发生故障、并在该电源电压可再次使用之后,将直接在所述电源电压可再次使用之后所确定的角位置与直接在该电源电压发生故障之前存储的角位置进行比较,以及 根据比较结果确定所述分解器在所述电源电压发生故障期间是否发生转动。
10.一种机器,特别是工业机器人,具有:至少两个关于转动轴(A1-A2)可相对于彼此运动的节肢(3-7);具有电机(10,11)的驱动器,用于使所述节肢(3-7)彼此相对运动;与所述电机(10,11)耦合的分解器(21),用于确定所述电机(10,11)的转子相对其定子的角位置;和与所述驱动器和所述分解器(21)相连接的控制装置(9),用于根据如权利要求1至9中任一项所述的方法确定所述两个 节肢(3-7)相对于彼此的角位置。
【文档编号】G01D5/20GK103649686SQ201280034852
【公开日】2014年3月19日 申请日期:2012年7月11日 优先权日:2011年7月14日
【发明者】安德烈亚斯·哈格瑙尔 申请人:库卡罗伯特有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1