传感器用光纤以及电力装置监视系统的制作方法

文档序号:6213976阅读:124来源:国知局
传感器用光纤以及电力装置监视系统的制作方法
【专利摘要】本发明提供能够以较高的精度测量电流或者电压的传感器用光纤。传感器用光纤(10)具备使芯线的折射率周期性地变化的FBG(12)、覆盖FBG(12)的金属层(13)、以及设置于金属层(13)的一对电极(14)以及(15)。将电极(14)以及(15)与测量对象的所期望的位置连接,并基于FBG(12)的布拉格波长的变化,来计算流过金属层(13)的电流。
【专利说明】传感器用光纤以及电力装置监视系统

【技术领域】
[0001]本发明涉及传感器用光纤、和具备该传感器用光纤的电力装置监视系统。

【背景技术】
[0002]为了监视电池、发电机等的情况需要电流、电压的测量。在以往的电流传感器、电压传感器中,例如使用电磁感应的原理进行测量。
[0003]另外,作为不是用于测量电流、电压,而是测量温度的传感器,利用形成了 FBG(光纤布拉格光栅)的光纤。所谓的FBG是使光纤的芯线的折射率以沿轴向的规定的长度周期(光栅周期)变化的衍射光栅,具有针对进入光纤的入射光,反射与光栅周期对应的特定的波长(布拉格波长)的光,并透过剩余的光这样的特性。若FBG根据温度变化而热膨胀,则随之光栅周期变化。布拉格波长相对于光栅周期的变化线性地变化,所以能够基于布拉格波长的变化量测量温度。另外,若在一根光纤上形成多个FBG则能够进行测量多个位置的温度的多点温度测量。例如专利文献I公开了作为进入光纤的入射光的光源使用激光,并利用设置在飞机的外板上的多个FBG测量温度的温度测量系统。
[0004]此外,作为不是温度传感器用的光纤的构成的例子,专利文献2记载了对光纤的包覆层的外周部实施了金属化处理的光部件。
[0005]专利文献1:日本特表2009 - 516855号公报
[0006]专利文献2:日本特开2004 - 29691号公报
[0007]然而,在以往的电流传感器、电压传感器中,测量值所包含的误差比较大,存在难以进行高精度的测量这样的问题。
[0008]另外,在以往的传感器用光纤中,存在不能测量电流、电压这样的问题。例如在专利文献I以及2没有对使用光纤测量电流、电压的记载,另外,直接使用专利文献I以及2所记载的光纤也不能进行电流、电压的测量。


【发明内容】

[0009]本发明是为了解决这样的问题而提出的,目的在于提供能够以较高的精度测量电流或者电压的传感器用光纤以及电力装置监视系统。
[0010]为了解决上述的问题,本发明的传感器用光纤具备:FBG,其使传感器用光纤的芯线的折射率沿入射光传播的方向周期性地变化;金属层,其覆盖FBG;以及一对电极,其设置于金属层。
[0011]根据这样的结构,在应该测量的电流(或者与应该测量的电压对应的电流)流过金属层的情况下,金属层的发热量与该电流的强度对应地变化。而且,FBG与金属层的发热量和因金属层的热量引起的膨胀的应力对应地伸长而布拉格波长变化,且随之透过FBG的光的波长变化。
[0012]也可以为金属层包含电阻金属材料。
[0013]也可以为金属层因该金属层所产生的焦耳热而在入射光传播的方向伸缩。
[0014]也可以为传感器用光纤具备多个FBG,FBG中的一个具有的金属层的电极中的一个与电阻器连接。
[0015]也可以为传感器用光纤具备环境温度传感器部,环境温度传感器部具备与FBG不同的FBG。
[0016]也可以为FBG具备被金属层覆盖的金属化部、和未被金属层覆盖的非金属化部。
[0017]也可以为金属化部的入射光传播的方向上的合计长度与非金属化部的入射光传播的方向上的合计长度彼此相等。
[0018]也可以为金属化部在FBG设置于入射光传播的方向的中央。
[0019]另外,本发明所涉及的电力装置监视系统具备:上述的传感器用光纤;光源,其放射由多个波长构成的光作为入射光;分光单元,其测量透过了 FBG的光或者被FBG反射的波长的带宽;以及计算单元,其基于带宽来计算流过金属层的电流或者施加给金属层的电压。
[0020]另外,本发明所涉及的电力装置监视系统具备:上述的传感器用光纤;光源,其放射入射光;以及光测量单元,其测量透过了 FBG的光或者被FBG反射的光。
[0021]也可以为传感器用光纤具备多个FBG,多个FBG包含电流用FBG以及电压用FBG,电流用FBG的金属层以串联的方式与电力装置连接,电压用FBG的金属层的电极中的一个与电阻器连接,电压用FBG的金属层以并联的方式与电力装置连接。
[0022]也可以为光源放射由多个波长构成的光作为入射光,光测量单元是测量光的光谱的分光单元。
[0023]也可以为分光单元确定被FBG反射的布拉格波长,电力装置监视系统基于布拉格波长,来计算流过金属层的电流或者施加给金属层的电压。
[0024]也可以为传感器用光纤具备环境温度传感器部,环境温度传感器部具备与上述的FBG不同的FBG,分光单兀将被环境温度传感器部反射的波长作为基准布拉格波长而确定,计算单元基于布拉格波长与基准布拉格波长的差量,来计算电流或者电压。
[0025]根据本发明的传感器用光纤以及电力装置监视系统,金属层因应该测量的电流,或者因与应该测量的电压对应的电流而发热量不同,与此对应的,FBG的布拉格波长变化,所以能够以光学的方式测量电流或者电压,精度提高。

【专利附图】

【附图说明】
[0026]图1是表示本发明的实施方式I所涉及的电力装置监视系统的构成的图。
[0027]图2是说明图1的FBG的伸长的图。
[0028]图3是表示透过图1的传感器用光纤的光的光谱变化的情况的图。
[0029]图4是表示实施方式2所涉及的电力装置监视系统的结构的图。
[0030]图5是图4的传感器用光纤的一部分的放大图。
[0031]图6是表示图4的各FBG的布拉格波长的关系的图。
[0032]图7是实施方式3所涉及的传感器用光纤的一部分的放大图。
[0033]图8是表示被FBG反射的光的光谱与对图7的金属层的通电对应地变化的情况的图。
[0034]图9是表示图7的传感器用光纤的变形例的图。

【具体实施方式】
[0035]以下,基于附图对本发明的实施方式进行说明。
[0036]实施方式1.
[0037]图1是表示本发明的实施方式I所涉及的电力装置监视系统I的结构的概要的示意图。
[0038]电力装置监视系统I用于测量电力装置的电流或者电压,并由此监视电力装置。所谓的电力装置例如是指强电的电力装置,包括电池、蓄电池、发电机、以及变电器等。另夕卜,所谓的电力装置也可以是被称为功率器件的装置,也可以是高压电路或者其一部分。
[0039]电力装置监视系统I具备传感器用光纤10以及光处理装置20。传感器用光纤10具有作为公知的光纤的结构。例如,传感器用光纤10作为用于使入射光向规定的方向传播的结构,具备芯线以及包层。
[0040]传感器用光纤10具备具有作为通常的光纤的结构的光纤部11、和FBG12。在图1的例子中,光纤部11中的芯线的折射率一定。在FBG12中,芯线的折射率沿入射光传播的方向,以规定的长度周期(光栅周期)周期性地变化。因此,FBG12具有针对入射光,反射根据光栅周期确定的特定的波长(布拉格波长)的光,并透过剩余的光这样的特性。此外,光纤部11以及FBG12例如由石英玻璃等材料形成,其热膨胀率为正值。另外,作为一个例子,通过对光纤的芯线照射紫外线等来进行FBG12的形成。
[0041]传感器用光纤10具备覆盖FBG12的金属层13。另外,传感器用光纤10具备设置于金属层13的一对电极14以及15。电极14以及15分别通过电线16以及17与金属层13的不同位置连接。通过对电极14与电极15之间施加电压,能够在金属层13流过电流。
[0042]金属层13是包含具有一定的电阻的电阻金属材料的发热体,例如其整体由电阻金属材料构成。作为这样的电阻金属材料的具体例能够列举钛、镍铬合金、不锈钢、以及银。另外,电阻金属材料也可以是混合了钛、镍铬合金、不锈钢以及铜的材料。该金属层13在FBG12的外周形成为圆筒面状。在本实施方式中,进行布拉格加工而某个部分全部被金属层13覆盖。金属层13不需要完全覆盖FBG12的整体,覆盖FBG12的至少一部分即可。并且,金属层13例如形成在FBG12的包覆层上并覆盖包覆层,但并不局限于一定直接覆盖包覆层。
[0043]在这样的结构中,若在金属层13流过电流,则FBG12因金属层13所产生的焦耳热而伸长。使用图2对此进行说明。
[0044]图2是说明FBG12的伸长的图。表示FBG12以及金属层13的轴向(即入射光传播的方向)的长度L因流过金属层13的电流I而增加AL。若金属层13产生焦耳热,则FBG12被加热并因热应力而膨胀向轴向伸长。另外,因该焦耳热金属层13自身膨胀并向轴向伸长,因此时的应力使FBG12向轴向伸长。通过这样的效果,FBG12的长度L增加AL。
[0045]另外在图2中为了方便说明,以金属层13仅向右侧伸长的方式进行了图示,但实际上金属层13向轴向两侧伸长。这样,FBG12以及金属层13因焦耳热而伸缩。
[0046]随着FBG12的长度的变化,FBG12的光栅周期也变化。光栅周期是规定FBG12的布拉格波长的要素的一个,相对于光栅周期的变化量布拉格波长线性地变化。即若FBG12伸长,则光栅周期也增大,所以随之布拉格波长向长波长侧偏移。相反,若FBG12的温度降低而FBG12收缩,则光栅周期也变小,所以随之布拉格波长向短波长侧偏移。因此,能够基于布拉格波长的偏移量,测量表示FBG12的温度的数值。
[0047]图3表示透过传感器用光纤10的光的光谱与布拉格波长的变化对应地变化的情况。图3 (a)是温度Ta下的透射光的光谱,图3 (b)是温度Tb下的透射光的光谱。这里Ta< Tb。此外,现实的光源并不是理想的白色光源,所以实际上光谱并不如图3那样平坦而在长波长侧以及短波长侧衰减,但这里为了方便说明使用图3所示的形状。另外,在本实施方式中使用的波长频带十分窄,所以不需要理想的白色光源,在使用范围内为视为平坦的程度的宽的发光波长频带即可。
[0048]如图3 (a)所示,在温度Ta,波长λ a相当于布拉格波长。FBGl2反射波长λ a的光的大部分,所以具有波长Xa以及其附近的波长的光不透过传感器用光纤10,其结果,透射光的光谱在波长λ a表不极小值。
[0049]若FBG12的温度从Ta上升至Tb,贝U布拉格波长向长波长侧偏移,例如成为Xb。此时,具有波长Xb以及其附近的波长的光不透过传感器用光纤10,其结果,透射光的光谱在波长Xb表示为极小值。
[0050]返回到图1,对光处理装置20的结构进行说明。
[0051]光处理装置20具备光源21以及光测量单元22。光源21针对传感器用光纤10放射入射光。光源21例如是激光二极管,但也可以是其他的光源,例如也可以是非激光的LED。如图3所示,光源21放射具有连续的光谱的光。即入射光由多个波长构成。
[0052]光测量单元22对透过了传感器用光纤10的光进行受光并测量。光测量单元22具有测量透过了传感器用光纤10的光的光谱的功能,且能够由公知的分光单元构成。例如,光测量单元22具备具有各自不同的波长特性的多个滤光器、和测量透过了各滤光器的光的强度的光强度测量单元,并将各波长的光的强度转换为电信号。这里,光强度测量单元能够由M0S、(XD构成。这样,光测量单元22能够确定被FBG12反射的波长(即FBG12的布拉格波长)。例如,将光谱表不为极小值的波长作为布拉格波长而确定。
[0053]另外,光处理装置20具备与光测量单元22连接的控制部23。控制部23具备基于从光测量单元22接收的信号进行运算的运算单元24。运算单元24具有基于FBG12的布拉格波长,来计算流过金属层13的电流的功能。
[0054]例如,根据流过金属层13的电流的大小决定金属层13的发热量,金属层13的发热量与施加给FBG12的热应力成比例,所以布拉格波长的变化量(与规定的基准布拉格波长的差量)取决于流过金属层13的电流的大小。运算单元24能够基于表示该关系的关系式来计算电流的大小。此外,该基准布拉格波长以及关系式例如能够预先存储于运算单元24。
[0055]如上所述,根据本发明的实施方式I所涉及的电力装置监视系统1,能够测量流过金属层13的电流值,所以若将金属层13的电极14以及15连接在测量对象的所期望的位置,则能够作为电流传感器使用。这里,电力装置监视系统I基于布拉格波长的变化以光学的方式测量电流值,所以不受电磁噪声等的影响从而能够进行高精度的测量。
[0056]另外,进行布拉格加工而某个部分(包括FBG12的整体)全部被金属层13覆盖,所以不会产生反射波长频带的失真。
[0057]此外,金属层13的电阻值已知,所以电力装置监视系统I能够将电流值转换为电压值。即该情况下,运算单元24具有基于FBG12的布拉格波长来计算施加给金属层13的电压的功能。
[0058]实施方式2.
[0059]在实施方式I中,并不特别考虑因环境温度的变化带来的FBG12的伸缩。实施方式2构成为考虑环境温度的变化,能够进行更高精度的测量。
[0060]图4表示实施方式2所涉及的电力装置监视系统101、和作为监视对象的电力装置的例子的电池200的结构。电力装置监视系统101具备传感器用光纤110以及光处理装置150。传感器用光纤110具备光纤部111、和三个FBG。这三个FBG分别是温度保证用FBG112、电压用FBG122以及电流用FBG132。在本实施方式中,这三个FBG全部具有相同的特性(长度、材质、光栅周期、热膨胀率等)。
[0061]图5是传感器用光纤110的一部分的放大图。温度保证用FBG112、电压用FBG122以及电流用FBG132设置在同一传感器用光纤110的芯线。即这三个FBG设置在同一光路上。通过这样的结构,被光测量单元152测量出的光仅为透过了温度保证用FBG112、电压用FBG122以及电流用FBG132的全部的光。
[0062]温度保证用FBGl 12具有与作为以往的温度传感器使用的FBG相同的结构。例如,在本实施方式中,温度保证用FBG112未被金属层覆盖(但是并不排除设置了金属层的覆盖的结构)。该温度保证用FBG112如图示那样为与电压用FBG122以及电流用FBG132不同的FBG,作为测量周围环境的温度的环境温度传感器部发挥作用。
[0063]与实施方式I相同,在电压用FBG122以及电流用FBG132形成有覆盖各自的金属层123以及金属层133。
[0064]对于电压用FBG122,在金属层123设置有一对电极124以及125,且分别通过电线126以及127与金属层123的不同位置连接。这些电极中的一个(在图5的例子中为电极124)经由对应的电线126被插入具有电阻值Rl的电阻器128。
[0065]另外,对于电流用FBG132,在金属层133设置有一对电极134以及135,且分别通过电线136以及137与金属层133的不同位置连接。与电压用FBG122不同,在电流用FBG132未插入电阻器。
[0066]返回到图4,对光处理装置150的结构进行说明。
[0067]光处理装置150具备光源151、光测量单元152以及控制部153。与实施方式I相同,光源151针对传感器用光纤110放射入射光,光测量单元152对透过了传感器用光纤110的光进行受光并测量。控制部153具备运算单元154以及光源控制单元155。
[0068]电池200具备阳极201以及阴极202,在阳极201以及阴极202之间连接有负载203。这样,电池200以及负载203构成电路C。这里,电池200具有内部电阻R2,负载203等效于电阻R3。另外,将电压用FBG122的金属层123的电阻值设为Rv,将电流用FBG132的金属层133的电阻值设为Ri (也可以Rv = Ri)。该情况下,优选各电阻的大小关系以例如Rl >> R3 >> R2、Rv、Ri的方式设计,但并不局限于此。
[0069]电压用FBG122的金属层123以及电阻器128在电路C中以并联的方式与电池200连接。另外,电流用FBG132的金属层133在电路C中以串联的方式与电池200连接。温度保证用FBG112与电路C独立。通过这样的结构,温度保证用FBG112的布拉格波长成为与周围的温度对应的波长,另一方面,电压用FBG122以及电流用FBG132的布拉格波长成为与对周围的温度分别加上与金属层123以及金属层133的发热对应的温度得到的温度对应的波长。
[0070]此外,在实施方式2中,在电路C中,电流用FBG132的电极134以及135之间的部分的长度LI (图4)以总是一定的方式连接。作为变形例,也可以以该部分的电阻值总是一定的方式调整长度LI。总之,只要是运算单元154能够获取或者计算电路C的该部分的电阻值的结构即可。
[0071 ] 接下来,使用图6,对实施方式2所涉及的电力装置监视系统101的动作进行说明。
[0072]图6表示各FBG的布拉格波长的关系。图6 (a)是在波长方向示意地放大了温度保证用FBGl 12的布拉格波长λ t周边的光谱。图6 (b)表示三个FBG各自反射的反射光的光谱。如图6(b)所示,三个FBG在各自不同的布拉格波长反射光,所以如图6(a)所示在光测量单元152测量的光的光谱出现三个极小值。
[0073]运算单元154基于各布拉格波长λ t、λ V以及λ i,来计算电池200的电流以及电压。该计算例如能够如下面那样进行。运算单元154首先获取在光谱出现的三个极小值中波长最短的极小值作为温度保证用FBG112的布拉格波长λ t,获取波长第二短的极小值作为电压用FBG122的布拉格波长λ V,并获取波长第三短的(即最长的)极小值作为电流用FBG132的布拉格波长λ i。
[0074]然后,计算用于补偿环境温度的误差的差量Λ λν= λν- At,并基于该差量Δ入V来计算流过电压用FBG122的金属层123的电流。并且,基于流过金属层123的电流、和电阻器128的电阻值R1,来计算金属层123的电极124以及125之间的电压。该电压为电池200的阳极201以及阴极202之间的电压。这样一来,电力装置监视系统101测量电池200的电压值。
[0075]同样地,运算单元154计算用于补偿环境温度的误差的差量Λ λ i = λ i — λ t,并基于该差量Λ λ i计算流过电流用FBG132的金属层133的电流。然后,基于该电流、金属层133的电阻值Ri (也可以预先存储)、以及电路C中的电极134以及135之间的电阻值,来计算流过电路C的电流。这样一来,电力装置监视系统101测量电池200的电流值。
[0076]如上所述,根据本发明的实施方式2所涉及的电力装置监视系统101,能够测量电池200的电流以及电压,能够监视电池200的状态。与实施方式I相同,电力装置监视系统101基于布拉格波长的变化以光学的方式测量电流值以及电压值,所以能够进行高精度的测量。
[0077]另外,在实施方式2中,并不直接使用布拉格波长λ?以及λν的绝对值,而使用和与环境温度对应的布拉格波长λ t的差量Δλ? = λ i — λ t以及Δλν = λ V — λ?,所以能够补偿起因于环境温度的变动的误差,能够进行更高精度的测量。
[0078]另外,在温度保证用FBG112以及其周边不流通电流,所以温度保证用FBG112本身的温度在电力装置监视系统101的停止时和运转时不变动。即不需要温度保证用FBG112的预热、使温度保证用FBG112相对于环境温度稳定的作业。另外,各FBG中的布拉格波长的变化以及其测量是光学上的,不受电磁的干扰,所以能够排除电磁的噪声进行S/N比较高的测量。
[0079]另外,均基于FBG的布拉格波长的变动进行与环境温度对应的波长(基准布拉格波长At)的测量、和与电流以及电压对应的波长(布拉格波长λ i以及λ V)的测量,即基于相同的物理原理进行测量,所以误差的补偿变得更正确。
[0080]在上述的实施方式I以及2中,能够附加以下那样的变形。
[0081]在实施方式I以及2中,光处理装置基于透过了各FBG的透射光测量电流以及/或者电压。作为变形例,光处理装置也可以基于被各FBG反射的反射光测量电流或者电压。该情况下,光测量单元设置于传感器用光纤的入射侧,测量被各FBG反射的光的光谱。另夕卜,布拉格波长作为给予测量出的光谱的极大值的波长而被确定。
[0082]也可以在实施方式1(图1)的金属层13的电线16设置相当于实施方式2(图5)的电阻器128的电阻器。该情况下,实施方式I的电力装置监视系统I能够更正确地测量电压。另外,传感器用光纤也可以具备那样设置有电阻器的FBG、和未设置电阻器的FBG(即图1所示的FBG12)双方。设置有这双方的FBG的结构与在实施方式2 (图4)的传感器用光纤110中省略了温度保证用FBG112的结构同等。
[0083]在实施方式2中,使用三个FBG,但FBG为两个以上即可。例如,能够省略电压用FBG122或者电流用FBG132的任意一个。该情况下,电力装置监视系统101测量电池200的电流或者电压的任意一个。
[0084]在实施方式2中,电流用FBG132以并联的方式与电路C的一部分连接,但也可以与以往的电流计相同,以串联的方式与电路C连接。该情况下,运算单元154能够直接将流过电流用FBG132的金属层133的电流值作为电池200的电流值而测量。
[0085]在实施方式2中,温度保证用FBGl 12、电压用FBG122以及电流用FBG132全部具有相同的特性,但这些FBG也可以分别具有不同的特性。例如,也可以分别具有不同的热膨胀率,也可以在相同的温度中分别具有不同的光栅周期。即使为这样的结构,若已知各自的特性,则运算单元154能够通过适当的运算计算电流值以及电压值。
[0086]实施方式3.
[0087]实施方式3在一个FBG设置电流检测部以及温度检测部,通过进行基于反射带宽的运算,能够利用单一的FBG进行温度保证(温度补偿)。
[0088]图7是实施方式3所涉及的传感器用光纤310的一部分的放大图。以下,对与实施方式I的传感器用光纤10(图1、图2)的不同点进行说明。
[0089]传感器用光纤310具备覆盖FBG312的金属层313。金属层313例如通过金属蒸镀形成。
[0090]将FBG312的轴向的长度设为L0。与实施方式I不同,金属层313并不覆盖FBG312的整体,而仅覆盖一部分。即FBG312具备被金属层313覆盖的金属化部312a、和未被金属层313覆盖的非金属化部312b。(另外非金属化部312b不需要露出,也可以被金属层以外的结构覆盖。)
[0091]FBG312的整体的光栅周期一定。即金属化部312a的光栅周期与非金属化部312b的光栅周期相同。在本实施方式中,金属化部312a作为电流检测部而发挥功能,非金属化部312b作为温度检测部而发挥功能。
[0092]金属化部312a设置在FBG312的轴向中央,具有轴向的长度La。另外,非金属化部312b在FBG312中设置于金属化部312a的轴向两侧,在各侧具有轴向的长度Lb/2。即非金属化部312b的合计长度为Lb,LO = La+Lb。
[0093]在本实施方式中,La = Lb。即金属化部312a的合计长度(在图7的例子中,金属化部312a为一个位置,所以合计长度为La)与非金属化部312b的合计长度相等。这样,金属化部312a与非金属化部312b彼此光栅周期相等,并且长度也相等,所以在相同的温度具有相同的光谱特性。
[0094]图8表示被FBG312反射的光的光谱与对金属层313的通电对应地变化的情况。图8(a)表示通电前的状态。FBG312整体为通电前的温度(例如室温)。即金属化部312a的反射光谱Sa与非金属化部312b的反射光谱Sb—致。将此时的峰值波长设为λ O。另外,将被FBG312整体反射的波长的带宽设为Β0。该带宽BO能够通过公知的方法测量,例如是反射的光的强度成为规定的阈值以上的频带的宽度。
[0095]图8(b)表示开始对金属层313的通电之后的状态。通电开始之后,仅金属化部312a的温度迅速地上升,因热膨胀而反射光谱Sa向长波长侧偏移。这里假设偏移Λ λ i,峰值波长成为λ I = λ 0+Λ λ i。在此时刻非金属化部312b的温度未上升,因此反射光谱Sb保持原样。
[0096]像这样仅金属化部312a的反射光谱Sa偏移的结果,以FBG312整体来看反射光谱的宽度变宽。此时,若将被FBG312整体反射的波长的带宽设为Bt,则Bt = BO+Δ λ i。因此,若测量BO以及Bt则能够计算Λ λ i (例如Λ λ i = B2 — B0)。并且,Λ λ i取决于电流的大小,所以能够基于Δ λ i计算电流的大小。
[0097]例如,电力装置监视系统能够构成为具备放射由多个波长构成的光作为入射光的光源、测量被FBG312反射的波长的带宽Bt的光测量单元(分光单元)、以及基于测量出的带宽Bt计算流过金属层313的电流的计算单元。另外也同样地能够计算施加给金属层313的电压。控制部也可以预先存储电流为O的情况下被FBG312的反射的波长的带宽B0。
[0098]图8(c)表不对金属层313的通电持续一段时间的状态。热量从金属化部312a向传感器用光纤310的整体传播,金属化部312a以及非金属化部312b的反射光谱Sa以及Sb均向长波长侧偏移。这里假设偏移了 Λ At。其结果,金属化部312a的反射光谱的峰值波长为入3= λ 1+Δ λ t,非金属化部312b的反射光谱Sb的峰值波长为λ2= λΟ+Δλ?。
[0099]在这样的状态下,即使流过金属层313的电流一定,金属化部312a的反射光谱Sa的峰值波长也随着时间而变动,所以严格地仅基于反射光谱Sa的峰值波长来进行电流值的计算需要某些修正。
[0100]然而,Λ At的偏移在金属化部312a以及非金属化部312b同样地出现,所以FBG312整体的反射光谱保持其形状不变而整体向长波长侧偏移。因此,被FBG312整体反射的波长的带宽保持Bt不变化。这样,不管因持续通电引起的传感器用光纤310整体的温度变动的影响Λ At的大小,能够精度良好地就出仅取决于电流的大小的值Λ λ i。
[0101]图8(d)表示停止了通电之后的状态。金属化部312a迅速地冷却所以反射光谱Sa向短波长侧返回,但因传感器用光纤310整体的温度上升,与通电开始前(图8(a)的状态)相比靠近长波长侧,峰值波长成为λ2。另外,非金属化部312b的反射光谱Sb不变化,峰值波长保持为λ 2。因此,金属化部312a的反射光谱Sa与非金属化部312b的反射光谱Sb—致。
[0102]在该时刻,FBG312整体的反射光谱与通电开始前(图8(a))相比向长波长侧偏移,但反射光谱的带宽与通电开始前相同成为B0。这样,不管是否存在因持续通电引起的传感器用光纤310整体的温度变动的影响Λ At,能够精度良好地求出电流的大小。
[0103]此外,若通电停止后经过一段时间,则传感器用光纤310整体的温度降低,返回至通电开始前的状态(图8(a))。
[0104]这样,根据实施方式3,在一个FBG设置电流检测部(金属化部312a)以及温度检测部(非金属化部312b),并进行基于反射带宽的运算,所以能够利用单一的FBG312进行温度保证(温度补偿)并计算正确的电流值或者电压值。
[0105]因此,即使在因发热引起的热量积蓄导至波长偏移的漂移那样的情况下,也能够正确地计算电流值。
[0106]另外,能够利用一个FBG元件实现FBG312,所以能够避免成本的上升。特别是不需要外置FBG的温度传感器等,能够减少成本并且使装置整体小型化。
[0107]另外,金属化部312a的长度与非金属化部312b的长度彼此相等,所以各自的反射光谱示出了共同的特性(例如相同的反射率),能够进行精度更高的测量。但是,即使在这些长度不相等的情况下,理论上只要各自是不为O的长度则能够进行测量。另外,这些长度严格来说不需要一致,即使长度多少有些不同,只要是给予波长的测量精度或者电流、电压的计算精度的误差能够忽略的程度,则能够视为长度彼此相等。
[0108]另外,金属化部312a设置在FBG312的轴向中央,所以非金属化部312b的热响应性提高(即时间常数变小)。但是,严格来说不需要配置在中央,只要是非金属化部312b位于金属化部312a的两侧的结构,则能够在某种程度上维持非金属化部312b的热响应性。
[0109]但是,金属化部312a无论设置在FBG312的哪个位置,均能够以某种程度的热响应性进行电流值的计算,例如也可以如图9所示的变形例那样设置在端部。在图9的变形例中,传感器用光纤410具备FBG412,FBG412具备被金属层413覆盖的金属化部412a (长度La)、和未被金属层413覆盖的非金属化部412b (长度Lb)。
[0110]在实施方式3中,基于被FBG312反射的光的波长测量电流以及/或者电压。作为变形例,也可以基于透过了 FBG312的光的波长测量电流或者电压。
【权利要求】
1.一种传感器用光纤,该传感器用光纤具备: FBG,其使所述传感器用光纤的芯线的折射率沿入射光传播的方向周期性地变化; 金属层,其覆盖所述FBG;以及 一对电极,其设置于所述金属层。
2.根据权利要求1所述的传感器用光纤,其中, 所述金属层包含电阻金属材料。
3.根据权利要求1所述的传感器用光纤,其中, 所述金属层因该金属层所产生的焦耳热而在所述入射光传播的方向伸缩。
4.根据权利要求1所述的传感器用光纤,其中, 所述传感器用光纤具备多个所述FBG, 所述FBG中的一个具有的所述金属层的电极中的一个与电阻器连接。
5.根据权利要求1所述的传感器用光纤,其中, 所述传感器用光纤具备环境温度传感器部, 所述环境温度传感器部具备与所述FBG不同的FBG。
6.根据权利要求1所述的传感器用光纤,其中, 所述FBG具备被所述金属层覆盖的金属化部、和未被所述金属层覆盖的非金属化部。
7.根据权利要求6所述的传感器用光纤,其中, 所述金属化部的所述入射光传播的方向上的合计长度与所述非金属化部的所述入射光传播的方向上的合计长度彼此相等。
8.根据权利要求6所述的传感器用光纤,其中, 所述金属化部在所述FBG设置于所述入射光传播的方向的中央。
9.一种电力装置监视系统,其中,具备: 权利要求6所述的传感器用光纤; 光源,其放射由多个波长构成的光作为所述入射光; 分光单元,其测量透过了所述FBG的光或者被所述FBG反射的波长的带宽;以及 计算单元,其基于所述带宽来计算流过所述金属层的电流或者施加给所述金属层的电压。
10.一种电力装置监视系统,其中,具备: 权利要求1所述的传感器用光纤; 光源,其放射所述入射光;以及 光测量单元,其测量透过了所述FBG的光或者被所述FBG反射的光。
11.根据权利要求10所述的电力装置监视系统,其中, 所述传感器用光纤具备多个所述FBG, 所述多个FBG包含电流用FBG以及电压用FBG, 所述电流用FBG的金属层以串联的方式与所述电力装置连接, 所述电压用FBG的金属层的电极中的一个与电阻器连接, 所述电压用FBG的金属层以并联的方式与所述电力装置连接。
12.根据权利要求10所述的电力装置监视系统,其中, 所述光源放射由多个波长构成的光作为所述入射光, 所述光测量单元是测量光的光谱的分光单元。
13.根据权利要求12所述的电力装置监视系统,其中, 所述分光单元确定被所述FBG反射的布拉格波长, 所述电力装置监视系统还具备计算单元,该计算单元基于所述布拉格波长,来计算流过所述金属层的电流或者施加给所述金属层的电压。
14.根据权利要求13所述的电力装置监视系统,其中, 所述传感器用光纤具备环境温度传感器部, 所述环境温度传感器部具备与所述FBG不同的FBG, 所述分光单元将被所述环境温度传感器部反射的波长作为基准布拉格波长而确定, 所述计算单元基于所述布拉格波长与所述基准布拉格波长的差量,来计算所述电流或者所述电压。
【文档编号】G01R19/03GK104185793SQ201380015790
【公开日】2014年12月3日 申请日期:2013年1月21日 优先权日:2012年1月23日
【发明者】今冈功, 须崎嘉文, 岩田弘, 中川清 申请人:株式会社丰田自动织机, 国立大学法人香川大学, 独立行政法人国立高等专门学校机构
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1