一种大量程高精度微接触力位移测量装置及其控制方法与流程

文档序号:14869157发布日期:2018-07-06 13:24阅读:248来源:国知局

本发明涉及一种高精度位移检测装置及控制方法,可实现毫米级量程、纳米级测量分辨率及微接触力的位移测量,适用于毫米尺度零件及装配体的尺寸及形状精度的测量。



背景技术:

目前,有许多毫米尺度的重要精密零件及装配体需要进行尺寸和形状精度等几何参数的高精度测量,如精密微球、微圆柱、icf靶装配体(惯性约束聚变靶装配体)等,这些零部件通常尺寸介于几毫米至十余毫米之间,但尺寸及形状测量要求在纳米级精度,且测量过程要求非接触或微接触力,以减少测量误差及防止损坏。然而现有的位移测量传感器很难实现同时兼顾大量程、高位移分辨率及微接触力的测量,这是由于在许多场合使用绝对式位移检测元件,大量程与高位置分辨率互为矛盾,且由于导向精度等影响,大的测量量程将影响获得高的位置检测精度,因此此类测量传感器需要从实现方法及结构方式上进行考虑。



技术实现要素:

本发明的目的在于提供一种大量程高精度微接触力位移测量装置及其控制方法,该装置及方法可对毫米尺度精密零件及装配体的尺寸及形状精度等几何量进行纳米精度的无损测量。

为实现上述目的,本发明采取的技术方案是:

一种大量程高精度微接触力位移测量装置,其组成包括音圈电机,所述的音圈电机包括动子和定子,所述的大量程高精度微接触力位移测量装置还包括光栅尺、气浮导轨移动部件、气浮导轨基座、压电陶瓷执行器、辅助监控显微镜、微力传感探针及读数头;

音圈电机的动子与气浮导轨移动部件一端连接,音圈电机的定子与气浮导轨基座连接,所述的气浮导轨基座右上端设有中空腔,所述的气浮导轨移动部件滑动设置在气浮导轨基座的中空腔内,所述的光栅尺与气浮导轨移动部件连接,所述的读数头与气浮导轨基座连接;所述的压电陶瓷执行器首端与气浮导轨移动部件另一端连接,压电陶瓷执行器末端与微力传感探针连接,所述的辅助监控显微镜与压电陶瓷执行器的固定基座连接。

本发明相对于现有技术的有益效果是:本发明以气浮导轨移动部件作为精密导向部件,高精度光栅尺为位置反馈元件,并结合微力传感器及压电陶瓷执行器或音圈电机进行微恒力控制实现大量程高精度微力传感的位移测量。本发明可实现数十毫米范围测量量程中纳米级的位移分辨率和毫牛级的测量力,能够配合附加运动平台实现对微球、微圆柱、icf靶装配参数的尺寸和形状精度等几何量的测量,此外,该发明具备操作简单、控制稳定、集成度较高等特点。

附图说明

图1是本发明的大量程高精度微接触力位移测量装置的主视图;

图2是图1的俯视图;

图3是图1的左视图;

图4是微力传感探针的其中一种结构的主视图;

图5是微力传感探针的另一种结构的主视图;

图6是本发明的大量程高精度微接触力位移测量装置的控制部分原理图;

图7是本发明的大量程高精度微接触力位移测量装置的控制模式一的原理图;

图8是本发明的大量程高精度微接触力位移测量装置的控制模式二的原理图。

图中各部件符号说明如下:

音圈电机1、光栅尺2、气浮导轨移动部件3、气浮导轨基座4、压电陶瓷执行器5、辅助监控显微镜6、微力传感探针7、微力传感器7-1、微探针7-2、自感应型微力探针7-3、读数头8、umac控制器9、模拟电压数据采集模块9-1、轴运动控制卡9-2、压电陶瓷驱动器10、信号放大器11、控制计算机12、被测样品13、组分盒14、电机驱动器15。

具体实施方式

为了更好的理解本发明专利的方案,结合附图对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。

具体实施方式一:如图1-图3所示,本实施方式披露了一种大量程高精度微接触力位移测量装置,其组成包括音圈电机1,所述的音圈电机1包括动子和定子,所述的大量程高精度微接触力位移测量装置还包括光栅尺2、气浮导轨移动部件3、气浮导轨基座4、压电陶瓷执行器5、辅助监控显微镜6、微力传感探针7及读数头8;

音圈电机1的动子与气浮导轨移动部件3一端连接,音圈电机1的定子与气浮导轨基座4连接,所述的气浮导轨基座4右上端设有中空腔,所述的气浮导轨移动部件3滑动设置在气浮导轨基座4的中空腔内(运动范围可实现数十毫米级),所述的光栅尺2与气浮导轨移动部件3连接,所述的读数头8与气浮导轨基座4连接(读数头8将读取的信号经细分后可实现1nm的位置分辨率,用于记录气浮导轨移动部件3的位移数据);所述的压电陶瓷执行器5首端与气浮导轨移动部件3另一端连接(可进行几十微米范围的微小位移量的调节),压电陶瓷执行器5末端与微力传感探针7连接,所述的辅助监控显微镜6与压电陶瓷执行器5的固定基座连接(可辅助放大观察微力传感探针7与被测样品13接触时的状态)。

具体实施方式二:如图1、图4、图5所示,本实施方式是对具体实施方式一作出的进一步说明,所述的微力传感探针7由微力传感器7-1(如kisler公司9207微力传感器)及微探针7-2组成,所述的微力传感器7-1一端与压电陶瓷执行器5末端连接,微力传感器7-1另一端与微探针7-2尾端连接(可实现毫牛量级的测量接触力);或者所述的微力传感探针7为自感应型微力探针7-3(如nanosensors公司akiyama-probe自感应探针)可实现纳牛量级的测量接触力检测。

具体实施方式三:如图6所示,本实施方式是对具体实施方式二作出的进一步说明,所述的大量程高精度微接触力位移测量装置还包括umac控制器9(umac全称universalmotionandautomationcontroller);

所述的umac控制器9包括模拟电压数据采集模块9-1和轴运动控制卡9-2,所述的轴运动控制卡9-2的控制信号输出端通过电机驱动器15与音圈电机1控制信号接收端相连接,所述的读数头8的检测信号输出端通过组分盒14与轴运动控制卡9-2的检测信号接收端相连接,所述的轴运动控制卡9-2的模拟信号输出端通过压电陶瓷驱动器10与压电陶瓷执行器5的压电陶瓷的模拟信号接收端相连接,当被测样品13与微力传感探针7的微探针7-2或者自感应型微力探针7-3接触时,所述的微力传感器7-1或自感应型微力探针7-3感知测量力信号,此力信号以±10v模拟电压的形式并通过信号放大器11连接到模拟电压数据采集模块9-1上,所述的轴运动控制卡9-2设有两个通道,一个通道是有音圈电机1为执行部件,光栅尺2位移信号作为位置反馈(经细分盒细分为a\b\z脉冲信号)可组成位置闭环控制轴,另一个通道通过模拟电压(16位da输出0~10v电压)输出到压电陶瓷执行器5上,压电陶瓷执行器5的模拟电压输出端与轴运动控制卡9-2的模拟信号接收端相连接;所述的辅助监控显微镜6将视频信号输出端发送至控制计算机12的usb端口,所述的控制计算机12通过网线lan与umac控制器9双向连接(实现总体控制及测量结果显示。辅助监控显微镜6用于观察微探针7-2或者自感应型微力探针7-3与被测样品13的接触状态,通过usb数据线与控制计算机12相连,用于图像数据传输)。

当微力传感探针7与被测样品13的被测表面接触时,umac控制器9可获取和记录微力传感探针7的微力数据,umac控制器9配合压电陶瓷执行器5或音圈电机1的位移运动实现恒力的控制。umac控制器9将光栅尺2大范围位移数据及压电陶瓷微位移数据相叠加,作为整个大量程高精度微力位移测量装置的位移测量结果。

本发明中的umac控制器9采用deltatau公司的umac(universalmotionandautomationcontroller)运动控制器。

具体实施方式四:如图7所示,本实施方式是对具体实施方式三作出的进一步说明,在宏动(大位移)单元,轴运动控制卡9-2的通道一输出控制信号给音圈电机1,控制气浮导轨移动部件3运动,同时轴运动控制卡9-2的通道一接受光栅尺2的反馈位移信号,实现位置闭环控制,轴运动控制卡9-2的通道一记录光栅尺2反馈的位移量;在微动单元,轴运动控制卡9-2的通道二输出控制电压给压电陶瓷执行器5,控制微力传感探针7与被测样品13的接触状态,同时轴运动控制卡9-2的通道二接受微力传感器7-1或者自感应型微力探针7-3力反馈信号,实现恒接触力的力闭环控制,轴运动控制卡9-2的通道二记录压电陶瓷执行器5中的压电陶瓷的位移量;在此模式下,整个所述的测量装置的位移测量结果为光栅尺2的位移量与压电陶瓷的位移量的叠加。也称控制模式一。

具体实施方式五:如图8所示,本实施方式是对具体实施方式三作出的进一步说明,所述的控制方法步骤如下:

只启用宏动(大位移)单元,轴运动控制卡9-2的通道一输出控制信号给音圈电机1,控制气浮导轨移动部件3及微力传感探针7与被测样品的接触状态,同时轴运动控制卡9-2的通道一接受微力传感器7-1或者自感应型微力探针7-3的力反馈信号,实现恒接触力的力闭环控制,轴运动控制卡9-2的通道一记录光栅尺2反馈的位移量;微动单元不启用,压电陶瓷执行器5中的压电陶瓷位移量设置为零;在此模式下,整个所述的测量装置的位移测量结果即为光栅尺2的位移量。也称控制模式二。

在测量装置的控制方法方面,umac控制器9采用轴运动控制卡9-2分别驱动音圈电机1(宏动,光栅尺2反馈)及压电陶瓷执行器5(微动,pzt自带位移反馈,umac控制器9开环控制),微力反馈电压信号可用于与音圈电机1组成闭环或与压电陶瓷执行器5组成闭环。因此,测量装置的控制方法可以有如上两种模式:即具体实施方式四和具体实施方式五。

本发明中,气浮导轨移动部件3为精密导向部件,音圈电机1为大量程运动动力元件,光栅尺2为位移检测元件,微力传感探针7感知探针与被测样品13的接触状态,压电陶瓷执行器5进行精密调节维持恒定的微接触力,umac控制器9记录光栅尺2位移数据或压电陶瓷执行器5的位移数据,最终获得测量的位移结果。

本发明的一种大量程高精度微接触力位移测量装置的使用流程如下:

1)控制微力传感探针7与被测样品13逼近:在辅助监控显微镜6及测量力反馈信号的监视下,宏动音圈电机1驱动气浮导轨移动部件3(位置闭环)与微动压电陶瓷执行器5(pzt)驱动微力传感探针7小范围扫描运动(开环)交替控制实现逼近,即pzt在其量程范围内以小步距逼近被测样品13,若到达pzt极限位移量仍未发现力信号显著变化,则将pzt恢复到初始位置,宏动音圈电机1移动一步(步进量小于pzt最大伸长量);重复这一过程直至检测到微力传感器7-1或自感应型微力探针7-3的力信号有显著变化,逼近过程结束;

2)测量装置获取测量结果:在微力传感探针7与被测样品13相接触后(逼近过程结束后),即可按照具体实施方式四或五配置测量控制器(即umac控制器),开启相应的轴闭环控制模式,获得测量的位移结果;

3)配合其他运动单元可实现被测样品13空间位置上位移量的测量。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1