圆度测量系统的制作方法

文档序号:18249026发布日期:2019-07-24 09:35阅读:277来源:国知局
圆度测量系统的制作方法

本发明涉及圆度测量技术领域,特别是涉及一种圆度测量系统。



背景技术:

水力发电设备有很多大型的圆形部件需要进行圆度测量,例如水轮机的座环、顶盖及底环的止漏环、发电机定子、发电机上下机架,发电机定子、转子、混流水轮机转轮的上下止漏环,机组各导轴承的轴颈、大轴法兰等等。

一般的圆度测量系统通常包括测圆架和用于测距的传感器。测圆架包括竖直设置且与被测圆形部件同轴定位的转轴,水平延伸且一端固定于转轴顶端的连接臂,和竖直延伸且顶端固定于连接臂另一端的测量臂。测量臂底端安装传感器。测量时,转轴转动至多个预设角度,传感器测量每个角度位置下传感器感应端与被测圆形部件圆周表面的径向间距,以此计算出被测圆形部件的多点半径,通过多点半径值计算出圆度值。

但由于圆形部件尺寸较大,连接臂通常较长,因挠曲变形等因素导致难以保持水平姿态,使得测量臂难以保持在竖直姿态,最终导致传感器的感应方向可能并不在圆形部件的径向方向上,导致其所测的间距并非径向间距。因此,为保证数据准确,每个测点测量前需要对测圆架进行角度校准,操作非常复杂。



技术实现要素:

本发明的目的是为了克服现有技术的上述缺陷,提供一种圆度测量系统,以更加简单的方式避免测圆架的角度偏差影响圆度测量精度。

本发明的进一步的目的是要扩大圆度测量系统的适用范围。

特别地,本发明提供了一种圆度测量系统,其包括:

测圆架,其包括竖直延伸且与被测圆形部件同轴设置的转轴、水平延伸且固定连接于转轴顶端a点的连接臂、以及竖直延伸且顶端固定连接于连接臂b点的测量臂;

距离感测装置,固定连接于测量臂底部c点,感应端的感应方向平行于连接臂,其在随测量臂绕转轴的中心轴线转动至每个预设角度时,检测感应端在感应方向上与被测圆形部件的表面距离M;

倾角感测装置,安装于连接臂或测量臂,用于感侧实际测量时连接臂相对于水平面的倾角θ;

数据采集和调理装置,与距离感测装置和倾角感测装置以预设方式通信,以采集、调理其检测信号,形成检测数据;和

数据处理装置,与数据采集和调理装置以预设方式通信,以接收检测数据,根据a点与b点的距离L1、b点与c点的距离L2、感应端距c点的距离L3、M和θ,计算各预设角度下,连接臂处于水平状态时,感应端与被测圆形部件的表面的径向间距N,并利用预设程序,根据N计算被测圆形部件的圆度值。

可选地,数据处理装置根据以下公式计算N:N=L1(1-cosθ)+Mcosθ+L3(cosθ-1)+L2sinθ。

可选地,距离感测装置为非接触式位移传感器。

可选地,倾角感测装置和测量臂连接于连接臂的同一端部。

可选地,测圆架还包括:定位基座,用于与被测圆形部件同轴定位,定位基座的中心轴线沿竖直方向延伸且开设有相对该中心轴线旋转对称的多个定位孔,转轴与定位基座同轴地安装其上,且可绕定位基座的中心轴线转动,转轴设置有一可上下移动的定位销;和电机,用于受控地直接或间接驱动转轴转动;且测圆架配置成:使转轴被手动转动,且在每转动至使定位销与预设的定位孔相对的角度时,使定位销下移插入定位孔,以禁止转轴转动,以便距离感测装置检测其与被测圆形部件的表面的距离M;或使定位销保持在脱离定位孔的位置,使电机运行带动测量臂连续转动,使距离感测装置连续检测其与被测圆形部件的表面的距离M。

可选地,测圆架还包括:电动锁,其在定位销上移脱离定位孔后,受控地锁定定位销;弹性元件,其在定位销被锁定后,对定位销施加向下的弹性预紧力,以便在电动锁解锁后,促使定位销下移插入定位孔。

可选地,转轴和连接臂各开设有定位销穿过的限位孔;弹性元件为套在定位销上的压簧,其上端抵靠于连接臂底面,下端抵靠于定位销的轴肩顶面;定位销顶部开设有轴线水平延伸的锁孔;且电动锁安装于连接臂,其包括可被驱动水平移动的锁销,以便通过使锁销插入或脱离锁孔,完成对定位销的锁定和解锁。

可选地,测圆架还包括:拉绳,其连接于定位销的顶端;和至少一个定滑轮,安装于连接臂,以使拉绳绕过定滑轮后向下延伸,以便在测圆架的下方通过向下牵拉拉绳带动定位销上移。

可选地,定位基座包括竖直设置的套筒和与套筒同轴地固定于套筒顶部的第一齿轮,多个定位孔开设于第一齿轮的端面;转轴下端可转动地插入套筒;且电机竖直设置且固定于连接臂,其输出轴上安装有与第一齿轮啮合的第二齿轮,以在电机运行时,使第二齿轮带动电机绕第一齿轮转动,从而使电机带动连接臂转动。

可选地,测圆架还包括:多个支撑杆,每个支撑杆的上端支撑连接臂;弧形滑动箍,与每个支撑杆的下端连接,且与定位基座的圆柱形外表面间隔地包围该圆柱形外表面,且弧形滑动箍开设有多个开口,每个开口处安装有一个滚轮,以在连接臂带动支撑杆和弧形滑动箍转动时,使滚轮在定位基座的圆柱形外表面上滚动。

本发明的圆度测量系统在实际运行时,利用一倾角感测装置感测连接臂相对于水平面的倾角,并直接检测距离感测装置感应端在其感应方向上与被测圆形部件的表面距离。根据上述倾角、距离以及测圆架的一些固定参数,根据预设公式计算出连接臂、测量臂处于设计姿态(连接臂水平延伸,测量臂竖直延伸)时,感应端与被测圆形部件表面的径向间距,从而能够精确计算圆度。换言之,即便测圆架的连接臂、测量臂因挠曲变形等各种因素不处于设计姿态时,无需对其进行角度校准仍能够精准测量圆度,极大降低了测量人员的工作量。

进一步地,本发明的圆度测量系统具有手动测量模式和自动测量模式,以便用户根据不同的测量需求进行选择,应用范围广泛。手动测量模式测点可自选,测点少,速度快。自动测量模式下,距离感测装置被电机驱动不间断地旋转,对圆形部件进行连续测量,最终将得到整个圆周的轮廓,使得圆度计算值更加精确,且自动化程度高,操作方便。采用本发明的圆度测量系统,则无需根据不同圆形部件设计、制作、携带以及操作多种类别的测圆装置,降低了各环节的成本,同样也给测量人员带来很大的便利。

进一步地,本发明的圆度测量系统设置了定位销以及沿定位基座周向分布的多个定位孔。在手动测量模式下,测量每个测点时,使定位销插入一个定位孔,以约束转轴的转动自由度,使测量臂无法转动,使测量结果更加精确。而且,由于各定位孔所处角度是预先设计好的,非常方便测量人员确定每个测点所处的角度位置。

进一步地,本发明的圆度测量系统通过电动锁、弹性元件、拉绳、定滑轮等结构,方便测量人员在测圆架的下方远距离操控定位销。非常便于测量安装位置较高的圆形部件。水力发电设备中一些部件距地面高度高达十米以上。

进一步地,本发明的圆度测量系统设置了支撑杆和弧形滑动箍,既实现了对连接臂的支撑,避免其产生较大的挠曲变形,又不影响连接臂的转动,这种设计是非常巧妙的。此外,本发明还使支撑杆与连接臂的连接点可调,并且还使支撑杆的长度可调,如此便于通过调节支撑杆的长度和与连接臂的连接点位置来调整连接臂的位置,使其始终保持在水平姿态。

根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。

附图说明

后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:

图1是本发明一个实施例的圆度测量系统的示意性方框图;

图2是根据本发明一个实施例的圆度测量系统的测圆架和距离感测装置的工作状态示意图;

图3是本发明一个实施例的测圆架的结构示意图;

图4是图3所示测圆架在定位销下移插入一个定位孔后的状态示意图;

图5是图4的A处放大图。

具体实施方式

本发明实施例提供了一种圆度测量系统,以供测量圆形部件的圆度,特别适用于水力发电设备中各种圆形转轴件的圆度测量。

图1是本发明一个实施例的圆度测量系统的示意性方框图;图2是根据本发明一个实施例的圆度测量系统的测圆架和距离感测装置的工作状态示意图。

如图1所示,圆度测量系统一般性地可包括测圆架10、距离感测装置20、数据采集和调理装置30、数据处理装置40以及倾角感测装置70。

测圆架10用于安装距离感测装置20,并可通过手动操作或被电机驱动地带动距离感测装置20围绕被测圆形部件60转动。具体地,如图2中的虚线部分所示,测圆架10包括转轴200、连接臂400以及测量臂600。转轴200沿竖直方向延伸且与被测圆形部件60同轴设置。连接臂400沿水平方向延伸,且固定连接于转轴200,连接点记为a点。测量臂600沿竖直方向延伸,且顶端固定连接于连接臂400,连接点记为b点。

距离感测装置20固定连接于测量臂600的底部,连接点记为c点。距离感测装置20的感应端(记为d端)与被测圆形部件60的圆周表面之间具有间隙,其感应方向平行于连接臂400,即沿着于被测圆形部件60的径向方向。

图2的虚线示意了连接臂400水平延伸,测量臂600竖直延伸以及距离感测装置20的感应方向沿水平方向的理想设计姿态。

圆度测量系统的理想工作状态是,由转轴200带动连接臂400转动绕被测圆形部件60的中心轴线转动(即绕X轴转动),以带动测量臂600转动,进而带动距离感测装置20绕X轴转动。距离感测装置20转动至多个预设角度时,检测其在每个角度下,与被测圆形部件60的圆周表面的径向间距N值,该径向指的是被测圆形部件60的半径方向。N为其感应端d端距离被测圆形部件60的圆周表面上f点的距离,df的连线平行于ab。最终得到与测点数量相同的多个N值(检测i个角度,将得到i个N值)。通过计算被测圆形部件60的各测点的N值,可计算出各点的半径值(Lar=L1-L3-N),通过各点半径,可最终计算出圆度值。

然而,由于连接臂400长度较长,容易发生挠曲变形使其b端下沉。或者因为其他因素导致连接臂400发生倾斜而不再水平,使测量臂600随之倾斜最终使距离感测装置20的感应端的感应方向不再平行于被测圆形部件60的径向方向。图2的实线部分示意了连接臂400、测量臂600以及距离感测装置20因故倾斜而脱离理想设计姿态的情况,称之为实际工作姿态。此时,b点,c点和d点分别转动至b1、c1和d1位置。

在连接臂400、测量臂600以及距离感测装置20处于实际工作姿态进行测量时,测量人员无需对各部件进行角度校准,而是使距离感测装置20随测量臂600绕X轴转动至每个预设角度时,检测其感应端(d1端)在感应方向上与被测圆形部件60的表面距离M。M为其感应端d1端距离被测圆形部件60的圆周表面上f1点的距离,d1f1的连线平行于ab1。然后,距离感测装置20形成相应的检测信号,至少包括角度和与该角度对应的间距值的信息。距离感测装置20可为非接触式位移传感器,例如非接触式电涡流位移传感器。

倾角感测装置70安装于连接臂400或测量臂600,用于感侧实际测量时连接臂400相对于水平面的倾角,记为θ,并形成相应的检测信号。可使倾角感测装置70和测量臂600连接于连接臂400的同一端部,以使其更精确地感测倾角。倾角感测装置70可为水平仪。数据采集和调理装置30与距离感测装置20和倾角感测装置70以预设方式通信,以采集、调理距离感测装置20和倾角感测装置70所生成的检测信号,形成检测数据。数据采集和调理装置30通过以太网口采集检测信号,调理后输入采集模块,供数据处理装置40读取和分析。数据采集和调理装置30可包括传感器前端供电模块、传感器模拟信号输入模块和数据采集模块。

数据处理装置40与数据采集和调理装置30以预设方式通信,以接收其检测数据,根据a点与b点的距离L1、b点与c点的距离L2、感应端距c点的距离L3、M和θ,计算各预设角度下,连接臂400处于水平状态(理想设计姿态)时,感应端与被测圆形部件60的表面的径向间距N。

数据处理装置40安装有根据规定的圆度误差评定方法所设计的预设程序,该预设程序根据上述的多个N值,计算出被测圆形部件60的多点半径,据此最终计算出圆度值,并输出最终结果。数字信息处理装置可为计算机,该预设程序可为安装于计算机上的软件。圆度误差评定有4种主要方法,包括最小区域法、最小二乘圆法、最小外接圆法以及最大内接圆法等,这些都属于圆度测量领域的标准和规范,在此不再赘述。

在一些实施例中,采用以下公式计算N:

N=L1(1-cosθ)+Mcosθ+L3(cosθ-1)+L2sinθ。

显然,θ的取值范围为θ≥0°。

下面介绍上述公式的推导过程。如图2所示,f1e为ab1的垂线,p和r分别为f1f延长线与ab1和ab的交点。

由图2可知,Lap=L1-(M+L3)-Lpe。

其中Lpe=L2tanθ,Lar=Lapcosθ。由此可知,N=L1-Lar-L3

=L1-Lapcosθ-L3

=L1-(L1-M-L3-L2tanθ)cosθ-L3

=L1(1-cosθ)+M cosθ+L3(cosθ-1)+L2sinθ。

图3是本发明一个实施例的测圆架10的结构示意图;图4是图3所示测圆架10在定位销310下移插入一个定位孔121后的状态示意图;图5是图4的A处放大图。下面参照图3至图5对本实施例的测圆架10的结构进行详细介绍。

如图3和图4所示,在一些实施例中,测圆架10还包括定位基座100和电机510。

定位基座100的中心轴线沿沿竖直方向延伸,定位基座100用于与被测圆形部件60(测量时需使其轴线也竖直延伸)同轴定位,两者中心轴线用X轴表示。此处的同轴定位指的是在测圆架10工作时,定位基座100的位置被固定,不会相对于被测圆形部件60移动或转动,而且还需使定位基座100与被测圆形部件60同轴(理论要求,实际测试时难以保证也无需保证100%同轴)。定位基座100上开设有相对该中心轴线(X轴)旋转对称的多个定位孔121。换言之,多个定位孔121在一分布圆上分布,该分布圆的圆心落在X轴上。

转轴200与定位基座100同轴地安装其上,且可绕定位基座100的中心轴线(X轴)转动。转轴200设置有一可上下移动的定位销310。

电机510用于受控地直接或间接驱动转轴200绕X轴转动。可使测量臂600沿长度方向设置多个安装孔,以便使距离感测装置20具有多个安装位置。还可使测量臂600顶端与连接臂400的固定位置可调。具体地,参考图1,可使测量臂600的顶端连接在一夹持件610上,夹持件610为“U”型结构,以夹在连接臂400上。夹持件610上安装一紧固螺钉620。测量臂600的顶端被调节到某一连接位置后,拧紧紧固螺钉,使得紧固螺钉620的端部紧紧抵靠连接臂400表面,使测量臂600的顶端被锁紧。

测量人员应用本实施例的测圆架10测量产品圆度时,可根据不同的测量需求,选用以下两种测量模式之一。

(1)手动测量模式

测量人员预先设定圆形部件的测点个数和测点位置,然后进行逐一检测。每个测点均与一个定位孔121处于同一角度,这些定位孔称为预设定位孔。

使电机510保持关闭状态,测量人员手动操作转轴200、连接臂400或测量臂600,使其绕X轴转动。每转动至使定位销310与一个预设定位孔121相对的角度时,使定位销310下移插入该定位孔121,以禁止转轴200转动,参考图3。测量人员便可以对被测圆形部件60进行一次单点测量,也就是使距离感测装置20检测其与被测圆形部件60圆周表面的测点的间距M。完成第一个测点的测量后,使定位销310上移脱离该定位孔121,参考图1。然后继续操作转轴200转动,转动至使定位销310与第二个预设定位孔121相对的角度时,使定位销310插入该定位孔121,然后进行第二次单点测量。如此多次重复操作,完成多个测点的测量。

手动测量模式测点可自选,测点少,速度快。定位销310和定位孔121的作用是在约束转轴200的转动自由度,使测量臂600无法转动,使测量结果更加精确。而且,由于各定位孔121所处角度可预先设计和标示,这样非常方便测量人员确定每个测点所处的角度位置。优选使多个定位孔121在其分布圆上均布,设置a个定位孔121,相邻定位孔121相隔角度为360°/a。

(2)自动测量模式

使定位销310始终保持在如图1所示的脱离定位孔121的位置,开启电机510,使电机510运行带动测量臂600连续转动,使距离感测装置20连续检测其与被测圆形部件60的表面的间距M。这种连续检测最终可获得整个圆周的半径值,可绘制出一圆周轮廓,使圆度计算值更加精确。并且无需测量人员的手动操作,自动化程度更高,还能避免人手不当操作导致距离感测装置20不必要的移位而影响测量精度。

采用本发明实施例的测圆架,无需根据不同圆形部件设计、制作、携带以及操作多种类别的测圆装置。降低了各环节的成本,同样也给测量人员带来很大的便利。非常适用于类似于水利发电设备这种圆形部件种类多、测量需求各异的大型工业设备。

当被测圆形部件60对于圆度要求不是特别高,仅需对圆度进行粗略或一般精度的测量,可选用手动测量模式。当需要着重测量某些关键测点时,也可选用手动测量模式。

当被测圆形部件60对圆度要求高,需要对圆度进行更精确的测量时,可采用自动测量模式,提升自动化水平和圆度测量精度。

在一些实施例中,如图3至图5所示,测圆架10还包括电动锁350和弹性元件320。在定位销310上移脱离定位孔121后,电动锁350受控地锁定定位销310,以使其不能移动。在定位销310被电动锁350锁定后,弹性元件320对定位销310施加向下的弹性预紧力。在电动锁350解锁后,该弹性预紧力促使定位销310下移插入定位孔121,这使仅需测量人员对定位销310施加向上的力,便于设计施力结构。具体如图5所示,转轴200和连接臂400各开设有定位销310穿过的限位孔,分别为限位孔201和限位孔401。弹性元件320为套在定位销310上的压簧,其上端抵靠于连接臂400底面,下端抵靠于定位销310的轴肩311的顶面。定位销310的顶部开设有轴线水平延伸的锁孔315。电动锁350安装于连接臂400,其包括可被驱动水平移动的锁销355,以便通过驱动锁销355插入或脱离锁孔315,完成对定位销310的锁定和解锁。电动锁350在现有技术中应用比较广泛,在此不再对其具体结构进行赘述。

如图3和图5所示,测圆架10还包括拉绳340和至少一个定滑轮330。拉绳340连接于定位销310的顶端。定滑轮330安装于连接臂400,其数量可为一个或多个,例如设置三个。拉绳340绕过定滑轮330后向下延伸,拉绳340移动时,带动定滑轮330转动。如此便于在测圆架10的下方通过向下牵拉拉绳340以带动定位销310上移。在水力发电设备中,一些圆形部件距地面高度较高,高达几米甚至十米以上。本发明实施例通过拉绳340,方便远程操控定位销310,非常适宜测量安装位置较高的圆形部件。

此外,还可远程控制电动锁350。例如图3和图5所示,使电动锁350包括信号线351。信号线351与绳捆绑地延伸至测圆架10下,可使其末端抵达拉绳340端部。信号线351的末端连接有控制开关部件352,控制开关部件352用于控制电动锁350的开启和关闭。当然,在一些替代性实施例中,可设置遥控器或其他无线通信的方式控制电动锁350。

在一些实施例中,如图3所示,测圆架10还包括多个支撑杆710和一个弧形滑动箍720。每个支撑杆710的上端支撑连接臂400,下端连接于弧形滑动箍720。定位基座100的至少部分外表面为圆柱形外表面。弧形滑动箍720与定位基座100的圆柱形外表面间隔地包围该圆柱形外表面,且弧形滑动箍720开设有多个开口721,每个开口721处安装有一个滚轮730。在连接臂400带动支撑杆710和弧形滑动箍720转动时,使滚轮730在定位基座100的圆柱形外表面上滚动。

具体地,可使每个支撑杆710的顶端固定于连接臂400,且两者的连接点可调节至连接臂400长度方向的不同部位。如图3所示,支撑杆710顶端连接在一夹持件760上,夹持件760为“U”型结构,以夹在连接臂400上。夹持件760上安装一紧固螺钉740。支撑杆710顶端被调节到某一连接位置后,拧紧紧固螺钉740,使得紧固螺钉740的端部紧紧抵靠连接臂400表面,使支撑杆710顶端被锁紧。每个支撑杆710包括两端均开设有内螺纹的双向螺纹套筒711和分别旋拧在双向螺纹套筒711两端的两个螺杆712,以便通过调节至少一个螺杆712的旋入深度来调节支撑杆710的长度。

通过设置支撑杆710和弧形滑动箍720,既实现了对连接臂400的支撑,避免其产生过大的挠曲变形,又不影响连接臂400的转动,设计非常巧妙。此外,使支撑杆710与连接臂400的连接点可调,并使支撑杆710的长度可调,便于通过调节支撑杆710的长度和与连接臂400的连接点位置来调整连接臂400的位置,使其始终保持在水平姿态,以便使测量更加精确。

在一些实施例中,如图3所示,定位基座100包括套筒110和第一齿轮120。套筒110竖直设置(其轴线即前述的X轴)。第一齿轮120固定于套筒110的顶部,且与套筒110同轴设置。前述的多个定位孔121即开设于第一齿轮120的端面。转轴200可为圆柱状结构,其下端可转动地插入套筒110,以实现两者的可转动连接。电机510竖直设置(即电机510的输出轴竖直延伸)且固定于连接臂400。电机510的输出轴上安装有第二齿轮520,第二齿轮520与第一齿轮120啮合,以在电机510运行时,使第二齿轮520带着电机510绕第一齿轮120转动,从而使电机510带动连接臂400转动。第二齿轮520的直径小于第一齿轮120的直径,以达到减速的目的。当然,在一些替代性实施例中,也可使电机510的输出轴直接连接于转轴200,以直接驱动转轴200。

在一些实施例中,如图3所示,测圆架10还包括配重块800。以使转动轴线两侧连接臂400的受力达到平衡,使连接臂400更好地保持水平姿态,提升测量精度。配重块800与测量臂600分别安装于连接臂400的两端,电机510可设置在测量臂600的同侧。

连接臂400的端部可设置有一螺纹轴410,可配备多个环状的配重块800,根据需要确定配重块800的数量,将其套在螺纹轴410上,然后将螺母810拧紧在螺纹轴410上,以锁定配重块800的位置。

至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1