电磁超声检测电站锅炉受热面管内壁氧化皮厚度的方法与流程

文档序号:19011704发布日期:2019-10-30 00:30阅读:1233来源:国知局
电磁超声检测电站锅炉受热面管内壁氧化皮厚度的方法与流程

本发明涉及无损检测技术,尤其是涉及一种电磁超声检测电站锅炉受热面管内壁氧化皮厚度的方法。



背景技术:

电站锅炉高温受热面管道因工质水动力特性的变化易发生蒸汽侧氧化腐蚀。随着锅炉运行时间的增长,在锅炉高温受热面管道内部会逐渐生成氧化皮。当氧化皮与管道基体的热膨胀系数相差较大时,在锅炉载荷变化迅速、起停炉等情况下氧化皮容易剥落。氧化皮剥落会引起锅炉受热面管堵塞,使得蒸汽流通截面积减少,导致超温爆管事故;剥落的氧化皮颗粒随蒸汽的流动还可以造成汽轮机前级叶片和喷嘴等的冲蚀,以及引起汽门卡涩等,严重影响着锅炉管道部件和汽轮机运行的安全性和经济性。

目前,国内对于受热面管内壁氧化皮超声检测还没有一项非常成熟的技术。针对未剥落的受热面管内壁氧化皮的检测,主要采用常规压电效应超声波检测技术,这些检测技术主要存在下述问题:

1)检测时需要采用耦合剂进行耦合,耦合效果直接影响到检测结果的准确性。因此,对耦合剂的透声性及流动性等要求比较高。大量检测时需耗费大量耦合剂,不易清理,并将对现场环境造成一定的污染。

2)为了达到较好的耦合效果,在检测前需要进行表面清理及打磨工作,一般要求露出钢管表面金属光泽,需要耗费大量的人力、物力。此外,打磨不当还可能对受热面管造成一定的损害,形成应力集中源。

3)检测时,由于超声波从探头激发,穿透耦合剂,再进入到工件中,超声波能量损失比较大,检测灵敏度不高,不能进行快速检测。

4)温度对材料的压电效应影响比较大,因此,常规压电效应超声波检测受温度的影响也比较大,可检测的温度范围比较小。



技术实现要素:

本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种电磁超声检测电站锅炉受热面管内壁氧化皮厚度的方法。

本发明的目的可以通过以下技术方案来实现:

一种电磁超声检测电站锅炉受热面管内壁氧化皮厚度的方法,其特征在于,包括以下步骤:

1)采用电磁激发方式在与被测工件同规格同材质的内壁无氧化皮的受热面管中激发出垂直于工件表面传播的超声横波,获得受热面管内壁一次反射回波射频信号;

2)采用相同方式在被测工件中激发出垂直于工件表面传播的超声横波,获得受热面管内壁一次反射回波射频信号;

3)通过对比观察反射回波的射频信号周期数及信号畸变状况,判断电站锅炉受热面管内壁是否存在氧化皮;

4)测量反射回波射频信号第一波峰或波谷传播时间t1、畸变回波信号第一波谷或波峰传播时间t2,计算氧化皮厚度。

优选地,所述的步骤1)中的激发超声横波频率应大于等于5mhz。

优选地,所述的步骤1)中的一次反射回波射频信号震荡周期控制在4个完整周期内。

优选地,所述的电磁激发方式是利用工件的电磁效应,在被测工件中激发出超声横波。

优选地,所述的方法利用电磁超声传感器接收反射回波射频信号。

优选地,所述的判断电站锅炉受热面管内壁是否存在氧化皮具体为:

观察一次反射回波射频信号震荡周期数,若周期数与无氧化皮受热面管一次反射回波射频信号相同,且反射回波未发生畸变,则表示被测工件该部位内壁无氧化皮;

若周期数多于无氧化皮受热面管一次反射回波射频信号,且反射回波发生畸变,则表示被检工件该部位内壁有氧化皮,进行氧化皮厚度的计算。

优选地,所述的氧化皮厚度的计算过程如下:

通过测量被测工件内壁与氧化皮界面反射回波射频信号第一个波峰或波谷传播时间t1,和畸变回波信号第一个波谷或波峰传播时间t2,通过公式d=1/2v(t2-t1)计算受热面管内壁氧化皮厚度,v为超声横波在氧化皮中的传播速度。

优选地,所述的畸变回波信号是指反射回波波幅或相位发生突然改变的反射回波信号。

与现有技术相比,本发明具有以下优点:

1)实施检测时,不必采用耦合剂耦合,被测工件不必进行表面清理及打磨,节省人力、物力,检测效率高。

2)实施检测时,探头与工件可不直接接触,中间可加一层耐磨材料,不易对探头造成磨损。

3)能够实现高温检测、在线连续检测。

4)检测过程操作方便、易于掌握、工作效率高、成本低。检测速度快,有利于缩短锅炉检修周期,提高电厂经济效益。

5)安全、无危害。电磁超声检测技术属于超声波检测技术范畴。超声波无放射性,对人体健康无危害。

附图说明

图1为本发明电磁超声检测装置示意图;

图2为被测工件内壁无氧化皮部位反射信号示意图;

图3为被测工件内壁有氧化皮部位反射信号示意图;

图4为受热面管内壁无氧化皮部位波形图;

图5为受热面管内壁有氧化皮部位波形图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。

一种电磁超声检测电站锅炉受热面管内壁氧化皮厚度的方法,包括以下步骤:

1)采用电磁激发方式在与被测工件同规格同材质的内壁无氧化皮的受热面管中激发出垂直于工件表面传播的超声横波,获得受热面管内壁一次反射回波射频信号。所激发超声横波频率应大于等于5mhz。一次反射回波射频信号震荡周期应控制在4个完整周期以内。

2)所述电磁激发方式是利用工件的电磁效应(磁致伸缩效应),在被测工件中激发出超声横波;所述检测方法利用电磁超声传感器接收反射回波射频信号;

3)采用相同方式在被测工件中激发出垂直于工件表面传播的超声横波,获得受热面管内壁一次反射回波射频信号。

4)通过对比观察反射回波的射频信号周期数及信号畸变状况,判断电站锅炉受热面管内壁是否存在氧化皮。

5)通过测量被测工件内壁与氧化皮界面反射回波射频信号第一个波峰或波谷传播时间t1和畸变回波信号第一个波谷或波峰传播时间t2,通过公式d=1/2v(t2-t1)计算受热面管内壁氧化皮厚度。v为超声横波在氧化皮中的传播速度。

所述的检测方法,激发和接收超声波是分别利用工件的磁致伸缩效应和逆磁致伸缩效应,实施检测时,探头与工件之间不必采用耦合剂耦合,被测工件表面不必打磨可直接进行检测。

具体实施例

1、检测装置的组成

(1)参照图1,检测装置由超声波检测仪、电磁超声传感器、受热面管组成。

(2)超声波检测仪与电磁超声传感器连接,要求能够在受热面管中激发出频率大于等于5mhz的超声横波。

(3)超声波检测仪器应有双闸门功能,能够同时读取两个回波信号的传播时间。

2、超声波检测前的准备

(1)明确受热面管的材质、规格;

(2)调整并校核仪器的扫描线性和垂直线性。本发明是根据工件内壁/氧化皮界面反射回波、氧化皮/空气界面反射回波的传播时间计算受热面管内壁氧化皮厚度,因此,仪器的扫描线性和垂直线性是否准确对检测结果影响非常大。

3、检测过程

参考图1,将电磁超声传感器置于与被测工件同规格同材质的内壁无氧化皮的受热面管外表面,调节超声波检测仪,使得在仪器显示屏范围内出现工件内壁的二次反射回波射频信号。记录一次反射回波射频信号震荡周期数,图1所示一次反射回波射频信号震荡周期数为3个完整周期。

将电磁超声传感器置于被测工件外表面,调节超声波检测仪,使得在仪器显示屏范围内出现工件内壁的二次反射回波射频信号。观察一次反射回波射频信号震荡周期数,若周期数与无氧化皮受热面管一次反射回波射频信号相同,且反射回波未发生畸变,则表示被测工件该部位内壁无氧化皮(如图2所示);若周期数多于无氧化皮受热面管一次反射回波射频信号,且反射回波发生畸变,则表示被检工件该部位内壁有氧化皮(如图3所示),进入氧化皮计算厚度环节。

反射回波的畸变是指反射信号幅度或相位发生突然改变。反射回波的畸变主要是由于受热面管内壁/氧化皮界面反射回波与氧化皮/空气界面反射回波发生叠加效应造成的。

3、氧化皮厚度的计算

观察内壁有氧化皮的受热面管一次反射回波射频信号,用闸门1读取反射回波射频信号第一个波峰或波谷的传播时间t1,用闸门2读取畸变回波信号的第一个波谷或波峰的传播时间t2。氧化皮的厚度可以通过公式d=1/2v(t2-t1)计算得出。v为超声横波在氧化皮中的传播速度。

4、检测案例

本发明提供了一段存在氧化皮的受热面管的测试结果,规格为ф60×8mm。图4为受热面管内壁无氧化皮部位波形图,图5为受热面管内壁有氧化皮部位波形图。参考图4、图5的试验结果可以看出,受热面管有氧化皮部位的一次反射回波射频信号震荡周期数增加,并出现反射信号畸变现象,通过公式d=1/2v(t2-t1)计算得出该部位内壁氧化皮厚度为0.597mm。此外,将被测工件剖开,通过光学显微镜观察测量检测部位的内壁氧化皮厚度,测量结果为0.543mm。因此,本发明所述方法测量受热面管内壁氧化皮厚度精度较高。

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1