不同环境温度下锂离子电池荷电状态及健康状态估计方法与流程

文档序号:18826450发布日期:2019-10-09 01:46阅读:423来源:国知局
不同环境温度下锂离子电池荷电状态及健康状态估计方法与流程

本发明属于电池技术领域,具体涉及不同环境温度下锂离子电池荷电状态及健康状态估计方法。



背景技术:

21世纪以来,人们期待汽车更加清洁、环保,于是电动汽车受到了广泛的重视。相较传统燃油汽车,电动汽车无污染、噪音小、加速性能优异,受到了各国政府和消费者的青睐。电动汽车是未来汽车发展的方向。

电池是电动汽车的核心零部件。电池管理系统对于电池必不可少。电池管理系统bms最重要的功能是完成电池荷电状态soc和健康状态soh的估计。

电池荷电状态soc估计中面临的一个挑战是环境温度不同时,电池荷电状态soc估计不准确。环境温度会对锂离子电池的化学反应产生影响,造成不同环境温度下的电池容量和ocv-soc曲线发生变化,造成很大的电池荷电状态soc估计误差。在电池健康状态soh估计中,也面临着已有方法和模型难以在不同环境温度下进行准确电池健康状态soh估计的问题。



技术实现要素:

针对现有技术中的上述不足,本发明提供的不同环境温度下锂离子电池荷电状态及健康状态估计方法解决了在不同环境温度下soc和soh估计不准确的问题。

为了达到上述发明目的,本发明采用的技术方案为:不同环境温度下锂离子电池荷电状态及健康状态估计方法,包括以下步骤:

s1、建立适用于不同环境温度的改进二阶rc等效电路模型;

s2、获取电池容量qt关于环境温度t的非线性函数;

s3、根据改进二阶rc等效电路模型,获取环境温度t下开路电压uoc,t关于荷电状态soct和环境温度t的非线性函数;

s4、获取环境温度t下改进二阶rc等效电路模型中电阻r0,t、电阻r1,t、电阻r2,t、电容c1,t和电容c2,t的参数值;

s5、根据开路电压uoc,t、电阻r0,t、电阻r1,t、电阻r2,t、电容c1,t和电容c2,t的参数值,将建立的适用于不同环境温度的改进二阶rc等效电路模型转化为离散的状态空间方程;

s6、根据电池容量qt、荷电状态soct的参数值和状态空间方程,采用双扩展卡尔曼滤波算法进行荷电状态和健康状态的在线估计,实现不同环境温度t下的荷电状态和健康状态的在线估计。

优选的,所述步骤s1中建立改进二阶rc等效电路模型,当环境温度为t时,将电阻r0,t、电阻r1,t和电阻r2,t依次串联在理想电压源uoc,t的输出端,并将电容c1,t与电阻r1,t并联,电容c2,t与电阻r2,t并联。

优选的,所述改进二阶rc等效电路模型的系统微分方程组和状态方程为:

输出方程为:

ut=uoc,t+u1,t+u2,t+itr0,t(11)

其中,u1,t表示电容c1,t两端电压,u2,t表示电容c2,t两端电压,it表示电阻r0,t中的电流,soct表示电荷状态,uoc,t表示环境温度为t时的开路电压,ut表示二阶rc等效电路模型端电压,qt表示环境温度为t时电池的最大容量,qt是关于t的非线性函数,uoc,t是关于soct和t的非线性函数。

优选的,所述步骤s2中的qt是关于温度t的非线性函数,以arrhenius公式为基础,如公式(3)所示:

其中,qref表示环境温度为25℃时的电池容量,qt表示环境温度为t时的电池容量,t表示环境温度,a、b、c和d为常数;通过多组不同环境温度下的电池容量实验数据辨识获取a、b、c和d,辨识方法采用最小二乘法。

优选的,所述步骤s3中的soct的系数为:

关于soct和t的非线性函数uoc,t为:

其中,p00,p01,...,p10,...,p60为多项式系数,通过多组不同环境温度下的开路电压实验数据辨识得到;m0,t,m1,t,...,m6,t为soct的系数,soct表示电荷状态,t表示环境温度。

优选的,所述步骤s4包括以下分步骤:

s4.1、设置荷电状态和健康状态估计的温度范围为t1~tn;

s4.2、通过一组环境温度分别为t1,t2,t3,...,tn下的hppc实验数据获取参数值电阻电阻电阻电容和电容i=1,2,3,...,n;

s4.3、在t1~tn内任意环境温度为t时,在已有的参数值基础上线性插值获得电阻r0,t、电阻r1,t、电阻r2,t、电容c1,t和电容c2,t。

优选的,所述步骤s4.3中的参数值电阻r0,t、电阻r1,t、电阻r2,t、电容c1,t和电容c2,t由公式(6)求得:

其中,x表示电阻r0、电阻r1、电阻r2、电容c1或电容c2,t、ti和ti+1表示环境温度,ti和ti+1为最邻近t的环境温度,并且ti<t<ti+1。

优选的,所述步骤s5的离散的状态空间方程为:

ut,k=g(xt,k,it,k)=uoc,t,k+u1,t,k+u2,t,k+it,kr0,t+vk(17)

其中,xt,k+1表示状态向量,xt,k+1=[u1,t,k+1u2,t,k+1soct,k+1]t,f(xt,k,it,k)表示xt,k和it,k非线性向量函数,δt表示时间变量,r0,t、r1,t和r2,t表示电阻,c1,t和c2,t表示电容,qt,k表示环境温度t时电池容量,it,k表示二阶rc等效电路模型中的总电流;

g(xt,k,it,k)表示xt,k和it,k非线性向量函数,ut,k表示二阶rc等效电路模型端电压,uoc,t,k表示表示环境温度为t时的开路电压,u1,t,k表示电容c1,t两端电压,u2,t,k表示电容c2,t两端电压,和vk为互相独立的的高斯白噪声。

优选的,所述步骤s6中不同环境温度t下soc的在线估计通过以下步骤实现:

a1、选取状态向量xt=[u1,tu2,tsoct]t,所述soct的计算公式为:

其中,xt表示环境温度为t时的状态向量;

a2、选择电流it为输入向量,即输入向量ut=[it],选取二阶rc等效电路模型端电压ut为输出向量,即输出向量y=[ut];

a3、将soct作为非线性系统的状态向量,通过双卡尔曼滤波算法迭代计算出每一步迭代的soct估计值,得到电池在环境温度为t时的荷电状态soct估计值,从而实现不同环境温度t下电池的soc的在线估计。

优选的,所述步骤s6中不同环境温度t下soh的在线估计通过以下方式实现:换算出电池在25℃下的容量为:

利用qref计算出soh为:

其中,qref表示环境温度为25℃时的电池容量,qt表示环境温度为t时的电池容量,a、b、c和d为常数,qn表示电池额定容量。

本发明的有益效果为:通过建立适用于不同温度环境下的改进二阶rc等效电路模型以及对不同环境温度下的电池容量进行估计,为采用双扩展卡尔曼滤波算法进行soc和soh的联合在线估计打下了良好的基础,采用双扩展卡尔曼滤波算法进行soc和soh的联合在线估计实现了不同环境温度下soc和soh比较准确的估计。实现了不同温度环境下电池的soc和soh估计,解决了soc估计不准确,已有方法和模型难以在不同环境温度下进行准确soh估计的问题。

附图说明

图1为本发明提出的不同环境温度下锂离子电池荷电状态及健康状态估计方法流程图。

图2为本发明提出的适用于不同环境温度的改进二阶rc等效电路模型图。

图3为本发明提出的双扩展卡尔曼滤波算法流程图。

具体实施方式

下面对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

下面结合附图详细说明本发明的一个实施例。

如图1所示,不同环境温度下锂离子电池荷电状态及健康状态估计方法,包括以下步骤:

s1、建立适用于不同环境温度的改进二阶rc等效电路模型;

s2、获取电池容量qt关于环境温度t的非线性函数;

s3、根据改进二阶rc等效电路模型,获取环境温度t下开路电压uoc,t关于荷电状态soct和环境温度t的非线性函数;

s4、获取环境温度t下改进二阶rc等效电路模型中电阻r0,t、电阻r1,t、电阻r2,t、电容c1,t和电容c2,t的参数值;

s5、根据开路电压uoc,t、电阻r0,t、电阻r1,t、电阻r2,t、电容c1,t和电容c2,t的参数值,将建立的适用于不同环境温度的改进二阶rc等效电路模型转化为离散的状态空间方程;

s6、根据电池容量qt、荷电状态soct的参数值和状态空间方程,采用双扩展卡尔曼滤波算法进行荷电状态和健康状态的在线估计,实现不同环境温度t下的荷电状态和健康状态的在线估计。

如图2所示,所述步骤s1提出的适用于不同环境温度的改进二阶rc等效电路模型包括依次串联的理想电压源uoc,t、电阻r0,t、电阻r1,t和电阻r2,t,电阻r2,t一端为端电压ut的正极,另一端与电阻r1,t连接,理想电压源uoc,t的负极为端电压ut的负极,其正极与电阻r0,t连接。电阻r1,t与电容c1,t并联,电阻r2,t与电容c2,t并联。

所述改进二阶rc等效电路模型的系统微分方程组和状态方程为:

输出方程为:

ut=uoc,t+u1,t+u2,t+itr0,t(20)

其中,u1,t表示电容c1,t两端电压,u2,t表示电容c2,t两端电压,it表示电阻r0,t中的电流,soct表示电荷状态,uoc,t表示环境温度为t时的开路电压,ut表示二阶rc等效电路模型端电压,qt表示环境温度为t时电池的最大容量,qt是关于t的非线性函数,uoc,t是关于soct和t的非线性函数。

所述步骤s2中的qt是关于温度t的非线性函数,以arrhenius公式为基础,如公式(3)所示:

其中,qref表示环境温度为25℃时的电池容量,qt表示环境温度为t时的电池容量,t表示环境温度;a、b、c和d为常数。a、b、c和d通过多组不同环境温度下的电池容量的实验数据辨识得到,辨识方法采用最小二乘法。

所述步骤s3中uoc,t关于soct和t的非线性函数用soct最高阶次为6次,环境温度t最高阶次为3次的多项式组合,具体如公式(4)所示:

合并soct的系数为:

关于soct和t的非线性函数uoc,t为:

其中,p00,p01,...,p06为多项式系数,用过多组不同环境温度下的开路电压实验数据辨识得到,m0,t,m1,t,...,m6,t为soct的系数,soct表示在环境温度t下的电荷状态。

所述步骤s4包括以下分步骤:

s4.1、设置荷电状态和健康状态估计的温度范围为t1~tn;

s4.2、通过一组环境温度分别为t1,t2,t3,...,tn下的hppc实验数据获取参数值电阻电阻电阻电容和电容i=1,2,3,...,n;

s4.3、在t1~tn内任意环境温度为t时,在已有的参数值基础上线性插值获得电阻r0,t、电阻r1,t、电阻r2,t、电容c1,t和电容c2,t。

步骤s4.3中的参数值r0,t、r1,t、r2,t、c1,t和c2,t由公式(7)求得:

其中,x表示电阻r0、电阻r1、电阻r2、电容c1或电容c2,t、ti和ti+1表示环境温度,ti和ti+1为最邻近t的环境温度,并且ti<t<ti+1。

所述步骤s5,选取环境温度为t时的二阶rc等效电路模型的两个rc电路环节端电压u1,t、u2,t和荷电状态soct为状态向量,即xt=[u1,tu2,tsoct]t。选取环境温度为t时的电流it为输入向量,即ut=[it],选取环境温度为t时的二阶rc等效电路模型端电压ut为输入向量,即yt=[ut],有如下离散的状态空间方程:

ut,k=g(xt,k,it,k)=uoc,t,k+u1,t,k+u2,t,k+it,kr0,t+vk(9)

其中,xt,k+1表示状态向量,xt,k+1=[u1,t,k+1u2,t,k+1soct,k+1]t,f(xt,k,it,k)表示xt,k和it,k非线性向量函数,δt表示时间变量,r0,t、r1,t和r2,t表示电阻,c1,t和c2,t表示电容,qt,k表示环境温度t时电池容量,it,k表示二阶rc等效电路模型中的总电流;

g(xt,k,it,k)表示xt,k和it,k非线性向量函数,ut,k表示环境温度为t时二阶rc等效电路模型端电压,uoc,t,k表示表示环境温度为t时的开路电压,u1,t,k表示电容c1,t两端电压,u2,t,k表示电容c2,t两端电压,wk和vk为互相独立的的高斯白噪声,wk和vk对应的协方差矩阵分别为q和r。

步骤s6中提出的双扩展卡尔曼滤波算法用于非线性系统的状态和参数估计,非线性系统可以表示为:

其中,x表示状态向量,u表示系统激励,θ表示参数向量,yk和dk表示测量向量。wk、vk、rk和ek假设为互相独立的高斯白噪声,其协方差矩阵分别为qx、rx、qθ和rθ

所述步骤s6中不同环境温度t下soc的在线估计通过以下步骤实现:

a1、选取状态向量xt=[u1,tu2,tsoct]t,所述soct的计算公式为:

其中,xt表示环境温度为t时的状态向量;

a2、选择电流it为输入向量,即输入向量ut=[it],选取环境温度为t时的二阶rc等效电路模型端电压ut为输出向量,即输出向量y=[ut];

a3、将soct作为非线性系统的状态向量,通过双卡尔曼滤波算法迭代计算出每一步迭代的soct估计值,得到电池在环境温度为t时的荷电状态soct估计值,从而实现不同环境温度t下电池的soc的在线估计。

双扩展卡尔曼滤波算法的原理如下:

如图3所示,双扩展卡尔曼滤波算法的流程如下:

b1、进行系统的初始化,即对k=0时刻的系统状态、要估计的系统参数、状态估计的误差协方差和参数估计的误差协方差进行初始化。

其中系统状态及其误差协方差的初始化为:

系统参数及其误差协方差的初始化为:

b2、进行系统状态和系统参数的时间更新,其中,系统状态的时间更新为:

系统参数的时间更新为:

b3、计算卡尔曼增益,系统状态和系统参数的卡尔曼增益计算为:

b4、进行系统状态和系统参数的测量更新,其中系统状态的测量更新为:

系统参数的测量更新为:

上述公式中的可由公式(28)-公式(30)迭代计算得到:

选取参数向量θ=[r1,t,r2,t,r0,t,qt]t,选取状态向量xt=[u1,tu2,tsoct]t,选取输入向量ut=[it],选取输出向量yt=[ut]。采集环境温度为t时的电流it和模型端电压ut,将数据传输给电池管理系统,并在电池管理系统上使用上述的双扩展卡尔曼滤波算法进行soct的在线估计。据此,将soct作为系统的状态进行在线估计,从而实现不同环境温度t下电池的soc的在线估计。

不同环境温度t下的soh在线估计通过以下方式实现,先换算出电池在25℃下的容量为:

然后利用qref计算出soh为:

其中,qref表示环境温度为25℃时的电池容量,qt表示环境温度为t时的电池容量,a、b、c和d为常数,qn表示电池额定容量。

本发明的工作原理为:先建立适用于不同环境温度的改进二阶rc等效电路模型,然后获取电池容量qt关于环境温度t的非线性函数,获取环境温度t下开路电压uoc,t关于荷电状态soct和环境温度t的非线性函数以及获得环境温度t下改进二阶rc等效电路模型中电阻r0,t、电阻r1,t、电阻r2,t、电容c1,t和电容c2,t的参数值。根据开路电压uoc,t、电阻r0,t、电阻r1,t、电阻r2,t、电容c1,t和电容c2,t的参数值,将建立的适用于不同环境温度的改进二阶rc等效电路模型转化为离散的状态空间方程。最后根据电池容量qt和荷电状态soct的参数值,并采用双扩展卡尔曼滤波算法进行荷电状态和健康状态的在线估计,实现不同环境温度t下的荷电状态和健康状态的在线估计。

本发明实现了双扩展卡尔曼滤波算法和改进二阶rc模型的电池荷电状态soc和健康状态soh联合在线估计。双扩展卡尔曼滤波算法是一种在线算法,能够实时准确地估计出在不同环境温度下的电池荷电状态soc和健康状态soh,适用范围广,解决了不同环境温度下电池荷电状态soc估计不准确和难以实施不同环境温度下电池健康状态soh估计的问题。所提出的不同环境温度下锂离子电池荷电状态及健康状态联合在线估计方法考虑了电动汽车实际的行驶环境,具有良好的应用前景。

通过建立适用于不同温度环境下的改进二阶rc等效电路模型以及对不同环境温度下的电池容量进行估计,为采用双扩展卡尔曼滤波算法进行电池荷电状态soc和健康状态soh的联合在线估计打下了良好的基础,采用双扩展卡尔曼滤波算法进电池荷电状态soc和健康状态soh的联合在线估计实现了不同环境温度下电池荷电状态soc和健康状态soh比较准确的估计。

本发明实现了不同温度环境下电池的电池荷电状态soc和健康状态soh估计,解决了电池荷电状态soc估计不准确,已有方法和模型难以在不同环境温度下进行准确电池健康状态soh估计的问题。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1