一种多分散多形状生物材料的消光系数确定方法与流程

文档序号:22036318发布日期:2020-08-28 17:31阅读:222来源:国知局
一种多分散多形状生物材料的消光系数确定方法与流程

本发明属于生物材料消光技术领域,具体涉及一种多分散多形状生物材料的消光系数确定方法。



背景技术:

随着可见光和红外频段成像仪器的广泛应用,对降低成像仪器工作效能的烟幕剂的需求越来越迫切。人工制备生物烟幕剂以其成分丰富、结构可控、成本低廉、批量制备容易等优点,使其成为潜在的新型烟幕材料。因此,生物粒子消光性能研究对生物烟幕剂的制备具有较大意义。

目前在一些公开的数据库中可以查阅到许多生物颗粒消光特性的文献。但大多仅仅是研究单形状单分散生物颗粒的消光特性,即假设所有构成生物粒子的原始颗粒都具有相同半径和相同粒子形态,但事实上生物粒子是由不同半径的原始颗粒构成,且形状不同。因此在研究生物粒子消光特性时,若只考虑单一粒径生物粒子和单一粒子形态,虽然数值计算便于实现,但所得结果必不能全面真实的反映生物粒子的消光特性。



技术实现要素:

本发明的目的在于提供一种多分散多形状生物材料的消光系数确定方法,该方法能够快速准确的获取多分散多形状生物材料的消光系数,使得后期制备的生物材料在至少两个波段都同时具备较好的消光性能,避免了在某一波段的消光“漏洞”,提高了后期烟幕剂的研制效率和消光性能。

为了达到上述目的,本发明采用如下技术方案实现:

一种多分散多形状生物材料的消光系数确定方法,所述消光系数确定方法包括如下步骤:

步骤一、获取生物材料及其复折射率;

步骤二、统计生物材料中生物粒子的粒子形态以及每种粒子形态中各个粒径的生物粒子个数;

步骤三、根据每种粒子形态中各个粒径的生物粒子个数,计算对应粒子形态的生物粒子总数;

步骤四、计算每种粒子形态中各个粒径的生物粒子个数和对应粒子形态的生物粒子总数的比值,即为对应粒子形态中各个粒径的生物粒子对应的第一权重值;

步骤五、根据每种粒子形态中各个粒径、入射光波长和复折射率,采用电磁散射方法,得到每种粒子形态中各个粒径的生物粒子对应的消光系数;

步骤六、根据每种粒子形态中各个粒径的生物粒子对应的消光系数和第一权重值,得到对应粒子形态的生物粒子对应的消光系数;

步骤七、根据每种粒子形态的生物粒子总数,即为生物材料的生物粒子总数;并计算每种粒子形态的生物粒子总数和生物材料的生物粒子总数的比值,即为对应粒子形态的生物粒子对应的第二权重值;

步骤八、根据每种粒子形态的生物粒子对应的消光系数和第二权重值,计算生物材料的消光系数。

进一步的,步骤一的具体获取过程为:

步骤11、对生物材料进行反射光谱测量,得到生物材料的反射光谱;

步骤12、根据生物材料的反射光谱,得到生物材料的反射率和反射相移;

步骤13、根据生物材料的反射率和反射相移,采用kramers-kronig关系,得到生物材料的复折射率。

进一步的,步骤二中,所述粒子形态包括球形、椭球、圆柱、杆状和链状。

进一步的,步骤六中,所述对应粒子形态的生物粒子对应的消光系数为:

其中,qj第j种粒子形态的消光系数;λji为第j种粒子形态内第i个粒径的生物粒子对应的消光系数;wji为第j种粒子形态内第i个粒径的生物粒子对应的第一权重值;其中,i=1,2,3,…,n,n为第j种粒子形态中粒径数量。

进一步的,步骤八中,所述生物材料的消光系数为:

其中,q为生物材料的消光系数;qk为第k种粒子形态的生物粒子对应的消光系数;mj为第j种粒子形态的生物粒子对应的第二权重值;其中,j=1,2,3,…,k,k为生物材料中的粒子形状数。

本发明的有益效果:

本发明通过每种粒子形态中各个粒径的生物粒子个数和对应粒子形态的生物粒子总数的比值(即第一权重值),对每种粒子形态中各个粒径的生物粒子对应的消光系数进行加权求和,得到每种粒子形态的生物粒子对应的消光系数,实现了同一种粒子形态不同粒径(多分散相)的生物粒子对生物材料的消光性能的影响,符合生物颗粒的不均匀性,能够真实的反映生物粒子的消光特性,降低了现有技术中同一粒径(单分散相)的生物粒子对生物材料的消光性能的误差;同时,本发明通过每种粒子形态的生物粒子总数和生物材料的生物粒子总数的比值(即第二权重值),对各个粒子形态的生物粒子对应的消光系数进行加权求和,得到生物材料的消光系数,实现了不同粒子形态(即多形状)的生物粒子对生物材料的消光性能的影响,进一步真实地、全面地反映了生物粒子的消光特性,快速准确的获取多分散多形状生物材料的消光系数,使得后期制备的生物材料在至少两个波段都同时具备较好的消光性能,避免了在某一波段的消光“漏洞”;本发明能够根据烟幕剂的研制需求,在给定消光截面和持续时间的条件下,针对性地制备生物材料,提高烟幕剂的研制效率和消光性能。

附图说明

图1为本发明的多分散多形状生物材料的消光系数确定方法流程示意图;

图2为实施例1的3~5µm波段粒径分别为2.0、2.1、2.2、2.3和2.4µm的球形生物粒子对应的消光系数示意图;

图3为实施例1的3~5µm波段粒径分别为1.8、1.9、2.0、2.1和2.2µm的链状生物粒子对应的消光系数示意图;

图4为实施例1的3~5µm波段粒径为2.0、2.1、2.2、2.3和2.4µm(即粒径为average)的多分散球形生物粒子和粒径分别为1.8、1.9、2.0、2.1和2.2µm(即粒径为average)的多分散链状生物粒子对应的消光系数示意图;

图5为实施例1的3~5µm波段多分散多形状(球形和链状)混合粒子、粒径为2.0、2.1、2.2、2.3和2.4µm(即粒径为average)的多分散球形粒子、粒径为1.8、1.9、2.0、2.1和2.2µm(即粒径为average)的多分散链状粒子、粒径为2.0µm球形粒子和粒径为1.8µm链状粒子对应的生物材料的消光系数对比示意图;

图6为实施例1的8~14µm波段粒径分别为2.0、2.1、2.2、2.3和2.4µm的球形生物粒子对应的消光系数示意图;

图7为实施例1的8~14µm波段粒径分别为1.8、1.9、2.0、2.1和2.2µm的链状生物粒子对应的消光系数示意图;

图8为实施例1的8~14µm波段粒径为2.0、2.1、2.2、2.3和2.4µm(即粒径为average)的多分散球形生物粒子和粒径分别为1.8、1.9、2.0、2.1和2.2µm(即粒径为average)的多分散链状生物粒子对应的消光系数示意图;

图9为实施例1的8~14µm波段多分散多形状(球形和链状)混合粒子、粒径为2.0、2.1、2.2、2.3和2.4µm(即粒径为average)的多分散球形粒子、粒径为1.8、1.9、2.0、2.1和2.2µm(即粒径为average)的多分散链状粒子、粒径为2.0µm球形粒子和粒径为1.8µm链状粒子对应的生物材料的消光系数对比示意图;

图10为实施例2的3~5µm波段粒径分别为2.0、2.1、2.2、2.3和2.4µm的椭球生物粒子对应的消光系数示意图;

图11为实施例2的3~5µm波段粒径分别为2.0、2.1、2.2、2.3和2.4µm的圆柱生物粒子对应的消光系数示意图;

图12为实施例2的3~5µm波段粒径为2.0、2.1、2.2、2.3和2.4µm(即粒径为average)的多分散椭球生物粒子和粒径分别为2.0、2.1、2.2、2.3和2.4µm(即粒径为average)的多分散圆柱生物粒子对应的消光系数示意图;

图13为实施例2的3~5µm波段多分散多形状(椭球和圆柱)混合粒子、粒径为2.0、2.1、2.2、2.3和2.4µm(即粒径为average)的多分散球形粒子、粒径为2.0、2.1、2.2、2.3和2.4µm(即粒径为average)的多分散链状粒子、粒径为2.0µm椭球粒子和粒径为2.0µm圆柱粒子对应的生物材料的消光系数对比示意图;

图14为实施例2的8~14µm波段粒径分别为2.0、2.1、2.2、2.3和2.4µm的椭球生物粒子对应的消光系数示意图;

图15为实施例2的8~14µm波段粒径分别为2.0、2.1、2.2、2.3和2.4µm的圆柱生物粒子对应的消光系数示意图;

图16为实施例2的8~14µm波段粒径为2.0、2.1、2.2、2.3和2.4µm(即粒径为average)的多分散椭球生物粒子和粒径分别为2.0、2.1、2.2、2.3和2.4µm(即粒径为average)的多分散圆柱生物粒子对应的消光系数示意图;

图17为实施例2的8~14µm波段多分散多形状(球形和链状)混合粒子、粒径为2.0、2.1、2.2、2.3和2.4µm(即粒径为average)的多分散球形粒子、粒径为2.0、2.1、2.2、2.3和2.4µm(即粒径为average)的多分散链状粒子、粒径为2.0µm椭球粒子和粒径为2.0µm圆柱粒子对应的生物材料的消光系数对比示意图。

具体实施方式

以下结合附图和实施例对本发明的具体实施方式作出详细说明。

本实施例给出了一种多分散多形状生物材料的消光系数确定方法,参考图1,该消光系数确定方法包括如下步骤:

步骤一、获取生物材料及其复折射率。

本实施例借助生物学技术制备生物材料,并通过光谱仪测量生物材料的反射光谱,并针对采集的光谱数据,根据反射率r(λ)和反射相移θ(λ),利用kramers-kronig(k-k)关系计算生物材料的复折射率,具体过程为:

步骤11、对生物材料进行反射光谱测量,得到生物材料的反射光谱;

步骤12、根据生物材料的反射光谱,得到生物材料的反射率r(λ)和反射相移θ(λ);

步骤13、根据生物材料的反射率r(λ)和反射相移θ(λ),采用kramers-kronig关系,得到生物材料的复折射率。

步骤二、统计生物材料中生物粒子的粒子形态以及每种粒子形态中各个粒径的生物粒子个数。

本实施例中,粒子形态包括球形、椭球、圆柱、杆状和链状,生物粒子的粒子形态可采用电子显微镜获取,再通过粒径分布分析仪,获取每种粒子形态中生物粒子的粒径分布,在每种粒子形态的粒径分布区间(xj1,xj2)内,取适当间隔统计粒径分布情况(rj1,rj2,rj3,rj4,…,rji,…,rjn),统计同一粒子形态中每种粒径的生物粒子个数。其中,j=1,2,3,…,k,k为生物材料中的粒子形状数。

步骤三、根据每种粒子形态中各个粒径的生物粒子个数,计算对应粒子形态的生物粒子总数。

计算步骤二得到的每种粒子形态中所有粒径的生物粒子个数之和,即为对应粒子形态的生物粒子总数。

步骤四、计算每种粒子形态中各个粒径的生物粒子个数和对应粒子形态的生物粒子总数的比值,即为对应粒子形态中各个粒径的生物粒子对应的第一权重值(wj1,wj2,wj3,wj4,…,wji,…,wjn)。

步骤五、根据每种粒子形态中各个粒径(rj1,rj2,rj3,rj4,…,rji,…,rjn)、入射光波长和复折射率,采用电磁散射方法,得到每种粒子形态中各个粒径的生物粒子对应的消光系数(λj1,λj2,λj3,λj4,,…,λji,…,λjn)。

本实施例的入射波长和等效半径可以通过输入起始值、终止值、取值个数、取值方式模式的方法进行多组同时输入。

步骤六、根据每种粒子形态中各个粒径的生物粒子对应的消光系数(λj1,λj2,λj3,λj4,,…,λji,…,λjn)和第一权重值(wj1,wj2,wj3,wj4,…,wji,…,wjn),得到对应粒子形态的生物粒子对应的消光系数。

本实施例中,对应粒子形态的生物粒子对应的消光系数为:

其中,qj第j种粒子形态的消光系数;λji为第j种粒子形态内第i个粒径的生物粒子对应的消光系数;wji为第j种粒子形态内第i个粒径的生物粒子对应的第一权重值;其中,i=1,2,3,…,n,n为第j种粒子形态中粒径数量。

步骤七、根据每种粒子形态的生物粒子总数,得到生物材料的生物粒子总数;并计算每种粒子形态的生物粒子总数和生物材料的生物粒子总数的比值,即为对应粒子形态的生物粒子对应的第二权重值。

步骤八、根据每种粒子形态的生物粒子对应的消光系数和第二权重值,计算生物材料的消光系数。

本实施例的生物材料的消光系数为:

其中,q为生物材料的消光系数;qk为第k种粒子形态的生物粒子对应的消光系数;mj为第j种粒子形态的生物粒子对应的第二权重值;其中,j=1,2,3,…,k,k为生物材料中的粒子形状数。

本实施例通过每种粒子形态中各个粒径的生物粒子个数和对应粒子形态的生物粒子总数的比值(即第一权重值),对每种粒子形态中各个粒径的生物粒子对应的消光系数进行加权求和,得到每种粒子形态的生物粒子对应的消光系数,实现了同一种粒子形态不同粒径(多分散相)的生物粒子对生物材料的消光性能的影响,符合生物颗粒的不均匀性,能够真实的反映生物粒子的消光特性,降低了现有技术中同一粒径(单分散相)的生物粒子对生物材料的消光性能的误差;同时,本发明通过每种粒子形态的生物粒子总数和生物材料的生物粒子总数的比值(即第二权重值),对各个粒子形态的生物粒子对应的消光系数进行加权求和,得到生物材料的消光系数,实现了不同粒子形态(即多形状)的生物粒子对生物材料的消光性能的影响,进一步真实地、全面地反映了生物粒子的消光特性,快速准确的获取多分散多形状生物材料的消光系数,使得后期制备的生物材料在至少两个波段都同时具备较好的消光性能,避免了在某一波段的消光“漏洞”;本实施例能够根据烟幕剂的研制需求,在给定消光截面和持续时间的条件下,针对性地制备生物材料,提高烟幕剂的研制效率和消光性能。

选取某生物材料(下面实施例的各种生物材料中的粒子总数相同,即多分散多形状的生物材料、多分散单形状的生物材料和单分散单形状的生物材料中的生物粒子总数相同),假设球形粒径分布在2.0、2.1、2.2、2.3和2.4µm,且各粒径占据的第一权重值分别为10%,10%,20%,30%,30%,链状粒径分布在1.8、1.9、2.0、2.1和2.2µm,且各粒径占据的第一权重值分别为30%,30%,20%,10%,10%;椭球粒径分布在2.0、2.1、2.2、2.3和2.4µm,且各粒径占据的第一权重值分别为10%,10%,10%,10%,60%,圆柱粒径分布在2.0、2.1、2.2、2.3和2.4µm,且各粒径占据的第一权重值分别为60%,10%,10%,10%,10%;球形和链状两种形状混合对应的第二权重值均为50%,椭球和圆柱两种形状混合对应的第二权重为40%、60%:

实施例1:

(一)3~5µm波段

1、使用电磁散射理论,计算3~5µm波段粒径分别为2.0、2.1、2.2、2.3和2.4µm的球形生物粒子对应的消光系数,参考图2;使用电磁散射理论,计算3~5µm波段粒径分别为1.8、1.9、2.0、2.1和2.2µm的链状生物粒子对应的消光系数,参考图3。

2、利用第一权重值分别对球形和链状粒子中不同粒径的生物粒子的消光系数进行加权求和,得到球形和链状生物粒子对应的消光系数,参考图4。

3、利用第二权重值对球形和链状生物粒子对应的消光系数进行加权求和,得到生物材料的消光系数,即3~5µm波段多分散多形状(球形和链状)混合粒子对应的生物材料的消光系数;并与相同粒子数单形状多分散和单形状单分散的生物材料的消光系数进行对比,参考图5。

(二)8~14µm波段

1、使用电磁散射理论,计算8~14µm波段粒径分别为2.0、2.1、2.2、2.3和2.4µm的球形生物粒子对应的消光系数,参考图6;使用电磁散射理论,计算8~14µm波段粒径分别为1.8、1.9、2.0、2.1和2.2µm的链状生物粒子对应的消光系数,参考图7。

2、利用第一权重值分别对球形和链状粒子中不同粒径的生物粒子的消光系数进行加权求和,得到8~14µm球形和链状生物粒子对应的消光系数,参考图8。

3、利用第二权重值对球形和链状生物粒子对应的消光系数进行加权求和,得到生物材料的消光系数,即8~14µm波段多分散多形状(球形和链状)混合粒子对应的生物材料的消光系数;并与相同粒子数单形状多分散和单形状单分散的生物材料的消光系数进行对比,参考图9。

实施例2:

1、使用电磁散射理论,计算3~5µm波段粒径分别为2.0、2.1、2.2、2.3和2.4µm的椭球生物粒子对应的消光系数,参考图10;使用电磁散射理论,计算3~5µm波段粒径分别为2.0、2.1、2.2、2.3和2.4µm的圆柱生物粒子对应的消光系数,参考图11。

2、利用第一权重值分别对椭球和圆柱粒子中不同粒径的生物粒子的消光系数进行加权求和,得到椭球和圆柱生物粒子对应的消光系数,参考图12。

3、利用第二权重值对椭球和圆柱生物粒子对应的消光系数进行加权求和,得到生物材料的消光系数,即3~5µm波段多分散多形状(椭球和圆柱)混合粒子对应的生物材料的消光系数;并与相同粒子数单形状多分散和单形状单分散的生物材料的消光系数进行对比,参考图13。

(二)8~14µm波段

1、使用电磁散射理论,计算8~14µm波段粒径分别为2.0、2.1、2.2、2.3和2.4µm的椭球生物粒子对应的消光系数,参考图14;使用电磁散射理论,计算8~14µm波段粒径分别为2.0、2.1、2.2、2.3和2.4µm的圆柱生物粒子对应的消光系数,参考图15。

2、利用第一权重值分别对椭球和圆柱粒子中不同粒径的生物粒子的消光系数进行加权求和,得到8~14µm椭球和圆柱生物粒子对应的消光系数,参考图16。

3、利用第二权重值对椭球和圆柱生物粒子对应的消光系数进行加权求和,得到生物材料的消光系数,即8~14µm波段多分散多形状(椭球和圆柱)混合粒子对应的生物材料的消光系数;并与相同粒子数单形状多分散和单形状单分散的生物材料的消光系数进行对比,参考图17。

由于不同半径和不同形状生物颗粒具备不同的消光性能,在不同波段其消光性能也有差异,通过计算结果发现,生物颗粒的消光性能大致随半径的增大而增大,在3~5µm波段链状的消光性能大致好于球形,在8~14µm球形的消光性能好于链状,混合之后的消光性能介于两者之间;在3~5µm波段圆柱的消光性能大致好于椭球,在8~14µm椭球的消光性能好于圆柱,混合之后的消光性能介于两者之间。通过不同粒子形态不同粒径(即多分散多形状)的生物粒子的混合,得到的生物材料可同时适应至少两个波段的消光性,即生物材料在至少两个波段都同时具备较好的消光性能,避免了在某一波段的消光“漏洞”。

以上实施方式仅用以说明本发明实施例的技术方案而非限制,尽管参照以上较佳实施方式对本发明实施例进行了详细说明,本领域的普通技术人员应当理解,可以对本发明实施例的技术方案进行修改或等同替换都不应脱离本发明实施例的技术方案的精神和范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1