在冻融循环下轻骨料混凝土孔隙结冰速率的测试方法与流程

文档序号:14570193发布日期:2018-06-01 21:43阅读:417来源:国知局
在冻融循环下轻骨料混凝土孔隙结冰速率的测试方法与流程

本发明涉轻骨料混凝土孔隙结冰速率测试技术领域,尤其涉及一种在冻融循环下轻骨料混凝土孔隙结冰速率的测试方法。



背景技术:

轻骨料混凝土的轻质、高孔隙度、低弹性模量、良好的抗冻耐久性以及绝缘特征等优点,使得轻骨料混凝土在工业与民用建筑和水工建筑工程中进行广泛应用。在我国北方地区,因为冬季较为漫长,温差较大,冻融循环对混凝土破坏比较普遍,且大多都发生在水工建筑物与水接触的部位,如水闸、水坝底部和灌溉渠道衬砌等。除了我国华北、东北、西北地区,在我国华东、华中地区每年均会有0℃以下的寒冷天气出现,虽然其持续时间较短,发生频率较低,但是仍旧会有使得混凝土建筑物产生冻融损伤的可能性,因此对于水工混凝土结构抗冻耐久性问题,在我国混凝土结构中存在较为普遍,也是非常棘手的问题。所以,对于北方寒区而言,混凝土的抗冻性是评价混凝土耐久性的一个重要指标。

目前,对于轻骨料混凝土的冻融损伤程度,多依据《普通混凝土长期性能和耐久性》(GB/T 50082-2009)规范进行评判,通过冻融循环后抗压强度、质量损伤和相对动弹模量等指标定量的判断损伤程度。

然而,利用微观结构只能定性的评估损伤,无法量化其损伤指标,导致其微观研究成果无法进行定量分析。



技术实现要素:

本发明实施例提供了一种在冻融循环下轻骨料混凝土孔隙结冰速率的测试方法,解决了现有技术中无法定量测试混凝土孔隙结冰速率的问题。

本发明提供的在冻融循环下轻骨料混凝土孔隙结冰速率的测试方法,包括:获取试样;将所述试样放置烘箱中烘干,至重量恒定,称重得质量m1,将烘干的所述试样置于常温水中真空饱和,对饱水后的所述试样称重,得质量m2,并测量所述试样体积为v,则所述试样常温下的孔隙率ε为将饱和后的所述试样置于0℃的低温箱中至所述试样温度达到0℃,将低温核磁共振的线圈温度调至0℃,并将所述试样放入所述线圈中,在温度平衡后进行测试,得到0℃下的水分信号量强度F0,则0℃下所述试样的未冻水含量为则0℃下所述试样的未结冰孔溶液的体积为其中,所述Fh-0为0℃下回归线所述信号强度,所述Vw为所述试样总的含水量,将所述试样置于t1℃的低温箱中至所述试样温度达到t1℃;将所述低温核磁共振的线圈温度调至t1℃,并将所述试样放入所述线圈中,在温度平衡后进行测试,得到t1℃下的水分信号量强度并将正温度曲线延长至t1℃,得到t1℃下回归线的信号强度则t1℃下未冻水含量为:则t1℃下的未结冰孔溶液的体积为则t1℃温度时未结冰孔溶液的体积相对量为:则t1℃下所述试样的单位体积内的结冰孔溶液为:如上述步骤,测得t2℃下所述试样的单位体积内的结冰孔溶液为:根据所述ωf1及所述ωf2得所述试样的单位体积孔溶液的结冰速率U为:其中,所述Δθ为|t2-t1|。

优选的,本发明实施例提供的在冻融循环下轻骨料混凝土孔隙结冰速率的测试方法,在将所述试样置于常温水真空饱和后,放入所述低温箱前,利用生料带将饱水后的所述试样包裹。

优选的,本发明实施例提供的在冻融循环下轻骨料混凝土孔隙结冰速率的测试方法,所述烘箱的温度为70℃±5℃。

优选的,本发明实施例提供的在冻融循环下轻骨料混凝土孔隙结冰速率的测试方法,所述获取试样包括:将养护的100mm×100mm×400mm的试件进行切割取芯,在两端切去100mm×100mm×170mm,并分别等量的切去四个成型面30mm×60mm×100mm,使得剩余试件尺寸为40mm×40mm×60mm。

优选的,本发明实施例提供的在冻融循环下轻骨料混凝土孔隙结冰速率的测试方法,所述将所述试样放入所述线圈中,在温度平衡后进行测试包括:所述将所述试样放入所述线圈中,在温度20min后进行测试。

综上,本发明实施例提供的在冻融循环下轻骨料混凝土孔隙结冰速率的测试方法,基于Powers静水压力理论,通过将试样逐步降温处理,利用核磁共振方法,计算得到试样的未冻水量,从而进一步得到结冰速率,该方法综合考虑了粗骨料、水泥石存在的孔结构以及粗骨料与水泥浆体之间的界面的不规则裂缝,无需提前预埋导线,且低温核磁共振的线圈可以保证周围环境温度维持在试样中心温度,测量准确度高。

附图说明

图1为本发明实施例提供的在冻融循环下轻骨料混凝土孔隙结冰速率的测试方法的流程示意图。

图2为本发明实施例提供的在冻融循环下轻骨料混凝土孔隙结冰速率的取样结构示意图。

具体实施方式

下面结合本发明中的附图,对本发明实施例的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。

应理解,通过Powers的静水压力理论可知,混凝土孔溶液结冰速率与最大静水压力值成正比。当结冰速率取最大值时,其静水压力值最大,内部孔结构损伤就越严重。因此,将轻骨料混凝土在不同温度的未冻水量检测出,即可计算出结冰速率,将微观损伤定量化。

下面通过图1及图2详细说明本发明实施例提供的一种在冻融循环下轻骨料混凝土孔隙结冰速率的测试方法。如图所示,该方法可以包括:

S11,获取试样。

具体的,如图2所示,可以将养护28天100mm×100mm×400mm的试件进行切割取芯,为了消除端部不均的影响,试件两端切去100mm×100mm×170mm,然后分别等量的切去试件的四个成型面30mm×60mm×100mm,使得剩余试件尺寸约为40mm×40mm×60mm,这样便于消除成型面与底面砂石分布不均的影响。也可根据实际工程现场进行取芯,直径50mm,高度60mm。应理解,具体的试样尺寸,可以根据实际情况确定,本发明对此不做限制。

S12,将所述试样放置烘箱中烘干,至重量恒定,称重得质量m1,将烘干的所述试样置于常温水中真空饱和,对饱水后的所述试样称重,得质量m2,并测量所述试样体积为v,则所述试样常温下的孔隙率ε为:

具体的,可以将试样在常温的水中真空饱和24h,利用排水法测试出试样的体积v,然后将饱水后的试样取出,用生料带将试样包裹住,擦干表面水称取重量,即得到饱水后的试样质量m2;然后放入70℃±5℃的烘箱中烘干,至重量恒定时,测量烘干后的试样质量m1,则可通过公式计算得到该试样在常温下的孔隙率ε。进一步,为了模拟实际工程环境,将烘干的所述试样置于15℃~20℃水中真空饱和,以为后续测量做准备。

应理解,为了方便试样,提高实验效率,简化步骤,可以直接将试样放置在烘箱中进行烘烤,然后称重。进一步,为了模拟实际工程环境,将试样放在15℃~20℃的清水中进行24h真空饱和,并测量水饱和后的试样质量m2及试样体积v。

S13,将饱和后的所述试样置于0℃低温箱中至所述试样温度达到0℃,将低温核磁共振的线圈温度调至0℃,并将所述试样放入所述线圈中,在温度平衡后进行测试,得到0℃下的水分信号量强度F0,则0℃下所述试样的未冻水含量为:

则0℃下所述试样的未结冰孔溶液的体积为

其中,所述Fh-0为t0℃下回归线所述信号强度,所述Vw为总的含水量,

S14,将所述试样置于t1℃的低温箱中至所述试样温度达到t1℃;将所述低温核磁共振的线圈温度调至t1℃,并将所述试样放入所述线圈中,在温度平衡后进行测试,得到t1℃下的水分信号量强度Ft,并将正温度曲线延长至t1℃,得到t1℃下回归线的信号强度Fh-t,则t1℃下未冻水含量为:

则t1℃下的未结冰孔溶液的体积为

则t1℃温度时未结冰孔溶液的体积相对量为:

则t1℃下所述试样的单位体积内的结冰孔溶液为:

S15,如步骤S14,测得t2℃下所述试样的单位体积内的结冰孔溶液为:

S16,根据所述ωf1及所述ωf2得所述试样的单位体积孔溶液的结冰速率U为:

其中,所述Δθ为|t2-t1|。

具体的,为了保证试样的中心温度达到测点温度,将试样放在0℃低温箱中放置若干小时,如24小时,至试样的温度达到0℃。并将低温核磁共振的线圈温度调至0℃,然后将试样放入线圈中,在温度平衡后进行测试,如静置20min后,测试出水分的信号量强度,Fh-0可以通过将对应的温度带入温度线性回归线即得到。

然后降低低温箱中的温度至t1℃,将试样放入,在t1℃下放置若干小时;将低温核磁共振的线圈温度调至t1℃,然后将试样放入线圈中,在温度平衡后进行测试,测试出t1℃水分的信号量强度将正温温度曲线延长至t1℃,得出t1℃温度下回归线的信号强度得到t1℃下未冻水含量进一步得到t1℃下的未结冰孔溶液的体积然后根据0℃下的未结冰孔溶液的体积的基准,得到t1℃温度时未结冰孔溶液的体积相对量则t1℃下所述试样的单位体积内的结冰孔溶液

进一步,通过采用与上述步骤S14同样的方法,即依次将低温箱及低温核磁共振的线圈温度调节到更低的t2℃,从而可以根据上述公式,依次得到t2℃下的水分信号强度量、回归线的信号强度量、未冻水含量、未结冰孔溶液体积及未结冰孔溶液的体积相对量,进而可以计算得到t2℃下所述试样的单位体积内的结冰孔溶液

最后,可以根据计算得到两个温度t1及t2区间的结冰速率U,即两个温度t1及t2区间的单位体积内的结冰孔溶液的斜率

应理解,该实施例中的选取基准温度为0℃,且两个测试温度为t1℃及t2℃,只是示例性说明。在实际操作中,可以根据需要,随机确定,本发明对此不做限制。例如,可以为0℃、-5℃等。并且,还可以依次降低低温箱中的温度分别至-10℃、-15℃、-20℃,然后将试验测试的数据带入上述公式中,计算出各个温度区间的结冰速率,从而推导出最大静水压值。

为了便于理解,下面通过另一实施例详细说明该方法。具体的实验配合比设计,如表1所示,试验材料性质,水泥:冀东P.O42.5普通硅酸盐水泥;粗骨料:内蒙古中部地区浮石集料,表观密度1586kg/m3,吸水率/1h:15.6%;细骨料:天然河砂,细度模数2.56,含泥量1.98%,堆积密度1465kg/m3,表观密度2645kg/m3,含水率1.987%,颗粒级配2区;粉煤灰:呼和浩特市金桥热电厂Ⅰ级粉煤灰;减水剂:RSD-8型高效减水剂,以β-萘酸钠甲醛高缩聚物为主要成分的高效减水剂,掺量为2%,减水率20%,对钢筋没有锈蚀作用;水:普通自来水。

表1天然浮石混凝土配合比

将试样养护28d后,按照方法步骤S11进行切割;再根据方法步骤S12及S13测出A组轻骨料混凝土的孔隙率10.8%;

按照方法步骤S14至S16测试A组从0℃降至-5℃,有55.83%的孔溶液结冰,孔溶液在轻骨料混凝土中的体积百分率为10.81%,所以单位轻骨料混凝土体积中孔溶液的结冰速率U为:

按照上述方法测试天然浮石混凝土在不同温度区间内的孔溶液结冰速率U见表2。

表2各温度区间的U(×10-3m3/m3/℃)

综上所述,本发明实施例提供的在冻融循环下轻骨料混凝土孔隙结冰速率的测试方法,基于Powers静水压力理论,通过将试样逐步降温处理,利用核磁共振方法,计算得到试样的未冻水量,从而进一步得到结冰速率,该方法综合考虑了粗骨料、水泥石存在的孔结构以及粗骨料与水泥浆体之间的界面的不规则裂缝,无需提前预埋导线,且低温核磁共振的线圈可以保证周围环境温度维持在试样中心温度,测量准确度高。

以上公开的仅为本发明的几个具体实施例,但是,本发明实施例并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1