一种铆钉连接区动态失效载荷的分析方法与流程

文档序号:17628982发布日期:2019-05-10 23:58阅读:687来源:国知局
一种铆钉连接区动态失效载荷的分析方法与流程

本发明涉及冲击动力学分析领域,具体地来讲是一种铆钉连接区动态失效载荷的定义方法。



背景技术:

铆钉是紧固件的一种形式,主要作用为提供结构的连续性并传递连接件之间的载荷,由于应力集中等原因,连接部位通常是结构的薄弱环节,连接部位的破坏形式主要考虑铆钉拉伸破坏、铆钉剪切破坏、连接件拉脱破坏、连接件挤压破坏四类主要破坏形式。传统静力学理论忽略介质微元的惯性作用,而动态冲击载荷作用时间往往以毫秒甚至微秒计,必须考虑微元的惯性效应和流动效应,这也导致了铆钉及其连接区在承受静态载荷时表现出与承受冲击载荷时不一样的力学性能。针对铆钉自身及铆钉连接件在冲击载荷下的失效模式及失效载荷,目前只能通过铆钉动态试验获得,由于铆钉种类繁多、载荷作用形式复杂及加载速度范围大的原因,铆钉动态失效试验会花费大量的时间及经费。



技术实现要素:

本发明的目的是针对现有方法的不足,提供一种可以通过试片级材料动态试验推导出可表征铆钉连接区在动态载荷下失效载荷,使其适用于多种铆钉失效本构模型。

为了实现上述目的,本发明创造采用的技术方案为:一种铆钉连接区动态失效载荷的分析方法,其特征在于,其步骤为:

1)通过设计狗骨试样,测定金属材料在准静态、动态载荷下的应力-应变曲线,得到分析模型所需的材料参数;通过试验给出材料动态应力-应变曲线,并转换为有效应力-应变曲线,用于进行分析;

2)结合试样级试验结果,拟合出表征应变强化效应、应变率效应及温度效应的材料johnson-cook本构模型;

3)建立铆钉连接区细节有限元模型,设此模型铆钉无失效,结合铆钉连接件johnson-cook本构模型,当铆钉连接区达到材料极限应力时,得到铆钉连接区连接件动态拉脱失效载荷

4)建立铆钉连接区细节有限元模型,此模型假设铆钉无失效,结合铆钉连接件johnson-cook本构模型,当铆钉连接区达到材料极限应力时,得到铆钉连接区连接件动态挤压失效载荷

5)结合试样级试验结果,给定铆钉材料的动态极限失效应力,通过下式得到铆钉自身的动态极限拉伸载荷及动态极限剪切载荷;

铆钉动态极限拉伸失效载荷;

铆钉动态极限剪切失效载荷;

铆钉材料动态极限拉伸失效应力;

铆钉材料动态极限剪切失效应力;

d:铆钉直径;

6)依据铆钉形式确定铆钉削减系数k1;

7)根据铆钉连接区连接件动态拉脱失效载荷、铆钉自身的动态极限拉伸载荷及铆钉形式削减系数k1确定铆钉连接区动态拉伸失效载荷;

铆钉连接区动态拉伸失效载荷;

8)根据铆钉连接区连接件动态挤压失效载荷和铆钉自身的动态极限剪切载荷确定铆钉连接区动态剪切失效载荷;

铆钉连接区动态剪切失效载荷;

所述的步骤2)中,材料johnson-cook本构模型的计算公式为:

σ=(a+bεn)(1+clnε*)(1-t*m)(5)

其中:

ε为等效应变;

ε*为无量纲的塑性应变率;

t*表示归一化的温度;

a为材料在参考应变率和参考温度下的屈服强度;

b和n为应变强化系数;

c为应变率敏感系数;

m为温度软化系数;

所述的步骤3)的细节有限元模型包括铆钉孔信息、用于验证不同连接件材料、不同连接件厚度、不同铆钉尺寸、不同应变率下的连接件拉脱失效载荷。

所述的步骤4)的细节有限元模型需包括铆钉孔信息、用于验证不同连接件材料、不同连接件厚度、不同铆钉尺寸、不同应变率下的连接件挤压失效载荷。

本发明创造的有益效果为:

本发明的内容在航空、航天、汽车等冲击动力学分析中有着广泛的应用空间,可以极大的缩短研发时间、减少研发费用、保证分析精度及其可靠度,实际工程应用前景广泛。

附图说明

图1是本发明实施的一种铆钉动态失效的分析方法的流程图。

图2是典型狗骨试样示意图。

具体实施方式

一种铆钉连接区动态失效载荷的分析方法,其特征在于,其步骤为:

1)通过设计狗骨试样,测定金属材料在准静态、动态载荷下的应力-应变曲线,得到分析模型所需的材料参数;通过试验给出材料动态应力-应变曲线,并转换为有效应力-应变曲线,用于进行分析;

2)结合试样级试验结果,拟合出表征应变强化效应、应变率效应及温度效应的材料johnson-cook本构模型;

所述的步骤2)中,材料johnson-cook本构模型的计算公式为:

σ=(a+bεn)(1+clnε*)(1-t*m)(1)

其中:

ε为等效应变;

ε*为无量纲的塑性应变率;

t*表示归一化的温度;

a为材料在参考应变率和参考温度下的屈服强度;

b和n为应变强化系数;

c为应变率敏感系数;

m为温度软化系数。

3)建立铆钉连接区细节有限元模型,设此模型铆钉无失效,结合铆钉连接件johnson-cook本构模型,当铆钉连接区达到材料极限应力时,得到铆钉连接区连接件动态拉脱失效载荷细节有限元模型包括铆钉孔信息、用于验证不同连接件材料、不同连接件厚度、不同铆钉尺寸、不同应变率下的连接件拉脱失效载荷;

4)建立铆钉连接区细节有限元模型,此模型假设铆钉无失效,结合铆钉连接件johnson-cook本构模型,当铆钉连接区达到材料极限应力时,得到铆钉连接区连接件动态挤压失效载荷细节有限元模型需包括铆钉孔信息、用于验证不同连接件材料、不同连接件厚度、不同铆钉尺寸、不同应变率下的连接件挤压失效载荷;

5)结合试样级试验结果,给定铆钉材料的动态极限失效应力,通过下式得到铆钉自身的动态极限拉伸载荷及动态极限剪切载荷;

铆钉动态极限拉伸失效载荷;

铆钉动态极限剪切失效载荷;

铆钉材料动态极限拉伸失效应力;

铆钉材料动态极限剪切失效应力;

d:铆钉直径;

6)依据铆钉形式确定铆钉削减系数k1,不同的铆钉形式的削减系数k1,见表1:

表1铆钉形式及其削减系数k1

7)根据铆钉连接区连接件动态拉脱失效载荷、铆钉自身的动态极限拉伸载荷及铆钉形式削减系数k1确定铆钉连接区动态拉伸失效载荷;

铆钉连接区动态拉伸失效载荷;

8)根据铆钉连接区连接件动态挤压失效载荷和铆钉自身的动态极限剪切载荷确定铆钉连接区动态剪切失效载荷;

铆钉连接区动态剪切失效载荷;

以上所述仅是本发明的实现方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1