基于高精度地图的全局导航系统及导航信息生成方法与流程

文档序号:18083849发布日期:2019-07-06 10:19阅读:649来源:国知局
基于高精度地图的全局导航系统及导航信息生成方法与流程

本发明属于计算机视觉与智能交通领域,特别涉及基于高精度地图的全局导航系统及导航信息生成方法。



背景技术:

利用高精度地图进行全局导航是无人车领域非常关键且基础的一项技术,如何有效地利用高精度地图进行导航也是为无人车领域一个热门的研究问题。高精度地图往往包含车道线、道路边界等交通信息,但无法提供高精度的导航信息,以引导无人车在地图覆盖的静态场景中通过追线的方式进行巡航。这个问题往往可以拆解为构建引导线地图和全局规划两个问题。

在构建引导线地图时,一般情况可通过取车道线中线的方法得到道路内的引导线,但这种方法不能适应换道、路口、掉头等穿越道路结构及无车道线场景,因此无法提供全局的符合车辆运动模型的引导线。另外,如何从地图数据中有效的提取出符合交通规则约束的拓扑关系也是一个必须要解决的问题。

在得到高精度的引导线地图后,如何利用这些数据进行全局规划也是一个重要的问题,如果只是简单的提取节点并使用拓扑结构进行规划,无法实现从地图上任意点到任意点的规划。



技术实现要素:

本发明的目的在于提供基于高精度地图的全局导航系统及导航信息生成方法,以解决上述问题。

为实现上述目的,本发明采用以下技术方案:

基于高精度地图的全局导航系统,包括引导线地图构建模块、全局引导线生成模块和导航地图输出模块;引导线地图构建模块、全局引导线生成模块和导航地图输出模块依次连接;

引导线地图构建模块用于提取地图的拓扑结构和节点信息,并依据拓扑结构和节点信息构建引导线地图;

全局引导线生成模块用于从引导线地图中生成一条经过所有关键路点的全局引导线;

导航地图输出模块用于补齐全局引导线经过的无结构化信息的区域,输出最后的导航地图。

进一步的,基于高精度地图的全局导航系统的导航信息生成方法,基于高精度地图的全局导航系统,包括以下步骤:

步骤1,通过处理高精度地图数据,得到地图区域符合交通规则约束的拓扑关系和节点信息;处理方法为:使用路口处道路中点作为节点,使用某段距离内的节点之间的向量关系获得拓扑结构;

步骤2,结合步骤1得到的拓扑关系、节点信息与高精度地图数据,自适应地生成各个节点之间的包含代表不同语义属性的标志位信息的高精度引导线构成引导线地图;其中的引导线包括无人车的直行、换道、转弯、掉头场景,并满足无人车的运动模型约束;

步骤3,通过读取关键路点坐标,结合步骤2得到的引导线地图,得到一条经过所有关键路点的全局引导线;关键路点坐标为导航时指定的需要经过的坐标点;

步骤4,结合步骤3得到的全局引导线与高精度地图数据,抽取全局引导线经过的路段,并在路口区域生成虚拟车道线,得到最终的导航信息。

进一步的,在生成两个节点之间的引导线时,能自适应的处理直行、转弯、换道、掉头情况,并采用的b样条曲线的方法得到符合车辆运动学约束的引导线;其可以表达为:

其中,di(i=0,1,...,n)为控制顶点(坐标),ni,k(i=0,1,...,n)为k次规范b样条基函数,最高次数为k;基函数是由一个称为节点适量的非递减参数u的序列u:u0≤u1≤...≤un+k+1所决定的k次分段多项式;其可以表达为:

在此处根据不同情况自适应的调整k的大小及控制点的坐标,最终得到符合车辆运动学约束的曲线作为引导线。

进一步的,生成的引导线上代表不同语义属性的标志位包括:虚线、实线、朝向、斑马线、限速、路口停止线。

进一步的,在得到地图上任意两点之间的引导线时,采用三段式的方法先分别得到起始坐标点到起始节点的引导线,起始节点到终止节点的引导线以及终止节点到终止坐标点的引导线并进行拼接;其中起始节点和终止节点通过起始坐标点和终止坐标点在引导线地图上搜索的方法得到,起始节点到终止节点的引导线采用迪杰斯特拉的方法得到;最后,再将每两个关键路点之间的引导线拼接起来得到最后的全局引导线。

进一步的,在得到最终的导航信息时,选择全局引导线经过的高精度地图中路段进行连接,且在路口出通过左右平移引导线并进行尺度变换,生成虚拟车道线完成无结构化信息区域的连接。

与现有技术相比,本发明有以下技术效果:

本发明所述基于高精度地图的全局导航系统,通过先构建引导线地图再做全局规划的结构,对高精度地图的要求比较简单,并且能够充分提取地图中的有效信息,得到符合交通规则约束的拓扑结构,使无人车能够更加高效的进行全局导航。

本发明所述基于高精度地图的全局导航系统,能够自适应地处理不同交通场景的驾驶需求,生成符合车辆运动学约束的引导线,并且对于不同场景有很好的普适性,能够实现大范围场景下的全局导航。

附图说明

图1为系统的流程图。

图2为自动获取地图拓扑关系的流程图。

图3为生成任意两个节点之间的引导线的流程图。

图4为引导线地图路口部分。

图5为引导线地图路段部分。

图6为全局规划的流程图。

图7为全局规划的示意图。

图8为虚拟车道线的示意图。

具体实施方式

以下结合附图对本发明进一步说明:

请参阅图1-图8,基于高精度地图的全局导航系统,包括引导线地图构建模块、全局引导线生成模块、导航地图输出模块;引导线地图构建模块、全局引导线生成模块、导航地图输出模块依次连接:

引导线地图构建模块用于提取地图的拓扑结构和节点信息,并依据拓扑结构和节点信息构建引导线地图。

全局引导线生成模块用于从引导线地图中生成一条经过所有关键路点的全局引导线。

导航地图输出模块用于补齐全局引导线经过的无结构化信息的区域,输出最后的导航地图。

具体包括以下步骤:

步骤1,通过处理高精度地图数据,得到地图区域符合交通规则约束的拓扑关系和节点信息;

步骤2,结合步骤1得到的拓扑关系、节点信息与高精度地图数据,自适应地生成各个节点之间的包含限速、停止线等语义信息的高精度引导线构成引导线地图。其中的引导线包括直行、换道、转弯、掉头等多种场景,并满足无人车的运动模型约束;

步骤3,通过读取关键路点坐标,结合步骤2得到的引导线地图,得到一条经过所有关键路点的全局引导线;

步骤4,结合步骤3得到的全局引导线与高精度地图数据,抽取全局引导线经过的路段,并在路口区域生成虚拟车道线,得到最终的导航信息。

系统能够快速高效并且自适应的得到不同高精度地图的节点的编号及坐标及节点之间的拓扑关系。

系统在生成有连接关系的节点之间的引导线时,能自动根据两个节点的坐标关系将其分类为直行、转弯、换道、掉头等情况。

如图4、5所示,系统在生成两个节点之间的引导线时,能自适应的处理直行、转弯、换道、掉头等不同情况,并采用的b样条曲线的方法得到符合车辆运动学约束的引导线。其可以表达为:

其中,di(i=0,1,...,n)为控制顶点(坐标),ni,k(i=0,1,...,n)为k次规范b样条基函数,最高次数为k。基函数是由一个称为节点适量的非递减参数u的序列u:u0≤u1≤...≤un+k+1所决定的k次分段多项式。其可以表达为:

在此处根据不同情况自适应的调整k的大小及控制点的坐标,最终得到符合车辆运动学约束的曲线作为引导线。

系统生成的引导线上包含代表不同语义属性的标志位如限速、路口停止线等。

系统在得到地图上任意两点之间的引导线时,采用三段式的方法先分别得到起始坐标点到起始节点的引导线,起始节点到终止节点的引导线以及终止节点到终止坐标点的引导线并进行拼接。其中起始节点和终止节点通过起始坐标点和终止坐标点在引导线地图上搜索的方法得到,起始节点到终止节点的引导线采用迪杰斯特拉的方法得到。最后,再将每两个关键路点之间的引导线拼接起来得到如图7所示的全局引导线。

如图8所示,系统在得到最终的导航信息时,选择全局引导线经过的高精度地图中路段进行连接,且在路口出通过左右平移引导线并进行尺度变换,生成虚拟车道线完成无结构化信息区域的连接。

该基于高精度地图的全局导航系统工作原理:主要包括引导线地图构建模块、全局引导线生成模块、导航地图输出模块。目前该系统已应用于西安交通大学人工智能与机器人研究所视觉认知计算与智能车实验室的“夸父一号”无人驾驶平台上,并顺利完成常熟部分城区场景及高速场景的全局导航和自主驾驶。

图2为自动获取地图拓扑关系的流程图。即步骤1中自动根据节点的向量关系获得拓扑关系的流程图,首先根据车道数目判断每一车道应该符合的连接关系,再在一定距离范围内,通过向量的角度关系搜索符合连接关系的节点并连接,从而得到整个地图的拓扑关系。

图3为生成任意两个节点之间的引导线的流程图。对应权利要求书中的3,即能自适应的处理直行、转弯、换道、掉头情况,通过判断两个节点的左右车道关系,得到其对应的情况,然后根据不同的情况生成引导线;其中直行直接取道路中线;换到取两条部分中线并在中间部分通过b样条拟合连接;转弯直接使用b样条曲线拟合;掉头使用半圆曲线。

图4为引导线地图路口部分生成的引导线地图在路口处的示意图。

图5为引导线地图路段部分生成的引导线地图在路段内的示意图。

图6为全局规划的流程图,如果输入的关键路点为节点则直接使用迪杰斯特拉算法做规划,如果是关键路点为坐标点则用三段式的方法先分别得到起始坐标点到起始节点的引导线,起始节点到终止节点的引导线以及终止节点到终止坐标点的引导线并进行拼接。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1