一种利用核磁共振反演识别致密砂岩储层流体的方法与流程

文档序号:23723810发布日期:2021-01-26 14:23阅读:77来源:国知局
一种利用核磁共振反演识别致密砂岩储层流体的方法与流程

[0001]
本发明属于储层流体识别技术领域,具体涉及一种利用核磁共振反演识别致密砂岩储层流体的方法。


背景技术:

[0002]
致密砂岩储层物性差、非均质性强,孔隙结构和油水关系复杂,传统的测井解释方法和评价模型难以准确计算储层参数,测井解释难度大,流体识别困难,测井解释符合率低。
[0003]
目前,常用的流体识别方法有深浅双侧向电阻率法和核磁共振法。在一些复杂油水储层中,油层和水层电阻率差异小,单纯利用电阻率测井技术难以实现储层流体识别。核磁共振可以直接测量岩石中的流体,,油水的弛豫特性存在明显差异,因此,核磁共振(nmr)测井在低孔低渗储层孔隙度、渗透率、含油性及孔隙结构评价中具有重要优势,在复杂碎屑岩储层测井解释中极具研究价值。
[0004]
核磁共振(nmr)测井是利用氢质子与外加磁场的相互作用来观测储层信息,是一种重要的地球物理勘探方法,核磁共振测井能提供地层总孔隙度、有效孔隙度、可动流体与束缚流体等储层参数,观测方式主要包括长短等待时间(双tw)测井和长短回波间隔(双te)测井。双tw测井是最有效的流体识别方法之一,在不同等待时间里流体极化率是不同的,长等待时间里,水和烃完全极化,短等待时间里,只有水完全极化。对比分析不同等待时间的核磁共振测井响应能实现储层流体的定性与定量评价。在油气藏勘探开发中,核磁共振双tw测井数据处理是采用差谱分析和时间域分析(tda)来实现,软件中的处理方法都是假定流体的横向弛豫时间与纵向弛豫时间已知的情况下对回波串差进行线性反演,计算地层中油、气、水的体积以及含油饱和度。
[0005]
现有的基于核磁共振双tw测井数据计算的含油体积以及流体识别的方法主要缺点是:(1)核磁共振测井探测深度较浅,只能计算出冲洗带含油体积,不能计算原状地层的含油量。(2)核磁共振双tw测井数据的处理是差谱分析与时间域分析(tda)。在实际数据处理时,假定油、气、水的横向、纵向弛豫时间是已知的情况下,整个储层也是固定不变的,对回波串或回波串差直接进行线性反演,完成储层油、气、水体积的计算。然而,新的勘探区块中,储层中流体类型以及流体的弛豫时间等特性参数是不知道的,在不确定这些参数的情况下还采用原来固定的经验参数进行线性反演,得到核磁共振双tw测井分析结果是不准确的。(3)在核磁共振双tw测井数据差谱分析与时间域分析(tda)分析中,现有方法是假定地层是水湿地层,而且水完全极化,回波串差中只保留油、气的信号。实际上,在大孔隙地层中或油湿地层中,差谱信号中仍然存在水的信号。


技术实现要素:

[0006]
本发明的目的是提供一种利用核磁共振反演识别致密砂岩储层流体的方法,克服现有技术中存在的上述技术问题。
[0007]
为此,本发明提供的技术方案如下:
[0008]
一种利用核磁共振反演识别致密砂岩储层流体的方法,包括以下步骤:
[0009]
步骤1)根据地层中水弛豫不完全机理,对核磁共振双tw测井数据进行处理,得到孔隙度差的弛豫理论公式;
[0010]
步骤2)对孔隙度差的弛豫理论公式进行非线性反演算法,得到冲洗带的含油孔隙度φ
o
,再根据含油孔隙度得到含油饱和度s
o,nmr

[0011]
步骤3)构建孔隙度差δφ
e
与含油饱和度s
o,nmr
的交会图,得到流体识别版图;
[0012]
步骤4)根据流体识别版图对流体进行识别:
[0013]
当冲洗带s
o,nmr
大于30%且孔隙度差δφ
e
大于2%时,则为油层;
[0014]
当冲洗带s
o,nmr
介于12%-30%且孔隙度差δφ
e
介于0.5%-2%时,则为油水同层;
[0015]
当冲洗带s
o,nmr
小于12%且孔隙度差δφ
e
小于0.5%时,则为水层。
[0016]
步骤1)中根据地层中水弛豫不完全机理,对核磁共振双tw测井数据进行处理的过程如下:
[0017]
先得到长等待时间tw
l
和短等待时间tw
s
下的磁化强度矢量差δm(t),然后通过车间刻度磁化强度转变成孔隙度,再对含氢指数hi校正,得到孔隙度差的弛豫理论公式。
[0018]
步骤2)中对孔隙度差的弛豫理论公式进行非线性反演算法时,结合长等待时间tw
l
和短等待时间tw
s
观测到的回波数据差得到目标函数q
min
,对目标函数q
min
设定值,同时对冲洗带的含油孔隙度φ
o
、流体的弛豫参数进行赋值后迭代,直到使目标函数q
min
不大于设定值,从而得到含油孔隙度φ
o

[0019]
所述长等待时间tw
l
的磁化强度矢量m
l
(t)表示如下:
[0020][0021]
式中,m
0j
为第j种孔隙组分中水的磁化强度,a/m;m
o
为油的磁化强度,a/m;t
1w
为水的纵向弛豫时间,s;t
2j
为第j种孔隙组分中水的横向弛豫时间,s;t
2o
为油的横向弛豫时间,s;t
1o
为油的纵向弛豫时间,s。
[0022]
所述短等待时间tw
s
的磁化强度矢量m
s
(t)表示如下:
[0023][0024]
式中,m
0j
为第j种孔隙组分中水的磁化强度,a/m;m
o
为油的磁化强度,a/m;t
1w
为水的纵向弛豫时间,s;t
2j
为第j种孔隙组分中水的横向弛豫时间,s;t
2o
为油的横向弛豫时间,s;t
1o
为油的纵向弛豫时间,s。
[0025]
所述长等待时间tw
l
不小于8s,所述短等待时间tw
s
不大于1.5s。
[0026]
所述孔隙度差的弛豫理论公式如下:
[0027][0028]
式中,φ
0j
为第j种孔隙组分中水的孔隙度;φ
o
为地层冲洗带的含油孔隙度;hi
o
为地层冲洗带含氢指数;t
2o
为油的横向弛豫时间,s;t
1w
为水的纵向弛豫时间,s;t
2j
为第j种孔
隙组分中水的横向弛豫时间,s;t
2o
为油的横向弛豫时间,s;t
1o
为油的纵向弛豫时间,s。
[0029]
所述目标函数表示如下:
[0030][0031]
式中,e
diff
(i)为长等待时间tw
l
和短等待时间tw
s
不同等待时间观测到的回波差;m为回波数;n为弛豫组分;q
min
为观测到的回波数据与模型理论值的残差平方和,不大于10-6
;t
2o
为油的横向弛豫时间,s;t
1w
为水的纵向弛豫时间,s;t
2j
为第j种孔隙组分中水的横向弛豫时间,s;t
2o
为油的横向弛豫时间,s;t
1o
为油的纵向弛豫时间,s。
[0032]
所述流体的弛豫参数包括油的纵向弛豫时间t
1o
、油的横向弛豫时间t
2o
和水的纵向弛豫时间t
1w

[0033]
所述t
2o
赋值范围是300-1000ms,t
1o
赋值范围是3000-4000ms,t
1w
的赋值范围是300-1000ms。
[0034]
所述冲洗带含油饱和度
[0035]
式中,φ
e
为核磁共振有效孔隙度,可由长等待时间核磁共振测井得到;φ
o
为地层冲洗带的含油孔隙度。
[0036]
本发明的有益效果是:
[0037]
本发明提供的这种利用核磁共振反演识别致密砂岩储层流体的方法,是在油、水弛豫时间未知的情况下,利用模拟退火算法对核磁共振双tw测井数据进行非线性反演,搜索出储层中油、水的横向、纵向弛豫时间,并计算得到冲洗带含油体积,从而推断原状地层的流体识别。
[0038]
本发明利用核磁共振双tw有效孔隙度差与含油饱和度构建了流体识别图版,油层、油水同层、水层在图版中能够有效分辨,能够有效地应用于核磁共振测井解释与流体识别。
[0039]
本发明方法改进了现有核磁共振双tw数据处理的理论问题,使原来处理方法中假定的流体弛豫时间为固定经验参数变成了变化的流体弛豫时间参数,差谱分析中的线性反演变成了非线性反演问题,计算结果更可靠。
[0040]
下面将结合附图做进一步详细说明。
附图说明
[0041]
图1是孔隙度差δφ
e
与含油饱和度s
o,nmr
的交会图;
[0042]
图2是实施例中利用模拟退火算法对核磁共振双tw测井数据进行处理结果。
具体实施方式
[0043]
以下由特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。
[0044]
现参考附图介绍本发明的示例性实施方式,然而,本发明可以用许多不同的形式来实施,并且不局限于此处描述的实施例,提供这些实施例是为了详尽地且完全地公开本
发明,并且向所属技术领域的技术人员充分传达本发明的范围。对于表示在附图中的示例性实施方式中的术语并不是对本发明的限定。
[0045]
除非另有说明,此处使用的术语(包括科技术语)对所属技术领域的技术人员具有通常的理解含义。另外,可以理解的是,以通常使用的词典限定的术语,应当被理解为与其相关领域的语境具有一致的含义,而不应该被理解为理想化的或过于正式的意义。
[0046]
实施例1:
[0047]
本实施例提供了一种利用核磁共振反演识别致密砂岩储层流体的方法,包括以下步骤:
[0048]
步骤1)根据地层中水弛豫不完全机理,对核磁共振双tw测井数据进行处理,得到孔隙度差的弛豫理论公式;
[0049]
步骤2)对孔隙度差的弛豫理论公式进行非线性反演算法,得到冲洗带的含油孔隙度φ
o
,再根据含油孔隙度得到含油饱和度s
o,nmr

[0050]
步骤3)构建孔隙度差δφ
e
与含油饱和度s
o,nmr
的交会图,得到流体识别版图;
[0051]
步骤4)根据流体识别版图对流体进行识别:
[0052]
当冲洗带s
o,nmr
大于30%且孔隙度差δφ
e
大于2%时,则为油层;
[0053]
当冲洗带s
o,nmr
介于12%-30%且孔隙度差δφ
e
介于0.5%-2%时,则为油水同层;
[0054]
当冲洗带s
o,nmr
小于12%且孔隙度差δφ
e
小于0.5%时,则为水层。
[0055]
储层中的流体主要包括可动油、可动水、残余油、束缚水。当钻头钻开原状地层时,泥浆滤液进入地层将原来的流体冲刷。若地层含油,泥浆滤液会冲掉地层中部分可动油与可动水,但是还会有部分的可动油、可动水与残余油、束缚水保留;若地层含水,泥浆滤液会冲掉部分可动水,但还是有部分可动水与束缚水保留下来。本发明通过核磁共振双tw测井计算地层冲洗带中含油体积,从而推测或判断原状地层的含油性。对于地层含油,利用计算的地层中被泥浆滤液冲刷后剩余油的体积来推测原状地层含油性。如果地层含水,泥浆滤液冲刷前后只含有水,计算的冲洗带含油体积很小甚至为0。
[0056]
在新的勘探区块中,很难确定储层的流体类型与流体弛豫特征,核磁共振双tw测井数据处理时,必须考虑这些因素,才能准确地得到储层中油、气、水体积。原来的核磁共振双tw测井数据处理方法假定流体的横向、纵向弛豫时间已知,采用固定经验参数对回波串差进行线性反演,分析结果不可靠。本发明是在油、水弛豫时间未知的情况下,利用模拟退火算法对核磁共振双tw测井数据进行非线性反演,搜索出储层中油、水的横向、纵向弛豫时间,并计算得到冲洗带含油体积,从而推断原状地层的流体识别。本文提出的方法改进了现有核磁共振双tw数据处理的理论问题,使原来处理方法中假定的流体弛豫时间为固定经验参数变成了变化的流体弛豫时间参数,差谱分析中的线性反演变成了非线性反演问题,计算结果更可靠。
[0057]
实施例2:
[0058]
在实施例1的基础上,本实施例提供了一种利用核磁共振反演识别致密砂岩储层流体的方法,步骤1)中根据地层中水弛豫不完全机理,对核磁共振双tw测井数据进行处理的过程如下:
[0059]
先得到长等待时间tw
l
和短等待时间tw
s
下的磁化强度矢量差δm(t),然后通过车间刻度磁化强度转变成孔隙度,再对含氢指数hi校正,得到孔隙度差的弛豫理论公式。
[0060]
本发明计算冲洗带的含油体积(含油孔隙度),分析油水层的核磁共振双tw观测模式下的弛豫机理,考虑了地层中水弛豫不完全的问题,改进了原来的核磁共振双tw测井数据处理方法,提出了孔隙度差的弛豫理论公式,在流体弛豫时间未知情况下无法采用固定流体弛豫经验参数进行线性反演,须利用非线性反演算法计算油的横向、纵向弛豫时间以及含油体积,使分析成果更可靠。利用冲洗带的含油体积计算得到含油饱和度参数,该参数数值能够反映原状地层中的含油性。
[0061]
实施例3:
[0062]
在实施例1的基础上,本实施例提供了一种利用核磁共振反演识别致密砂岩储层流体的方法,步骤2)中对孔隙度差的弛豫理论公式进行非线性反演算法时,结合长等待时间tw
l
和短等待时间tw
s
观测到的回波数据差得到目标函数q
min
,对目标函数q
min
设定值,同时对冲洗带的含油孔隙度φ
o
、流体的弛豫参数进行赋值后迭代,直到使目标函数q
min
不大于设定值,从而得到含油孔隙度φ
o

[0063]
本发明中非线性反演算法选择模拟退火算法,模拟退火算法是基于蒙特卡罗迭代求解法的一种启发式随机搜索算法,其求解过程与物理系统退火过程具有相似性。解的目标函数相当于金属的内能,函数中的自变量组合状态空间相当于金属的内能状态空间,这种最优化问题的求解过程就是找一个组合状态,使目标函数值最小,达到在多项式时间内求解全局优化问题的目标。
[0064]
用固体退火模拟搜索寻优问题,将固体内能模拟为目标函数值,令温度为控制参数,即得到寻找最优解的模拟退火算法:由初始解和控制参数初值开始,进行迭代处理,主要流程为产生新解、计算目标函数差、接受或舍弃,使控制参数逐渐减小,算法终止时的解即为所得近似最优解。
[0065]
实施例4:
[0066]
在实施例1的基础上,本实施例提供了一种利用核磁共振反演识别致密砂岩储层流体的方法,所述长等待时间tw
l
的磁化强度矢量m
l
(t)表示如下:
[0067][0068]
所述短等待时间tw
s
的磁化强度矢量m
s
(t)表示如下:
[0069][0070]
式中,m
0j
为第j种孔隙组分中水的磁化强度,a/m;m
o
为油的磁化强度,a/m;t
1w
为水的纵向弛豫时间,s;t
2j
为第j种孔隙组分中水的横向弛豫时间,s;t
2o
为油的横向弛豫时间,s;t
1o
为油的纵向弛豫时间,s。
[0071]
核磁共振技术的物理基础是原子核的磁性及其与外加磁场的相互作用,测量的原始数据是由几百个自旋回波组成的弛豫衰减曲线,cpmg序列测量横向弛豫时间得到的自旋回波串不是呈单指数衰减,而是多个指数衰减的和。
[0072]
岩石核磁共振中测得的总磁化强度信号是由一系列大小不等的孔隙的磁化强度信号的叠加,当含油、水两相时,长等待时间tw
l
和短等待时间tw
s
的cpmg序列采集的回波串幅度表示分别表示为m
l
(t)和m
s
(t)。
[0073]
双tw观测模式中,不同等待时间磁化矢量差可以反映流体性质。假设储层岩石饱和油或完全饱和水,长短不同等待时间的磁化矢量差:
[0074][0075]
原来的方法中,假定水完全极化,上式右面第一项为零。实际应用中分析,小孔隙中的水能够完全极化,部分大孔隙中的水没有完全极化。而且,核磁共振测井中,磁化强度与孔隙度对应的。通过车间刻度磁化强度可以转变成孔隙度,考虑到含氢指数(hi)校正,则上式可转变成:
[0076][0077]
式中,φ
0j
为第j种孔隙组分中水的孔隙度;φ
o
为地层冲洗带的含油孔隙度;hi
o
为地层冲洗带含氢指数。
[0078]
本实施例基于核磁共振双tw测井数据利用非线性反演算法模拟退火算法计算出冲洗带含油饱和度s
o,nmr
。通过反演,分别得到长等待时间下(通常为8s)、短等待时间(通常1.5s)下的有效孔隙度,计算两者的差值有效孔隙度差δφ
e

[0079]
通过上述方程式计算就可以得到冲洗带的含油体积(含油孔隙度φ
o
),但是上述方程的求解为非线性反演问题,需要用非线性反演方法来求解。尤其是在新的勘探区块中,需要油、水的横向、纵向弛豫时间t
2o
、t
1o
、t
2w
、t
1w
,且与原来的固定经验参数不同,如果采用线性反演计算得到的含油体积并不准确,利用模拟退火算法进行非线性反演,可以得到地层中流体的弛豫参数和含油体积,结合观测到的回波数据差得到目标函数:
[0080][0081]
式中,e
diff
(i)为长等待时间tw
l
和短等待时间tw
s
不同等待时间观测到的回波差;m为回波数;n为弛豫组分;q
min
为观测到的回波数据与模型理论值的残差平方和,不大于10-6
;t
2o
为油的横向弛豫时间,s;t
1w
为水的纵向弛豫时间,s;t
2j
为第j种孔隙组分中水的横向弛豫时间,s;t
2o
为油的横向弛豫时间,s;t
1o
为油的纵向弛豫时间,s。
[0082]
上述问题的反演是一个非线性反演问题,为此,必须使用非线性反演方法。其中,t
2o
赋值范围是300-1000ms,t
1o
赋值范围是3000-4000ms,t
1w
的赋值范围是300-1000ms。
[0083]
利用退火模拟算法,对核磁共振双tw测井数据进行非线性搜索得到地层冲洗带中流体的弛豫参数以及含油体积冲洗带含油饱和度
[0084]
式中,φ
e
为核磁共振有效孔隙度,可由长等待时间核磁共振测井得到。
[0085]
本发明利用模拟退火算法进行非线性反演可以计算出冲洗带含油体积,得到地层中冲洗带含油饱和度,通过孔隙度差值可以进行准确的流体分析。
[0086]
核磁共振测井能提供地层的总孔隙度、有效孔隙度、可动流体孔隙度、束缚流体孔隙度。在长等待时间里,储层中油和水完全极化,可计算出长等待时间下的有效孔隙度φ
nmr,l
;在短等待时间里,储层中只有水完全极化,可计算出短等待时间下的有效孔隙度
φ
nmr,s
。核磁共振双tw观测模式下可以得到长短等待时间下的有效孔隙度φ
nmr,l
、φ
nmr,s
及有效孔隙度差值δφ
e
,有效孔隙度差的选取避免了原来采用的可动流体求取中对t2截止值的依赖问题,并且差值越大说明储层孔隙结构越好,结合利用退火模拟算法计算的含油孔隙度可准确的进行流体识别。
[0087]
实施例5:
[0088]
本实施例以鄂尔多斯盆地长8段致密砂岩储层为例,对本发明方法做进一步说明。
[0089]
鄂尔多斯盆地长8段致密砂岩储层物性较差,非均质性强,孔隙结构和油水关系复杂。结合研究区储层特点,考虑地层中水弛豫不完全的问题,如果还采用固定的流体弛豫参数,计算的油水体积是不可靠的,因此,原来流体识别方法并不适用。本发明修正油水层核磁共振双tw观测模式下的弛豫机理,确定双tw观测模式下核磁孔隙度差的弛豫理论公式,利用非线性反演算法计算得到冲洗带含油体积。
[0090]
利用本发明方法,通过模拟退火算法对核磁共振双tw测井数据处理得到,t
2o
分布在150-250ms之间,t
1o
分布在3200-3600ms之间。而且,计算得到了冲洗带含油体积和未极化完的水的体积,根据核磁共振总孔隙度,可以得到冲洗带的含油饱和度,其数值要比原状地层的含油饱和度小,但是其数值能够反映原状地层的含油性,数值越大含油性越好,数值越小含油性越差。
[0091]
此外,根据核磁共振的弛豫机理,地层含油时,长等待时间核磁共振有效孔隙度φ
nmr,l
要比短等待时间核磁有效孔隙度φ
nmr,s
大,两者差值δφ
e
越大说明含油体积越高,且储层孔隙度也越好。为此,构建了冲洗带有效孔隙度差δφ
e-含油饱和度s
o,nmr
识别图版,如图1所示。
[0092]
图1为冲洗带含油饱和度(s
o,nmr
)与有效孔隙度差(δφ
e
)交会图,其中横坐标为有效孔隙度差即长等待时间下有效孔隙度和短等待时间下有效孔隙度的差值δφ
e
。纵坐标为利用模拟退火算法从核磁共振双tw测井数据计算出的冲洗带含油饱和度。可以看出,计算冲洗带含油饱和度(s
o,nmr
)随有效孔隙度差(δφ
e
)增大而增大,不同储层的判别标准为:
[0093]
油层:冲洗带s
o,nmr
大于30%,δφ
e
大于2%;
[0094]
油水同层:冲洗带s
o,nmr
介于12%-30%,δφ
e
介于0.5%-2%;
[0095]
水层:冲洗带s
o,nmr
小于12%且δφ
e
小于0.5%为水层。
[0096]
利用模拟退火算法对核磁共振双tw测井数据进行处理结果如图2所示,试油层段为2326-2331m,试油结论为油层。第三道为标准组t2分布,第四道为差谱,第五道为孔隙度,第六道为流体分析,其中红色填充部分为计算的含油体积,蓝色填充部分为计算的含水体积,解释结果为油层。
[0097]
综上所述,本发明有以下特点:
[0098]
1)改进了原来水假设双等待时间下水完全弛豫的假设,推导出的新的核磁共振弛豫理论,建立了回波串差与孔隙流体、弛豫参数的非线性关系。
[0099]
2)改进原来油、水弛豫特性已知的假设,利用模拟退火算法反演得到了冲洗带含油孔隙度、油的横向、纵向弛豫特性参数,进而计算了冲洗带含油饱和度。
[0100]
3)利用核磁共振双tw有效孔隙度差与含油饱和度构建了流体识别图版,油层、油水同层、水层在图版中能够有效分辨,能够有效地应用于核磁共振测井解释与流体识别。
[0101]
以上例举仅仅是对本发明的举例说明,并不构成对本发明的保护范围的限制,凡
是与本发明相同或相似的设计均属于本发明的保护范围之内。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1