一种基于Fano共振效应的双阱间隧穿特性测量方法与流程

文档序号:16543952发布日期:2019-01-08 20:42阅读:321来源:国知局
一种基于Fano共振效应的双阱间隧穿特性测量方法与流程

本发明涉及一种双阱间隧穿特性测量方法,尤其涉及一种基于fano共振效应的双阱间隧穿特性测量方法。



背景技术:

半导体纳米微结构(量子点、量子阱等)的隧穿耦合特性是量子态制备、传递和读取等相干调控的基础,而且深入研究隧穿效应有助于分析电子轨道、自旋态和价态等内禀特性以及光子/声子的吸收/辐射等外部效应,所以结构自身隧穿特性的精密测量是当下微纳材料和光电器件设计的热点问题。量子阱材料具有电偶极矩大、相干时间长、器件易于集成等优点,耦合量子阱系统中,阱间隧穿耦合作用显著地改变了介质的光学特性,所以可以借助于介质的光学性质探测隧穿特性。目前,隧穿测量主要有电学方法和光学方法,电学方法主要有两种:其一是通过对源极和漏极之间的微弱电流的精确测量反映隧穿大小;另外一种电学方法是利用静电计靠近量子点,通过感应电荷量反映量子点的隧穿特性,属于无接触测量,但是目前的探测方法,很少有方案考虑到连续态参与的情况,也很少有涉及到利用fano共振吸收谱的非对称性测量双阱间遂穿特性大小的方法。



技术实现要素:

本发明考虑了连续态的参与,降低了测量的局限性,在连续态参与下的fano共振效应,分析吸收谱线非对称性对隧穿特性的变化关系。

为了实现上述目的,本发明采用如下技术方案:

一种基于fano共振效应的双阱间隧穿特性测量方法,具体步骤为:

s1:调节外置偏压源,使双量子阱结构达到共振隧穿,在探测光的激发下,通过光电检测器探测吸收谱的双峰的间距,粗略确定隧穿特性的大小te;

s2:再次调节外置偏压源,找到双量子阱结构合适的隧穿失谐,再次通过光电检测器探测吸收谱的非对称性,隧穿失谐δte与能级间隔δ的关系为:其中为合适的遂穿失谐;

s3:利用双量子阱结构的极化率确定吸收谱,吸收谱a=c*im(χ(1)),其中c为常系数,im(χ(1))为取χ(1)的虚部;

s4:将吸收谱的非对称性与隧穿特性的变化关系进行数值拟合,得到双量子阱结构的隧穿特性的大小与吸收谱的非对称性成反比。

所述双量子阱结构的极化率计算公式为:

n是载流子密度,约为5×1011cm-2,δ1是探测场失谐,q是缀饰态|1>→|3>的跃迁与缀饰态|1>→|2>的跃迁偶极矩之比,o代表fano共振干涉项,由双量子阱间隧穿控制,μ10=5×10-27c·m是量子阱材料的电偶极矩,γ2代表量子阱材料的缀饰态|2>的衰减速率,γ3代表量子阱材料的缀饰态|3>的衰减速率,i表示虚数单位,是普朗克常量,∈0是电介质常数,δ是代表态|2>和|3>的能级间隔。

所述吸收谱的非对称性与双量子阱间隧穿特性的变化关系为:y=-674.3x+117.5;y为吸收谱的非对称性,x为双量子阱间隧穿特性的大小。

实现一种基于fano共振效应的双阱间隧穿测量方法的实验设备主要包括:激光器,用于产生探测光,激发基态的载流子;外置偏压源,用于控制双量子阱结构的隧穿特性以及隧穿失谐;光电检测器,用于探测吸收谱的非对称性。

本发明的有益效果:

1.本发明提出了一种基于fano共振效应的双量子阱结构的隧穿特性的测量方法,丰富了隧穿特性测量方法;

2.本发明利用fano干涉效应,通过吸收谱的非对称性实现双量子阱结构隧穿特性大小的精密测量,相比使用其他指标,测量更加精密,有利于提高测量的精确性。

附图说明

图1为实验方案所用量子阱材料的结构图;

图2为简化的能级模型图;

图3为吸收谱的非对称性变化图形;

图4为非对称性变化对隧穿变化关系的拟合图;

图5为双阱间隧穿测量实验装置;

其中:1.激光器;2.双量子阱结构;3.外置偏压源;4.光电探测器。

具体实施方式

下面结合附图与实施例对本发明作进一步说明。

如图5所示,本实施例中所需要的实验装置主要包括:激光器1用于产生探测光,激发基态的载流子,外置偏压源3用于控制双量子阱结构2的隧穿特性以及隧穿失谐,光电检测器4用于探测吸收谱的非对称性。

如图1和图2所示,双量子阱结构以及导带能级结构,|1>是右边阱的基态,e1=46.7mev,|4>是左边阱的激发态,e4=296.3mev,|2>和|3>是由于双量子阱间隧穿耦合左边阱的基态和右边阱的激发态形成的基态,能量分别为e2=174.8mev,e3=183.5mev;此双量子阱结构的生长顺序是从左至右,左边是比较厚的al0.4ga0.6as势垒,右侧是6.8nm宽度的al0.16ga0.84a的浅阱,宽度3.0nm的al0.4ga0.6as势垒分隔开右边7.7nm宽度的gaas深阱,最后是一个薄的al0.4ga0.6as势垒,宽度为1.5nm,最右侧是al0.16ga0.84as的厚涂层;双量子阱间隧穿耦合作用会形成新态|2>和|3>,新形成的两个态|2>和|3>会穿过薄的al0.4ga0.6as势垒到最右侧的连续态,探测光的跃迁过程会经过新态|2>和|3>两条路径到达同一个连续态,形成fano干涉效应。由外置偏压源3提供的偏压大小控制双量子阱间隧穿特性的大小,施加偏压的电极,其位置控制隧穿失谐;由激光器1提供9.36μm的激光束作为探测光,照射在携带双量子阱结构材料的晶体上,通过光电检测器4测量双量子阱结构共振隧穿时的吸收谱,依据吸收谱双峰间距大致判断出隧穿特性大小的大致范围,吸收谱的两个峰值之间的间距大致反应隧穿特性te,通过调节外置偏压源3电极的位置,找到合适的失谐范围,为合适的失谐范围,隧穿失谐δte与能级间隔δ的关系为:此时非对称性变化显著,失谐范围调节到合适位置之后,吸收谱的非对称性对隧穿变化如图3所示,将吸收谱的非对称性与隧穿特性的变化关系进行数值拟合,吸收谱的非对称性与双阱间隧穿特性的变化关系为:y=-674.3x+117.5;y为吸收谱的非对称性,x为双量子阱间隧穿特性的大小,精确得到双量子阱结构的遂穿特性的大小。

图4为吸收谱的非对称性变化对隧穿特性变化关系的拟合图,图中纵轴是吸收谱非对称性,横轴是隧穿特性的微弱变化,图中黑点是理论模拟值,实线是拟合的结果。

综上所述,本发明结合了fano干涉效应,通过吸收谱的非对称性精确测量隧穿特性,进一步拓宽了隧穿特性测量的应用范围。

上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1