一种移动便携式车轮踏面周向轮廓测量装置的制作方法

文档序号:23028419发布日期:2020-11-25 14:27阅读:67来源:国知局
一种移动便携式车轮踏面周向轮廓测量装置的制作方法

本实用新型属于列车车轮检测技术领域,更确切的说,涉及一种移动便携式车轮踏面周向轮廓测量装置。



背景技术:

随着高速、重载铁路以及地铁等轨道交通的快速发展,对轨道车辆行车稳定性、舒适性及车辆轨道系统各个部件使用寿命的要求越来越高。车轮作为轨道车辆重要行走部件,其周向不平顺对轨道车辆运行的安全稳定和舒适性有着至关重要的影响。

在列车运行过程中,由于车轮与轨道之间长期摩擦,会对车轮造成不同程度的磨损,如车轮径跳等。所谓车轮径跳是指:车轮踏面滚动圆在同一横剖面内实际表面上个点绕车轴基准轴线回转一周或连续回转时最大变动量。车轮径跳越大,引起的振动将会加快行走零部件的疲劳损坏,加剧车轮磨耗,钢轨波磨,增加噪音,降低乘坐舒适度,严重的会对行车安全造成很大的威胁。因此准确地测量列车车轮的径跳,对于保障列车的行车安全具有重大的意义。

现有车轮几何参数的检测手段是静态测量。静态测量是采用镟床等专用设备进行车轮几何参数测量的一种手段,测量优点是精度高,其缺点是设备投入大、成本高,需要耗费大量的人力和物力,而且测量周期较长,从而影响列车的正常使用。由于静态测量存在的种种局限性,越来越多的人集中于激光扫描车轮轮对的方案研究。

经检索,中国专利申请号为:201810715534.0,申请日为:2018年6月30日,发明创造名称为:一种列车转向架车轮直径动态快速复检方法。该申请案中公开的方法中将检测支座安装在地面上,再将激光传感器支架固定在检测支座上,激光线与轮对轴线处于同一平面切垂直地面,但该方案有两大不足。

一、该装置中的激光传感器位置不可调,不能根据每个传向架轮对的不同,进行微调,这势必会影响到扫描的数据,进而影响到对车轮磨损情况的评估。

二、该装置中激光传感器固定在检测支架上,而检测支架又固定在地面上,所以整个结构固定在地面上,属于固定式,每次扫描车轮时,需要将转向架移动到指定位置,且需要将单独车轮抬起,手动旋转车轮,从而扫描车轮的名义直径,这种方案,费时费力,使用的局限性差。



技术实现要素:

1.要解决的问题

本实用新型的目的在于克服现有固定式点激光扫描轮对时的不可移动,难以调节的不足,提供了一种移动便携式车轮踏面周向轮廓测量装置。本实用新型的装置可以跟随车轮移动,从而无需抬起车轮,检测便捷、省时省力,能够为企业降低成本。同时,测量时可通过各部件之间的调节使测量点正对车轮踏面名义滚动圆位置,测得结果更加准确。

2.技术方案

为了解决上述问题,本实用新型所采用的技术方案如下:

本实用新型的一种移动便携式车轮踏面周向轮廓测量装置,包括固定机构、测量机构、调节机构、感应机构和校准机构,所述固定机构包括安装板和接杆,安装板一端固定安装于轴承盖上,另一端与接杆固定相连;所述测量机构固定安装于调节机构上,调节机构与接杆固定相连;所述感应机构固定安装于测量机构上,所述校准机构安装于车轮上,用于对测量机构的安装进行校准。

更进一步的,所述安装板通过磁力座与轴承盖固定相连;所述接杆包括第一接杆和第二接杆,第一接杆一端与安装板安装相连,其另一端与第二接杆的一端安装相连,第二接杆的另一端与调节机构固定相连。

更进一步的,所述轴承盖上对称分布有两个磁力座,所述安装板的主板两端分别设有连接板,均通过连接板与磁力座固定相连;安装板的主板和轴承盖之间还安装有支撑板。

更进一步的,所述安装板的主板上加工有两个圆弧槽,所述第一接杆端部通过螺栓固定在两个圆弧槽内。

更进一步的,所述接杆上安装有气动弹簧,该气动弹簧采用自锁型气弹簧,其两端分别通过第二安装支架与第一接杆和第二接杆固定相连。

更进一步的,所述测量机构包括第一安装底板、激光位移传感器、计米轮和编码器,激光位移传感器固定安装在第一安装底板上;所述计米轮和编码器安装相连,并通过第一安装支架安装于第一安装底板上;所述调节机构包括底座、滑座和调节丝杆,所述底座上固定安装有与滑座相匹配的滑块导轨,并通过轴承座安装有调节丝杆,该调节丝杆贯穿滑座内部,且与滑座内的螺纹孔相匹配;所述校准机构包括互相垂直分布的第一定位板和第二定位板,所述第一定位板内侧安装有方磁铁,方磁铁外侧与第一定位板内侧平齐或低于第一定位板内侧;所述第二定位板上设有定位孔。

更进一步的,所述第一安装底板一侧沿竖直方向设有连接板,所述第一安装支架采用销轴与该连接板安装相连;所述滑座包括沿水平方向互相垂直设置的第一滑座和第二滑座,所述第一滑座上固定安装有与第二滑座相匹配的滑块导轨,并通过轴承座安装有与第二滑座相匹配的调节丝杆;所述第一安装底板通过螺钉与第二滑座固定相连。

更进一步的,所述感应机构包括软管和感应块,所述软管可以任意弯折定形,其一端与第一安装底板安装相连,另一端为自由端并安装有接近开关,所述感应块为圆柱磁铁块。所述校准机构还包括圆柱棒,所述圆柱棒紧贴并沿着第二定位板内侧两边对称分布,且其一端紧固于第一定位板内侧。

3.有益效果

相比于现有技术,本实用新型的有益效果为:

(1)本实用新型的一种移动便携式车轮踏面周向轮廓测量装置,包括固定机构、测量机构、调节机构、感应机构和校准机构,固定机构包括安装板和接杆,安装板一端固定安装于车轮轴承盖上,另一端与接杆固定相连;接杆通过调节机构与测量机构相连。通过安装板和接杆的设置,使得整个装置安装在车轮轴上,无需和铁轨接触,当车轮在铁轨上滚动时,带动测量机构进行工作,从而无需抬起车轮,手动旋转车轮进行测量,检测便捷、省时省力,有效解决了现有固定式点激光扫描轮对时的不可移动、难以调节的问题。同时,调节机构和校准机构的设置,能够快速准确定位测量点,确保测量点正对车轮踏面名义滚动圆位置,测得结果更加准确。

(2)本实用新型的一种移动便携式车轮踏面周向轮廓测量装置,所述安装板通过磁力座与轴承盖固定相连,通过磁力座的设置,直接将磁力座吸附于车轮轴承盖上即可完成安装板的安装,安装操作简便,便捷。同时,磁力座包括两个,对称吸附在轴承盖上,安装板的主板两端分别设有连接板,均通过连接板和磁力座固定相连,且安装板的主板和轴承盖之间还安装有支撑板,通过两个磁力座及支撑板的设置,有利于提高装置安装的牢固性和稳固性,从而有效减小测量误差。

(3)本实用新型的一种移动便携式车轮踏面周向轮廓测量装置,所述接杆包括第一接杆和第二接杆,第一接杆的一端与安装板的主板安装相连,通过在安装板上加工两个圆弧槽,安装第一接杆时,两个固定螺栓可在各自的圆弧槽内进行滑动,从而调节第一接杆的安装角度。同时,第一接杆的另一端与第二接杆的一端安装相连,通过设置气动弹簧,尤其气动弹簧采用自锁型气弹簧时,可以调整第一接杆和第二接杆之间的夹角至合适位置,然后自行锁定,操作简单、方便,能够满足不同环境下的检测需求。

(4)本实用新型的一种移动便携式车轮踏面周向轮廓测量装置,调节机构包括底座、滑座和调节丝杆,底座上安装有与滑座滑动配合的滑块导轨,并通过调节丝杆的设置,对滑座的位置移动进行调节,方便快捷;更优化的,该调节机构包括沿水平方向互相垂直设置的第一滑座和第二滑座,且两个滑座上均设有调节丝杆,通过旋动调节丝杆的旋钮来实现两个滑座的移动,从而实现滑座安装位置的前、后、左、右四个方向上的调节,操作简单,且测量机构固定安装于滑座上,进而有利于对测量机构的安装位置进行调节。

(5)本实用新型的一种移动便携式车轮踏面周向轮廓测量装置,感应机构包括软管和感应块,感应块采用圆柱磁铁块,可直接吸附于车轮内辋面上进行安装,软管一端设有接近开关与感应块配合使用,其结构小巧简单。同时,软管设计为可任意弯折的结构,调节方便,适用于不同安装环境下使用。所述校准机构的第一定位板内侧安装有方磁铁,通过方磁铁将整个机构安装于车轮上,且通过设置圆柱棒与车轮轮缘顶点圆紧贴,有利于准确定位测量点,剔除了因测量位置不准确而产生误差,从而进一步提高装置的测量精度。

附图说明

图1为本实用新型的测量机构的整体结构示意图;

图2为本实用新型的调节机构的整体结构示意图;

图3为本实用新型的磁力座的安装示意图;

图4为本实用新型的接杆的安装示意图;

图5为本实用新型的气动弹簧的安装示意图;

图6为本实用新型的感应机构的整体结构示意图;

图7为本实用新型的校准机构的整体结构示意图;

图8为本实用新型的测量机构和调节机构的安装示意图;

图9为采用本实用新型装置进行检测时的使用状态示意图。

图中:

1、测量机构:

100、第一安装底板;101、第二安装底板;102、激光位移传感器;103、第一安装支架;104、计米轮;105、编码器;

2、调节机构:

200、底座;201、第一滑块导轨;202、第一滑座;203、第一轴承座;204、第一调节丝杆;205、第二滑块导轨;206、第二滑座;207、第二轴承座;208、第一调节丝杆;

3、固定机构:

300、轴承盖;301、磁力座;302、安装板;303、支撑板;304、第一接杆;305、第二安装支架;306、气动弹簧;307、第二接杆;

4、感应机构:

400、软管;401、接近开关;402、感应块;

5、校准机构:

500、第一定位板;501、第二定位板;502、定位孔;503、方磁铁;504、圆柱棒;

6、车轮;

7、铁轨。

具体实施方式

下面结合具体实施例对本实用新型进一步进行描述。

实施例1

如图9所示,本实施例的一种移动便携式车轮踏面周向轮廓测量装置,包括固定机构3、测量机构1、调节机构2、感应机构4和校准机构5,所述固定机构3包括安装板302和接杆,安装板302一端固定安装于轴承盖300上,另一端与接杆固定相连;所述测量机构1固定安装于调节机构2上,调节机构2与接杆固定相连;所述感应机构4固定安装于测量机构1上,所述校准机构5安装于车轮6上,用于对测量机构1的安装进行校准。通过安装板302和接杆的设置,使得整个装置安装在车轮轴上,无需和铁轨7接触,当车轮6在铁轨7上滚动时,带动测量机构1进行工作,从而无需抬起车轮,手动旋转车轮进行测量,检测便捷、省时省力,有效解决了现有固定式点激光扫描轮对时的不可移动、难以调节的问题。

具体的,如图1所示,所述测量机构1包括第一安装底板100、激光位移传感器102、计米轮104和编码器105,其中,第一安装底板100固定安装于调节机构2的滑座上,进而与固定机构3的接杆安装相连,且其可随着滑座的位置移动实现其位置调节。所述激光位移传感器102固定安装于第二安装底板101上,且第二安装底板101和第一安装底板100通过螺钉固定相连。所述计米轮104和编码器105安装相连,并通过第一安装支架103安装于第一安装底板100上。进行测量时,保持计米轮104贴合车轮踏面,车轮6滚动带动计米轮104转动,计米轮104带动编码器105转动,编码器105每隔一定脉冲数量给激光位移传感器102一个信号,测量车轮踏面的一个点,当车轮6滚动一周后,所测量的点围成一个圆,从而反映出车轮踏面周向轮廓情况,操作简单,省时省力,有利于降低企业成本。

所述调节机构2包括底座200、滑座和调节丝杆,所述底座200上固定安装有与滑座相匹配的滑块导轨,并通过轴承座安装有调节丝杆,该调节丝杆贯穿滑座内部,且与滑座内的螺纹孔相匹配。具体的,如图2所示,底座200两侧对称安装有与滑座滑动配合的滑块导轨,底座200其余两侧对称固定安装有轴承座,调节丝杆支撑安装于轴承座上,通过转动调节丝杆旋钮,通过滑座与调节丝杆的螺纹配合,带动滑座在滑块导轨上进行移动,从而实现对滑座安装位置的调节,操作简便,调节快速。

如图6所示,所述感应机构4包括软管400和感应块402,所述软管400一端与第一安装底板100安装相连,另一端为自由端并安装有接近开关401,且其可以任意弯折定形,从而调节方便,适用于不同安装环境下使用。所述感应块402采用圆柱磁铁块,可直接吸附于车轮内辋面上进行安装,结构小巧简单。

所述校准机构5单独设置,并安装于车轮6上,用于对测量机构1上激光位移传感器102的安装进行校准。具体的,如图7所示,所述校准机构5包括互相垂直分布的第一定位板500和第二定位板501,第一定位板500和第二定位板501呈l形进行安装(也可一体加工成型),所述第一定位板500内侧安装有方磁铁503,方磁铁503外侧与第一定位板500内侧平齐或略低于第一定位板500内侧。所述第二定位板501上设有定位孔502,且校准机构5还包括圆柱棒504,本实施例中,所述圆柱棒504的个数为两个,且两个圆柱棒504紧贴并沿着第二定位板501内侧两边对称分布,其一端均紧固于第一定位板500内侧。将整个校准机构5安装于车轮6上时,通过设置圆柱棒504与车轮轮缘顶点圆紧贴,从而有利于准确定位测量点,剔除了因测量位置不准确而产生误差,从而进一步提高装置的测量精度。

实施例2

本实施例的一种移动便携式车轮踏面周向轮廓测量装置,其结构基本同实施例1,其主要区别在于:所述安装板302通过磁力座301与轴承盖300固定相连。具体的,如图3所示,本实施例中所述轴承盖300上对称分布有两个磁力座301,且磁力座301背面加工有螺纹孔,所述安装板302的主板两端分别设有连接板,连接板通过螺钉与磁力座301固定相连,进行安装时,直接将磁力座301吸附于车轮轴承盖300上即可完成安装板302的安装,操作简便;同时,磁力座301包括两个,对称吸附在轴承盖300上。安装板302的主板两端分别设有连接板,均通过连接板和磁力座301固定相连,且安装板302的主板和轴承盖300之间还安装有支撑板303。通过两个磁力座301及支撑板303的设置,有利于提高装置安装的牢固性和稳固性,从而有效减小测量误差。

实施例3

本实施例的一种移动便携式车轮踏面周向轮廓测量装置,其结构基本同实施例2,其主要区别在于:所述接杆包括第一接杆304和第二接杆307,第一接杆304一端与安装板302安装相连,其另一端与第二接杆307的一端安装相连,第二接杆307的另一端与调节机构2固定相连。具体的,如图4所示,所述安装板302的主板上加工有通孔及两个圆弧槽,所述支撑板303一端通过螺固定安装于轴承盖300上,另一端加工由带螺纹的凸块,且该凸块穿过安装板302的主板上的通孔向外伸出,该第一接杆304端部套在该凸块上,并采用螺母进行紧固;同时,第一接杆304端部还通过固定螺栓可滑动安装于安装板302的主板上的两个圆弧槽内,通过两个固定螺栓在各自的圆弧槽内进行滑动,从而调节第一接杆304的安装角度。

此外,所述接杆上安装有气动弹簧306,如图5所示,第一接杆304与第二接杆307的连接处可相对发生转动,气动弹簧306两端分别通过第二安装支架305与第一接杆304和第二接杆307固定相连,从而实现第一接杆304与第二接杆307之间安装夹角可调。更优化的,当气动弹簧306采用自锁型气弹簧时,可以调整第一接杆304和第二接杆307之间的夹角至合适位置,然后自行锁定,操作简单、方便,能够满足不同环境下的检测需求。

所述测量机构1的第一安装底板100一侧沿竖直方向设有连接板,所述第一安装支架103采用销轴与连接板安装相连,从而便于对计米轮104的安装角度进行调整,以确保测量时计米轮104始终贴于车轮踏面上。

所述滑座包括沿水平方向互相垂直设置的第一滑座202和第二滑座206,具体的,如图2所示,所述底座200顶部两侧(即图2中底座左右两侧)均设有第一滑块导轨201,其顶部另外两侧(即图2中底座前后两侧)均设有第一轴承座203,且两个轴承座之间安装有第一调节丝杆204。相同的,所述第一滑座202顶部两侧(即图2中第一滑座前后两侧)均设有第二滑块导轨205,其顶部另外两侧(即图2中第二滑座左右两侧)均设有第二轴承座207,且两个轴承座之间安装有第二调节丝杆208。如图8所示,所述测量机构1的第一安装底板100固定安装于第二滑座206顶部,通过分别旋动第一调节丝杆204和第二调节丝杆208的调节旋纽控制两个滑座的相对移动,从而带动整个测量机构1在前、后、左、右四个方向上的移动,且操作简单,有利于快速实现测量点的精准定位,减少测量误差。

采用本实用新型的测量装置进行测量时,其测量过程为:将测量装置整体安装于车轮轴上,调节各机构之间的安装位置,驱动车轮6滚动,装置进行测量,得到车轮径跳值。具体的,如图9所示,装置安装时首先将磁力座301吸附于车轮轴承盖300完成安装板302的安装,调节第一接杆304与安装板302的位置,然后调节第一接杆304与第二接杆307的安装角度后,采用气动弹簧306进行锁定,使滑座及滑座上固定安装的测量机构1整体向车轮6靠近。

然后,将校准机构5的第一定位板500吸附于车轮内辋面7一侧,圆柱棒504紧贴车轮轮缘顶点圆,且定位孔502中心线正对车轮踏面名义滚动圆处;所述感应机构4的感应块402吸附于车轮内辋面7一侧。

最后,反复调节第一滑座202和第二滑座206的相对位置以及计米轮104的安装角度,使计米轮104贴着车轮踏面,激光位移传感器102发射的激光穿过定位孔502出现在车轮踏面上,垂直穿过并过车轮6所在轴心达到校正的目的,安装工作完成。

进行测量时,感应块402粘贴或吸附(磁铁)于车轮内辋面7其中一侧,当车轮6旋转时,接近开关401第一次被感应块402触发时开始记录数据,直到接近开关401再次被感应块402触发时采集结束。并且在测量时计米轮104紧贴车轮踏面,车轮6旋转时,计米轮104可保持与车轮踏面相同的线速度旋转。计米轮104旋转使得编码器105产生脉冲信号,每隔一定的脉冲数量n记录一个激光位移传感器102的位移值,直到车轮6旋转一周,当所测最后一个点脉冲数量小于n时,同样会记录一个位移值。这样便可以得到一个数据组,即x坐标是脉冲数量,它从0开始,每隔n个脉冲记录一个y坐标(位移值),直到最后一个脉冲n(n不一定是n的整数倍)。然后对所测数据进行如下处理:

(1)计算车轮6直径

已知计米轮104周长为c,计米轮104带动编码器105旋转一周产生的脉冲数量是m,车轮6旋转一周产生的总脉冲数量是n,则车轮6旋转一周时,计米轮104旋转了n/m周,车轮6的周长为nc/m,因此,车轮6的直径为:

(2)计算车轮踏面各点处的半径

将测量得到的位移值转化为车轮踏面各点处的半径,假设采集的原始数据为(xi,yi),其中xi为每一个测量点对应的脉冲序号,取值为0,n,2n,3n……n,yi为每一个测量点的位移值,采集的数据数量为k。在本测量方案中,位移值越大,说明该测量点对应的半径越小。测量车轮6一周平均位移值为:

把每一个测量点处的位移值转化为车轮6半径,同时将每一个测量点处的脉冲序号转化为车轮6周长坐标:

(3)计算车轮径向跳动

所求得的车轮踏面各点处的半径,从中找到出大半径和最小半径,二者的差值即为径向跳动。

(4)求偏心量

利用计算得到的(x'i,y'i)进行圆拟合,求得拟合圆的圆心坐标(a,b),则偏心量为

(5)求椭圆度

利用计算得到的(x'i,y'i)进行椭圆拟合,求得椭圆的长轴和短轴,长轴与短轴的差即为椭圆度。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1