一种定量检测实际水样中铅离子浓度的硅基sers芯片及其制备方法

文档序号:10487059阅读:685来源:国知局
一种定量检测实际水样中铅离子浓度的硅基sers芯片及其制备方法
【专利摘要】本发明涉及环境监测领域,公开了一种定量检测实际水样中铅离子浓度的硅基SERS芯片及其制备方法。该芯片由银纳米颗粒修饰的硅晶片、金纳米颗粒、SEQ ID NO:1、2、4所示核苷酸序列,以及在SEQ ID NO:3所示核苷酸序列5’端偶联巯基、3’端偶联荧光染料的序列片段组成。本发明用多聚腺嘌呤辅助的表面增强拉曼散射硅基芯片用于铅离子检测,所述芯片由核(银)?卫星(金)纳米颗粒修饰的硅晶片构成,共价连接在芯片上的DNAzyme可以被铅离子特异性激活,使得substrate strand断裂成两段自由的DNA,因而可检测到较强的SERS信号,达到较高的灵敏度、特异性、可重现性以及可循环性。
【专利说明】
一种定量检测实际水样中铅离子浓度的硅基SERS芯片及其制 备方法
技术领域
[0001] 本发明涉及环境监测技术领域,具体涉及一种定量检测实际水样中铅离子浓度的 硅基SERS芯片及其制备方法。
【背景技术】
[0002] 铅离子是环境中最危险的重金属离子之一,存在多种源头例如食物、血液、饮用 水、工业废水等等。研究发现,通过食物链和饮用水铅污染会对人类特别是儿童的神经系 统、泌尿系统、智力发展等造成严重的伤害(参见:Int · J ·Hyg·Environ ·Health 2008,211, 345-351; Annu. Rev.Med. 2004,55,209-222)。铅离子在人体内不易于降解,因而长期的积累 甚至少量的铅离子也会影响人类的健康。美国环境保护局规定在饮用水中铅离子的最大残 余量不能超过72.4nM。已有报道发现,一些儿童由于长期的和低水平的铅离子暴露,智力能 力受到严重的影响(参见British Medical Bulletin 2003,68,167-182)。因此对于铅离 子的检测已日益成为环境监测的重要问题,研发新型铅离子检测方法对于环境保护、疾病 预防、重大环境污染监测具有重要意义。
[0003] 目前,各种传统的分析方法像原子吸收光谱法,电感耦合等离子体-质谱法,电感 耦合等离子体-原子发射光谱法,已广泛使用。然而,这些分析方法大多是昂贵的,耗时的, 需要冗长的步骤和复杂的仪器,从而限制了铅离子检测的广泛应用。
[0004] 表面增强拉曼散射(SERS)是一种非常吸引人的现象,它已广泛的用于传感应用 中。相比较正常的拉曼信号,分子吸附在一些特定的金属表面时,该分子的拉曼信号会得到 极大地提高,因而能够超高灵敏的检测样品。这种巨大的增强因子是由于,在光照下,对于 表面较为粗糙的金属衬底来说,表面能够产生局域电磁场。除了较高的灵敏性,SERS具有狭 窄的拉曼峰从而导致较小的背景,有利于多元检测。此外,拉曼散射在不同的环境下非常稳 定,几乎不受湿度,氧气,外来物种等的影响。因此,SERS已用于灵敏性和特异性的检测铅离 子。例如,王等人,发展了一种独特的和简单的"Signal off"SERS策略用于灵敏性和选择性 的检测铅离子(参见:Chem. Commun. 2011,47,4394-4396)。之后,徐等人,介绍了一种基于 DNAzyme的Ag NPs-〇n_Ag f ilm结构,能够检测InM的铅离子(参见:Anal · Chem · 2014,86, 11494-11497)。尽管这些SERS传感器是可行的,但是灵敏性和重现性不是令人满意的,因而 限制其在实际水样中的应用。因此,更多的努力开始致力于发展稳定性好、重现性优良的基 底以实现超灵敏性和特异性的检测产品。

【发明内容】

[0005] 有鉴于此,本发明的目的在于提供一种定量检测实际水样中铅离子浓度的硅基 SERS芯片及其制备方法,使得所述硅基SERS芯片在检测实际水样中铅离子浓度时具有较好 的灵敏度、特异性、重现性以及可循环性。
[0006] 为实现上述目的,本发明提供如下技术方案:
[0007] 一种定量检测实际水样中铅离子浓度的硅基SERS芯片,其特征在于,由银纳米颗 粒修饰的硅晶片、金纳米颗粒、SEQ ID NO: 1-2和SEQ ID N0:4所示核苷酸序列,以及在SEQ ID NO: 3所不核昔酸序列5 '端偶联有疏基、3 '端偶联有焚光染料的序列片段;
[0008]其中,银纳米颗粒修饰的娃晶片与SEQ ID NO: 1所示核苷酸序列连接,金纳米颗粒 与SEQ ID NO: 2所示核苷酸序列连接,SEQ ID NO: 1-2所示核苷酸序列彼此形成互补双链连 接,在SEQ ID N0:3所示核苷酸序列5'端偶联有巯基、3'端偶联有荧光染料的序列片段通过 末端巯基与金、银纳米颗粒共价连接,SEQ ID N0:4所示核苷酸序列与SEQ ID NO: 3所示核 苷酸序列彼此形成互补双链连接。
[0009]本发明针对现有检测实际水样中铅离子浓度的SERS技术灵敏度(仅为nM级)和重 现性较差的问题,本发明采用多聚腺嘌呤(Poly A30,即SEQ ID NO: 1-2所示核苷酸序列,本 发明中分别命名为Poly A30-P1和Poly A30-P2)辅助的表面增强拉曼散射硅基芯片用于高 性能的铅离子检测,本发明这种芯片由核(银)_卫星(金)纳米颗粒修饰的硅晶片所构成,共 价连接在硅基SERS芯片上的DNAzyme(g卩SEQ ID N0:3所示核苷酸序列,本发明中命名为 Cy5-17E-SH)可以被铅离子特异性激活,使得substrate strand(即SEQ ID N0:4所示核苷 酸序列,本发明中命名为17DS)断裂成两段自由的DNA,因而可检测到较强的SERS信号,原理 示意图见图1。
[0010]其中,作为优选,所述序列片段为在SEQ ID N0:3所示核苷酸序列5'端偶联有HS-(CH2)6-、3'端偶联有Cy5荧光染料的序列片段,即5' - HS-(CH2)6-TTTCATCTCTTCTCCGAGCCGGTCGAAATAGTGAGT-Cy5-3'〇 [0011]作为优选,所述硅晶片为〇. 01~20 Ω *cm的p型或n型硅晶片。
[0012]同时,本发明还提供了所述硅基SERS芯片的制备方法,包括:
[0013] 步骤1、制备银纳米颗粒修饰的娃晶片以及金纳米颗粒;
[0014] 步骤2、将已制备好的银纳米颗粒修饰的硅晶片与溶解于磷酸盐缓冲液中的SEQ ID NO: 1所示核苷酸序列恒温混合孵育,然后向其中加入盐溶液,过夜老化,得到SEQ ID NO: 1所示核苷酸序列连接的银纳米颗粒修饰的硅晶片;
[0015] 将所制备的金纳米颗粒与溶解于磷酸盐缓冲液中的SEQ ID N0:2所示核苷酸序列 恒温混合孵育,然后向溶液中加入盐溶液,过夜老化,得到SEQ ID NO: 2所示核苷酸序列连 接的金纳米颗粒;
[0016] 步骤3、将步骤2所得硅晶片和金纳米颗粒置于杂交缓冲液中恒温混合孵育,通过 SEQ ID NO: 1-2所示核苷酸序列互补配对形成双链结构,用PBS冲洗,然后氮气吹干,得到核 (银)-卫星(金)纳米颗粒修饰的硅晶片(扫描电镜表征照片见图2);
[0017] 步骤4、将核(银)-卫星(金)纳米颗粒修饰的硅晶片与在SEQ ID NO: 3所示核苷酸 序列5 '端偶联有疏基、3 '端偶联有焚光染料的序列片段丨旦温混勾并振荡反应,使SEQ ID NO: 3所示核苷酸序列末端疏基与金、银纳米粒子共价连接形成金-硫键和银-硫键,然后向 溶液中加入盐溶液,过夜老化;
[0018] 将老化后的材料取出,与溶解于杂交缓冲液中SEQ ID N0:4所示核苷酸序列恒温 混合孵育,通过DNA互补配对形成DNA双链结构,然后用PBS冲洗,氮气吹干,得到所述硅基 SERS芯片。
[0019] 作为优选,所述银纳米颗粒修饰的硅晶片由以下方法制备获得:
[0020] 将单晶硅片依次用去离子水、丙酮、去离子水进行超声清洗,然后再用浓硫酸和过 氧化氢混合溶液清洗;
[0021] 清洗后的单晶硅片加入到氢氟酸溶液中进行硅-氢化反应,得到表面覆盖Si-H键 的硅晶片,然后光面朝上,放入硝酸银和氢氟酸的混合溶液中,缓慢振荡反应,银离子被Si-H键还原,在硅晶片表面原位生长上一层均匀的银纳米颗粒,得到银纳米颗粒修饰的硅晶 片,最后用氮气吹干表面。
[0022] 作为优选,所述的过氧化氢质量浓度为40%,浓硫酸和40%过氧化氢体积比为1: (0.01~100)。
[0023]作为优选,所述氢氟酸溶液中氢氟酸的质量浓度为1~40%。
[0024]作为优选,所述娃-氢化反应的时间为1~60分钟。
[0025]作为优选,所述硝酸银和氢氟酸的混合溶液由IM的硝酸银溶液和质量浓度为40% 的氢氟酸溶液按体积比为1:(0.01~100)配制而成。
[0026] 作为优选,所述振荡反应时间为1~60分钟。
[0027] 作为优选,所述纳米金颗粒通过柠檬酸还原法制备获得。具体的可参照如下方式:
[0028] 在沸腾的氯金酸溶液中,加入柠檬酸钠溶液,搅拌反应之后,得到金纳米颗粒,所 述氯金酸质量浓度为〇.〇1%,柠檬酸钠质量浓度为1%,反应时间为15分钟。
[0029] 作为优选,SEQ ID NO: 1-2所示核苷酸序列浓度均为0.001~1M。
[0030] 作为优选,步骤2所述恒温混合孵育为在25°C孵育16小时。
[0031] 作为优选,步骤2和步骤4所述加入盐溶液为将初始浓度为IM的盐溶液,每隔两小 时分3-5次加入,盐溶液最终浓度为0.01~1M。
[0032] 作为优选,步骤3所述恒温混合孵育为在37°C孵育24小时。
[0033] 作为优选,步骤4所述振荡反应为在100~600转每分钟、25°C下反应1~24小时。 [0034] 作为优选,步骤4所述恒温混合孵育为在37°C孵育1~24小时。
[0035]作为优选,步骤4中在SEQ ID N0:3所示核苷酸序列5'端偶联有巯基、3'端偶联有 荧光染料的序列片段、SEQ ID N0:4所示核苷酸序列浓度均为0.001~1M。
[0036]本发明构建的硅基SERS芯片从IOpM到ΙμΜ铅离子的对数浓度与归一化的拉曼强度 存在较好的线性关系(R2 = O. 997);由于该芯片优越的SERS性能,它可以检测到低至8.9 X 10一 12Μ(ρΜ级)的铅离子浓度,远远低于已报道的SERS传感器(ηΜ级);此外,所提供的芯片具 有良好的选择性和可循环性(三次循环后拉曼强度损失仅为11.1%);更重要的是,所制备 的芯片可以精确和可靠的检测湖水、自来水和工业废水等实际体系中未知铅离子的浓度 (RSD值小于12%)。
【附图说明】
[0037]图1是本发明的硅基SERS芯片检测铅离子的原理图;
[0038]图2是本发明制备得到的硅基SERS芯片,即核(银)_卫星(金)纳米颗粒修饰的硅晶 片的扫描电镜表征照片,其中银纳米颗粒(AgNPs)的尺寸约为11Onm,金纳米颗粒(Au NPs) 的尺寸约为13nm,且较均勾的分布在Ag NPs表面上;
[0039] 图3是本发明制备得到的芯片对不同浓度铅离子的SERS试验系列结果谱图;
[0040] 图4是本发明制备得到的芯片对同一浓度不同离子的SERS光谱图以及不同离子的 拉曼峰1366CHT1的强度的对比柱形图,其中a图为对同一浓度不同离子的SERS光谱图,b图为 不同离子的拉曼峰1366CHT1的强度的对比柱形图;
[0041]图5是本发明制备得到的芯片重建的原理图以及3次循环使用的SERS光谱图和相 应的拉曼峰1366CHT1的强度的对比图,其中a图为芯片的重建原理图,b和c图分别为3次循环 使用的SERS光谱图和相应的拉曼峰1366CHT 1的强度的对比图。
【具体实施方式】:
[0042]本发明公开了一种定量检测实际水样中铅离子浓度的硅基SERS芯片及其制备方 法,本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。特别需要指出的是,所有 类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明。本 发明的产品及方法已经通过较佳实施例进行了描述,相关人员明显能在不脱离本发明内 容、精神和范围内对本文所述的方法和应用进行改动或适当变更与组合,来实现和应用本 发明技术。
[0043]下面就本发明提供的一种定量检测实际水样中铅离子浓度的硅基SERS芯片及其 制备方法做进一步说明。
[0044] 实施例1:制备本发明所述硅基SERS芯片
[0045] (1)氢氟酸辅助刻蚀方法制备银纳米颗粒修饰的硅晶片
[0046] 取0.5cm2大小单晶硅片3-6片置于洁净烧杯中于超声仪中依次用去离子水、丙酮、 去离子水进行超声清洗15分钟,再放入40mL浓硫酸和过氧化氢(质量浓度:40%)混合溶液 (体积比= 3:1)中进一步清洗,然后再用去离子水清洗,得到干净的硅晶片。将清洗干净的 硅晶片置入氢氟酸溶液(质量浓度:5 % )中进行硅-氢化反应,缓慢振荡30分钟,得到表面覆 盖大量Si-H键的硅晶片。将经过上述处理后所得到的硅晶片,光面朝上,放入20mL硝酸银 (IM)和氢氟酸(质量浓度:40%)的混合溶液(体积比= 1:100)中,缓慢振荡反应60分钟,根 据电化学反应原理,银离子被Si-H键还原,在硅晶片表面原位生长上一层均匀的银纳米颗 粒,从而得到银纳米颗粒修饰的硅晶片,最后用氮气吹干表面。
[0047] (2)核(银)_卫星(金)纳米颗粒修饰的硅晶片的制备
[0048]根据标准的柠檬酸还原方法,在沸腾的50mL氯金酸溶液(质量浓度:0.01 % )中,加 入2mL柠檬酸钠溶液(质量浓度:1%),搅拌反应15分钟之后,得到金纳米颗粒。将所制备的 金纳米颗粒与溶解于磷酸盐缓冲液(P B S )中的P 〇 I y A 3 0 - P I D NA ( 5 ' -AAAAAAAAAAAAAAAAAAAAAAAAAAAAAATTTTTGATACAGCTAATTCAGAATCATTTTGTGGA-3 ')(浓度: 0.001M),恒温25°C,在恒温混匀仪上混合孵育16小时,然后向溶液中分3次每隔2小时加一 次IM盐溶液,使得盐溶液最终浓度为0.1M,过夜老化,得到PolyA30-Pl连接的金纳米颗粒。 将已制备好的银纳米颗粒修饰的硅晶片与溶解于磷酸盐缓冲液中的Poly A30-P2DNA(5'_ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAATTTTTTCCACAAAATGATTCTGAATTAGCTGTATC-3 ')(浓度: 0.001M),恒温25°C,在恒温混匀仪上混合孵育16小时,然后向溶液中分5次每隔2小时加一 次IM盐溶液,使得盐溶液最终浓度为0.1 M,过夜老化,得到PolyA30-P2连接的银纳米颗粒修 饰的硅晶片。将上述两步所得材料置于杂交缓冲液中,恒温37°C,在恒温混匀仪上混合孵育 24小时。通过DNA互补配对形成双链结构,用PBS冲洗几次,然后氮气吹干,得到核(银)-卫星 (金)纳米颗粒修饰的硅晶片。
[0049] (3)核(银)-卫星(金)纳米颗粒修饰的硅晶片的SERS芯片构建
[0050]将核(银)-卫星(金)纳米颗粒修饰的娃晶片放在离心管中,加入enzyme strand DNA(Cy5-17E-SH,5'-HS-(CH2)6-TTTCATCTCTTCTCCGAGCCGGTCGAAATAGTGAGT-Cy5-3')(浓度: 0.001M)的溶液,使得溶液浸没材料。将离心管置于恒温混匀仪中,350转每分钟,25°C恒温, 振荡反应24小时,使DNA末端巯基与金、银纳米粒子共价形成金-硫键和银-硫键,使DNA共价 连接到核(银)_卫星(金)纳米颗粒修饰的硅晶片上。然后向溶液中分5次每隔2小时加一次 IM盐溶液,使得盐溶液最终浓度为0 . IM,过夜老化。将材料取出,与溶解于杂交缓冲液中 substrate strand DNA(17DS,5'-ACTCACTATrAGGAAGAGATG-3',rA(ribonucleotide adenosine)代表核糖核苷酸中的碱基A)(浓度:0.001M),37°C恒温,在恒温混勾仪中混合孵 育24小时,通过DNA互补配对形成DNA双链结构,然后用PBS冲洗几次,氮气吹干,得到核 (银)-卫星(金)纳米颗粒修饰的硅晶片的SERS芯片。
[0051 ] 实施例2:制备本发明所述硅基SERS芯片
[0052] (1)氢氟酸辅助刻蚀方法制备银纳米颗粒修饰的硅晶片
[0053]取0.5cm2大小单晶硅片3-6片置于洁净烧杯中于超声仪中依次用去离子水、丙酮、 去离子水进行超声清洗15分钟,再放入40mL浓硫酸和过氧化氢(质量浓度:40%)混合溶液 (体积比= 3:1)中进一步清洗,然后再用去离子水清洗,得到干净的硅晶片。将清洗干净的 硅晶片置入氢氟酸溶液(质量浓度:5 % )中进行硅-氢化反应,缓慢振荡30分钟,得到表面覆 盖大量Si-H键的硅晶片。将经过上述处理后所得到的硅晶片,光面朝上,放入20mL硝酸银 (1M)和氢氟酸(质量浓度:40% )的混合溶液(体积比=1:50)中,缓慢振荡反应30分钟,根据 电化学反应原理,银离子被Si-H键还原,在硅晶片表面原位生长上一层均匀的银纳米颗粒, 从而得到银纳米颗粒修饰的硅晶片,最后用氮气吹干表面。
[0054] ⑵核(银)-卫星(金)纳米颗粒修饰的硅晶片的制备
[0055]根据标准的柠檬酸还原方法,在沸腾的50mL氯金酸溶液(质量浓度:0.01 % )中,加 入2mL柠檬酸钠溶液(质量浓度:1%),搅拌反应15分钟之后,得到金纳米颗粒。将所制备的 金纳米颗粒与溶解于磷酸盐缓冲液(P B S )中的P 〇 I y A 3 0 - P I D NA ( 5 ' -AAAAAAAAAAAAAAAAAAAAAAAAAAAAAATTTTTGATACAGCTAATTCAGAATCATTTTGTGGA-3 ')(浓度: 0.001M),恒温25°C,在恒温混匀仪上混合孵育16小时,然后向溶液中分3次每隔2小时加一 次IM盐溶液,使得盐溶液最终浓度为0.1M,过夜老化,得到PolyA30-Pl连接的金纳米颗粒。 将已制备好的银纳米颗粒修饰的硅晶片与溶解于磷酸盐缓冲液中的Poly A30-P2DNA(5'_ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAATTTTTTCCACAAAATGATTCTGAATTAGCTGTATC-3 ')(浓度: 0.001M),恒温25°C,在恒温混匀仪上混合孵育16小时,然后向溶液中分5次每隔2小时加一 次IM盐溶液,使得盐溶液最终浓度为0.1M,过夜老化,得到Poly A30-P2连接的银纳米颗粒 修饰的硅晶片。将上述两步所得材料置于杂交缓冲液中,恒温37°C,在恒温混匀仪上混合孵 育24小时。通过DNA互补配对形成双链结构,用PBS冲洗几次,然后氮气吹干,得到核(银)-卫 星(金)纳米颗粒修饰的硅晶片。
[0056] (3)核(银)_卫星(金)纳米颗粒修饰的硅晶片的SERS芯片构建
[0057]将核(银)-卫星(金)纳米颗粒修饰的娃晶片放在离心管中,加入enzyme strand DNA(Cy5-17E-SH,5'-HS-(CH2)6-TTTCATCTCTTCTCCGAGCCGGTCGAAATAGTGAGT-Cy5-3')(浓度: 0.001M)的溶液,使得溶液浸没材料。将离心管置于恒温混匀仪中,350转每分钟,25°C恒温, 振荡反应24小时,使DNA末端巯基与金、银纳米粒子共价形成金-硫键和银-硫键,使DNA共价 连接到核(银)_卫星(金)纳米颗粒修饰的硅晶片上。然后向溶液中分5次每隔2小时加一次 IM盐溶液,使得盐溶液最终浓度为O . IM,过夜老化。将材料取出,与溶解于杂交缓冲液中 substrate strand DNA(17DS,5'-ACTCACTATrAGGAAGAGATG-3',rA(ribonucleotide adenosine)代表核糖核苷酸中的碱基A)(浓度:O. OO1M),37°C恒温,在恒温混勾仪中混合孵 育24小时,通过DNA互补配对形成DNA双链结构,然后用PBS冲洗几次,氮气吹干,得到核 (银)-卫星(金)纳米颗粒修饰的硅晶片的SERS芯片。
[0058] 实施例3:制备本发明所述硅基SERS芯片
[0059] (1)氢氟酸辅助刻蚀方法制备银纳米颗粒修饰的硅晶片
[0060] 取0.5cm2大小单晶硅片3-6片置于洁净烧杯中于超声仪中依次用去离子水、丙酮、 去离子水进行超声清洗15分钟,再放入40mL浓硫酸和过氧化氢(质量浓度:40%)混合溶液 (体积比= 3:1)中进一步清洗,然后再用去离子水清洗,得到干净的硅晶片。将清洗干净的 硅晶片置入氢氟酸溶液(质量浓度:5 % )中进行硅-氢化反应,缓慢振荡30分钟,得到表面覆 盖大量Si-H键的硅晶片。将经过上述处理后所得到的硅晶片,光面朝上,放入20mL硝酸银 (IM)和氢氟酸(质量浓度:40%)的混合溶液(体积比= 1:100)中,缓慢振荡反应60分钟,根 据电化学反应原理,银离子被Si-H键还原,在硅晶片表面原位生长上一层均匀的银纳米颗 粒,从而得到银纳米颗粒修饰的硅晶片,最后用氮气吹干表面。
[0061 ] (2)核(银)-卫星(金)纳米颗粒修饰的硅晶片的制备
[0062]根据标准的柠檬酸还原方法,在沸腾的50mL氯金酸溶液(质量浓度:0.01 % )中,加 入2mL柠檬酸钠溶液(质量浓度:1%),搅拌反应15分钟之后,得到金纳米颗粒。将所制备的 金纳米颗粒与溶解于磷酸盐缓冲液(P B S )中的P 〇 I y A 3 0 - P I D NA ( 5 ' -AAAAAAAAAAAAAAAAAAAAAAAAAAAAAATTTTTGATACAGCTAATTCAGAATCATTTTGTGGA-3 ')(浓度: 0.01M),恒温25°C,在恒温混匀仪上混合孵育16小时,然后向溶液中分3次每隔2小时加一次 IM盐溶液,使得盐溶液最终浓度为0.1M,过夜老化,得到PolyA30-Pl连接的金纳米颗粒。将 已制备好的银纳米颗粒修饰的硅晶片与溶解于磷酸盐缓冲液中的Poly A30-P2DNA(5'_ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAATTTTTTCCACAAAATGATTCTGAATTAGCTGTATC-3 ')(浓度: 0.01M),恒温25°C,在恒温混匀仪上混合孵育16小时,然后向溶液中分5次每隔2小时加一次 IM盐溶液,使得盐溶液最终浓度为0.1 M,过夜老化,得到PolyA30-P2连接的银纳米颗粒修饰 的硅晶片。将上述两步所得材料置于杂交缓冲液中,恒温37°C,在恒温混匀仪上混合孵育24 小时。通过DNA互补配对形成双链结构,用PBS冲洗几次,然后氮气吹干,得到核(银)-卫星 (金)纳米颗粒修饰的硅晶片。
[0063] (3)核(银)_卫星(金)纳米颗粒修饰的硅晶片的SERS芯片构建
[0064]将核(银)-卫星(金)纳米颗粒修饰的娃晶片放在离心管中,加入enzyme strand DNA(Cy5-17E-SH,5'-HS-(CH2)6-TTTCATCTCTTCTCCGAGCCGGTCGAAATAGTGAGT-Cy5-3')(浓度: 0.001M)的溶液,使得溶液浸没材料。将离心管置于恒温混匀仪中,350转每分钟,25°C恒温, 振荡反应24小时,使DNA末端巯基与金、银纳米粒子共价形成金-硫键和银-硫键,使DNA共价 连接到核(银)_卫星(金)纳米颗粒修饰的硅晶片上。然后向溶液中分5次每隔2小时加一次 IM盐溶液,使得盐溶液最终浓度为0 . IM,过夜老化。将材料取出,与溶解于杂交缓冲液中 substrate strand DNA(17DS,5'-ACTCACTATrAGGAAGAGATG-3',rA(ribonucleotide adenosine)代表核糖核苷酸中的碱基A)(浓度:O. OO1M),37°C恒温,在恒温混勾仪中混合孵 育24小时,通过DNA互补配对形成DNA双链结构,然后用PBS冲洗几次,氮气吹干,得到核 (银)-卫星(金)纳米颗粒修饰的硅晶片的SERS芯片。
[0065] 实施例3:制备本发明所述硅基SERS芯片
[0066] (1)氢氟酸辅助刻蚀方法制备银纳米颗粒修饰的硅晶片
[0067] 取0.5cm2大小单晶硅片3-6片置于洁净烧杯中于超声仪中依次用去离子水、丙酮、 去离子水进行超声清洗15分钟,再放入40mL浓硫酸和过氧化氢(质量浓度:40%)混合溶液 (体积比= 3:1)中进一步清洗,然后再用去离子水清洗,得到干净的硅晶片。将清洗干净的 硅晶片置入氢氟酸溶液(质量浓度:5 % )中进行硅-氢化反应,缓慢振荡30分钟,得到表面覆 盖大量Si-H键的硅晶片。将经过上述处理后所得到的硅晶片,光面朝上,放入20mL硝酸银 (IM)和氢氟酸(质量浓度:40%)的混合溶液(体积比= 1:100)中,缓慢振荡反应60分钟,根 据电化学反应原理,银离子被Si-H键还原,在硅晶片表面原位生长上一层均匀的银纳米颗 粒,从而得到银纳米颗粒修饰的硅晶片,最后用氮气吹干表面。
[0068] (2)核(银)_卫星(金)纳米颗粒修饰的硅晶片的制备
[0069]根据标准的柠檬酸还原方法,在沸腾的50mL氯金酸溶液(质量浓度:0.01 % )中,加 入2mL柠檬酸钠溶液(质量浓度:1%),搅拌反应15分钟之后,得到金纳米颗粒。将所制备的 金纳米颗粒与溶解于磷酸盐缓冲液(P B S )中的P 〇 I y A 3 0 - P I D NA ( 5 ' -AAAAAAAAAAAAAAAAAAAAAAAAAAAAAATTTTTGATACAGCTAATTCAGAATCATTTTGTGGA-3 ')(浓度: 0.001M),恒温25°C,在恒温混匀仪上混合孵育16小时,然后向溶液中分3次每隔2小时加一 次IM盐溶液,使得盐溶液最终浓度为0.1M,过夜老化,得到Poly A30-P1连接的金纳米颗粒。 将已制备好的银纳米颗粒修饰的硅晶片与溶解于磷酸盐缓冲液中的Poly A30-P2DNA(5'_ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAATTTTTTCCACAAAATGATTCTGAATTAGCTGTATC-3 ')(浓度: 0.001M),恒温25°C,在恒温混匀仪上混合孵育16小时,然后向溶液中分5次每隔2小时加一 次IM盐溶液,使得盐溶液最终浓度为0.1M,过夜老化,得到Poly A30-P2连接的银纳米颗粒 修饰的硅晶片。将上述两步所得材料置于杂交缓冲液中,恒温37°C,在恒温混匀仪上混合孵 育24小时。通过DNA互补配对形成双链结构,用PBS冲洗几次,然后氮气吹干,得到核(银)-卫 星(金)纳米颗粒修饰的硅晶片。
[0070] (3)核(银)-卫星(金)纳米颗粒修饰的硅晶片的SERS芯片构建
[0071]将核(银)-卫星(金)纳米颗粒修饰的娃晶片放在离心管中,加入enzyme strand DNA(Cy5-17E-SH,5'-HS-(CH2)6-TTTCATCTCTTCTCCGAGCCGGTCGAAATAGTGAGT-Cy5-3')(浓度: 0.01M)的溶液,使得溶液浸没材料。将离心管置于恒温混匀仪中,350转每分钟,25°C恒温, 振荡反应24小时,使DNA末端巯基与金、银纳米粒子共价形成金-硫键和银-硫键,使DNA共价 连接到核(银)_卫星(金)纳米颗粒修饰的硅晶片上。然后向溶液中分5次每隔2小时加一次 IM盐溶液,使得盐溶液最终浓度为0 . IM,过夜老化。将材料取出,与溶解于杂交缓冲液中 substrate strand DNA(17DS,5'-ACTCACTATrAGGAAGAGATG-3',rA(ribonucleotide adenosine)代表核糖核苷酸中的碱基A)(浓度:0.01M),37°C恒温,在恒温混勾仪中混合孵 育24小时,通过DNA互补配对形成DNA双链结构,然后用PBS冲洗几次,氮气吹干,得到核 (银)-卫星(金)纳米颗粒修饰的硅晶片的SERS芯片。
[0072] 实施例5:制备本发明所述硅基SERS芯片
[0073] (I)氢氟酸辅助刻蚀方法制备银纳米颗粒修饰的硅晶片
[0074] 取0.5cm2大小单晶硅片3-6片置于洁净烧杯中于超声仪中依次用去离子水、丙酮、 去离子水进行超声清洗15分钟,再放入40mL浓硫酸和过氧化氢(质量浓度:40%)混合溶液 (体积比= 3:1)中进一步清洗,然后再用去离子水清洗,得到干净的硅晶片。将清洗干净的 硅晶片置入氢氟酸溶液(质量浓度:5 % )中进行硅-氢化反应,缓慢振荡30分钟,得到表面覆 盖大量Si-H键的硅晶片。将经过上述处理后所得到的硅晶片,光面朝上,放入20mL硝酸银 (IM)和氢氟酸(质量浓度:40%)的混合溶液(体积比= 1:100)中,缓慢振荡反应60分钟,根 据电化学反应原理,银离子被Si-H键还原,在硅晶片表面原位生长上一层均匀的银纳米颗 粒,从而得到银纳米颗粒修饰的硅晶片,最后用氮气吹干表面。
[0075] (2)核(银)_卫星(金)纳米颗粒修饰的硅晶片的制备
[0076]根据标准的柠檬酸还原方法,在沸腾的50mL氯金酸溶液(质量浓度:0.01 % )中,加 入2mL柠檬酸钠溶液(质量浓度:1%),搅拌反应15分钟之后,得到金纳米颗粒。将所制备的 金纳米颗粒与溶解于磷酸盐缓冲液(P B S )中的P 〇 I y A 3 0 - P I D NA ( 5 ' -AAAAAAAAAAAAAAAAAAAAAAAAAAAAAATTTTTGATACAGCTAATTCAGAATCATTTTGTGGA-3 ')(浓度: 0.001M),恒温25°C,在恒温混匀仪上混合孵育16小时,然后向溶液中分3次每隔2小时加一 次IM盐溶液,使得盐溶液最终浓度为0.5M,过夜老化,得到PolyA30-Pl连接的金纳米颗粒。 将已制备好的银纳米颗粒修饰的硅晶片与溶解于磷酸盐缓冲液中的Poly A30-P2DNA(5'_ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAATTTTTTCCACAAAATGATTCTGAATTAGCTGTATC-3 ')(浓度: 0.001M),恒温25°C,在恒温混匀仪上混合孵育16小时,然后向溶液中分5次每隔2小时加一 次IM盐溶液,使得盐溶液最终浓度为0.5M,过夜老化,得到PolyA30-P2连接的银纳米颗粒修 饰的硅晶片。将上述两步所得材料置于杂交缓冲液中,恒温37°C,在恒温混匀仪上混合孵育 24小时。通过DNA互补配对形成双链结构,用PBS冲洗几次,然后氮气吹干,得到核(银)-卫星 (金)纳米颗粒修饰的硅晶片。
[0077] (3)核(银)_卫星(金)纳米颗粒修饰的硅晶片的SERS芯片构建
[0078]将核(银)-卫星(金)纳米颗粒修饰的娃晶片放在离心管中,加入enzyme strand DNA(Cy5-17E-SH,5'-HS-(CH2)6-TTTCATCTCTTCTCCGAGCCGGTCGAAATAGTGAGT-Cy5-3')(浓度: 0.001M)的溶液,使得溶液浸没材料。将离心管置于恒温混匀仪中,350转每分钟,25°C恒温, 振荡反应24小时,使DNA末端巯基与金、银纳米粒子共价形成金-硫键和银-硫键,使DNA共价 连接到核(银)_卫星(金)纳米颗粒修饰的硅晶片上。然后向溶液中分5次每隔2小时加一次 IM盐溶液,使得盐溶液最终浓度为0.5M,过夜老化。将材料取出,与溶解于杂交缓冲液中 substrate strand DNA(17DS,5'-ACTCACTATrAGGAAGAGATG-3',rA(ribonucleotide adenosine)代表核糖核苷酸中的碱基A)(浓度:0.001M),37°C恒温,在恒温混勾仪中混合孵 育24小时,通过DNA互补配对形成DNA双链结构,然后用PBS冲洗几次,氮气吹干,得到核 (银)-卫星(金)纳米颗粒修饰的硅晶片的SERS芯片。
[0079] 实施例6:制备本发明所述硅基SERS芯片
[0080] (1)氢氟酸辅助刻蚀方法制备银纳米颗粒修饰的硅晶片
[0081] 取0.5cm2大小单晶硅片3-6片置于洁净烧杯中于超声仪中依次用去离子水、丙酮、 去离子水进行超声清洗15分钟,再放入40mL浓硫酸和过氧化氢(质量浓度:40%)混合溶液 (体积比= 3:1)中进一步清洗,然后再用去离子水清洗,得到干净的硅晶片。将清洗干净的 硅晶片置入氢氟酸溶液(质量浓度:5 % )中进行硅-氢化反应,缓慢振荡30分钟,得到表面覆 盖大量Si-H键的硅晶片。将经过上述处理后所得到的硅晶片,光面朝上,放入20mL硝酸银 (IM)和氢氟酸(质量浓度:40%)的混合溶液(体积比= 1:100)中,缓慢振荡反应60分钟,根 据电化学反应原理,银离子被Si-H键还原,在硅晶片表面原位生长上一层均匀的银纳米颗 粒,从而得到银纳米颗粒修饰的硅晶片,最后用氮气吹干表面。
[0082] (2)核(银)_卫星(金)纳米颗粒修饰的硅晶片的制备
[0083]根据标准的柠檬酸还原方法,在沸腾的50mL氯金酸溶液(质量浓度:0.01 % )中,加 入2mL柠檬酸钠溶液(质量浓度:1%),搅拌反应15分钟之后,得到金纳米颗粒。将所制备的 金纳米颗粒与溶解于磷酸盐缓冲液(P B S )中的P 〇 I y A 3 0 - P I D NA ( 5 ' -AAAAAAAAAAAAAAAAAAAAAAAAAAAAAATTTTTGATACAGCTAATTCAGAATCATTTTGTGGA-3 ')(浓度: 0.001M),恒温25°C,在恒温混匀仪上混合孵育16小时,然后向溶液中分3次每隔2小时加一 次IM盐溶液,使得盐溶液最终浓度为0.1M,过夜老化,得到PolyA30-Pl连接的金纳米颗粒。 将已制备好的银纳米颗粒修饰的硅晶片与溶解于磷酸盐缓冲液中的Poly A30-P2DNA(5'_ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAATTTTTTCCACAAAATGATTCTGAATTAGCTGTATC-3 ')(浓度: 0.001M),恒温25°C,在恒温混匀仪上混合孵育16小时,然后向溶液中分5次每隔2小时加一 次IM盐溶液,使得盐溶液最终浓度为0.1M,过夜老化,得到Poly A30-P2连接的银纳米颗粒 修饰的硅晶片。将上述两步所得材料置于杂交缓冲液中,恒温37°C,在恒温混匀仪上混合孵 育24小时。通过DNA互补配对形成双链结构,用PBS冲洗几次,然后氮气吹干,得到核(银)-卫 星(金)纳米颗粒修饰的硅晶片。
[0084] (3)核(银)_卫星(金)纳米颗粒修饰的硅晶片的SERS芯片构建
[0085]将核(银)-卫星(金)纳米颗粒修饰的娃晶片放在离心管中,加入enzyme strand DNA(Cy5-17E-SH,5'-HS-(CH2)6-TTTCATCTCTTCTCCGAGCCGGTCGAAATAGTGAGT-Cy5-3')(浓度: 0.001M)的溶液,使得溶液浸没材料。将离心管置于恒温混匀仪中,500转每分钟,25°C恒温, 振荡反应18小时,使DNA末端巯基与金、银纳米粒子共价形成金-硫键和银-硫键,使DNA共价 连接到核(银)_卫星(金)纳米颗粒修饰的硅晶片上。然后向溶液中分5次每隔2小时加一次 IM盐溶液,使得盐溶液最终浓度为0 . IM,过夜老化。将材料取出,与溶解于杂交缓冲液中 substrate strand DNA(17DS,5'-ACTCACTATrAGGAAGAGATG-3',rA(ribonucleotide adenosine)代表核糖核苷酸中的碱基A)(浓度:0.001M),37°C恒温,在恒温混勾仪中混合孵 育18小时,通过DNA互补配对形成DNA双链结构,然后用PBS冲洗几次,氮气吹干,得到核 (银)-卫星(金)纳米颗粒修饰的硅晶片的SERS芯片。
[0086]实施例7:本发明所述芯片对不同浓度铅离子的SERS试验
[0087]将制备好的本发明芯片于室温下,浸泡在IOOnM铅离子溶液中,反应70分钟后,取 出芯片,随机选择40个点做mapping实验,由图3中a图可知拉曼强度较为均匀,RSD值小于 12%,表明了该芯片具有较好的重现性。
[0088] 将制备好的本发明芯片于室温下,分别浸泡在0、ΙΟρΜ、ΙΟΟρΜ、ΙηΜ、ΙΟηΜ、ΙΟΟηΜ、1μ M铅离子溶液中,反应70分钟后,取出芯片,进行拉曼实验,由图3中b图可知从IOpM到ΙμΜ铅 离子的拉曼光谱图,随着铅离子浓度增加拉曼强度也在增加,由图3中c图可知铅离子的对 数浓度与归一化的拉曼强度存在较好的线性关系(R 2 = O.997),实验结果表明该芯片可有 效检测铅离子浓度低至8.9ρΜ,灵敏度极高。
[0089] 实施例8:本发明所述芯片对同一浓度不同离子的SERS试验
[0090] 将制备好的芯片于室温下分别浸泡在InM的各种离子以及各种离子的混合溶液 中,反应70分钟后,取出芯片,分别进行拉曼实验,由图4中的a图可知铅离子和含有铅离子 的混合溶液相比较其他离子溶液的拉曼光谱具有明显的增强,从图4中的b图可以看出相应 的拉曼峰1366CHT 1的强度可定量的比较不同离子之间的差别,结果显示该芯片具有较好的 特异性可以准确识别实际体系中的铅离子。
[0091] 实施例9:本发明所述芯片的重建以及循环使用试验
[0092] 1、本发明所述芯片的重建
[0093]在一次检测后,用PBS清洗芯片以除去残余的DNA和铅离子,将材料取出,与溶解于 杂交缓冲液中substrate strand DNA(17DS,5'-ACTCACTATrAGGAAGAGATG-3',rA (ribonucleotide adenosine)代表核糖核苷酸中的碱基A)(浓度:0.001M),37°C恒温,在恒 温混匀仪中混合孵育24小时,通过DNA互补配对形成DNA双链结构,然后用PBS冲洗几次,氮 气吹干,重建得到核(银)_卫星(金)纳米颗粒修饰的硅晶片的SERS芯片(参见图5中a图)。
[0094] 2、本发明所述芯片的循环使用试验
[0095]将重建的芯片,于室温下,浸泡在InM的铅离子溶液中,反应70分钟后,取出芯片, 进行拉曼实验,然后循环使用,每一次重建之后拉曼强度都会明显的增强(每次重建后拉曼 强度都会明显增强指的是刚重建后未使用的芯片的拉曼强度没有或者很微弱,当加入铅离 子之后拉曼信号会明显的增强,参见图5中b图),为了定量的比较,由图5中的c图中拉曼峰 1366CHT1的强度计算得知三次循环后强度仅减弱了 11%,结果表明本发明芯片易于重建,可 多次使用,可循环性高,大大降低制备成本。
[0096]以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人 员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应 视为本发明的保护范围。
【主权项】
1. 一种定量检测实际水样中铅离子浓度的硅基SERS芯片,其特征在于,由银纳米颗粒 修饰的硅晶片、金纳米颗粒、SEQIDN0 :1-2和SEQIDN0:4所示核苷酸序列,以及在SEQID NO: 3所不核昔酸序列5'端偶联有疏基、3'端偶联有焚光染料的序列片段组成; 其中,银纳米颗粒修饰的娃晶片与SEQ ID NO: 1所示核苷酸序列连接,金纳米颗粒与 SEQ ID NO: 2所示核苷酸序列连接,SEQ ID NO: 1-2所示核苷酸序列彼此形成互补双链连 接,在SEQ ID N0:3所示核苷酸序列5'端偶联有巯基、3'端偶联有荧光染料的序列片段通过 末端巯基与金、银纳米颗粒共价连接,SEQ ID N0:4所示核苷酸序列与SEQ ID NO: 3所示核 苷酸序列彼此形成互补双链连接。2. 根据权利要求1所述硅基SERS芯片,其特征在于,所述序列片段为在SEQ ID N0:3所 示核苷酸序列5'端偶联有HS-(CH2)6-、3'端偶联有Cy5荧光染料的序列片段。3. 根据权利要求1所述硅基SERS芯片,其特征在于,所述硅晶片为0.01~20 Ω处一勺口型 或η型硅晶片。4. 权利要求1所述硅基SERS芯片的制备方法,其特征在于,包括: 步骤1、制备银纳米颗粒修饰的硅晶片以及金纳米颗粒; 步骤2、将已制备好的银纳米颗粒修饰的硅晶片与溶解于磷酸盐缓冲液中的SEQ ID NO: 1所示核苷酸序列恒温混合孵育,然后向其中加入盐溶液,过夜老化,得到SEQ ID NO: 1 所示核苷酸序列连接的银纳米颗粒修饰的硅晶片; 将所制备的金纳米颗粒与溶解于磷酸盐缓冲液中的SEQ ID N0:2所示核苷酸序列恒温 混合孵育,然后向溶液中加入盐溶液,过夜老化,得到SEQ ID N0:2所示核苷酸序列连接的 金纳米颗粒; 步骤3、将步骤2所得硅晶片和金纳米颗粒置于杂交缓冲液中恒温混合孵育,通过SEQ ID NO: 1-2所示核苷酸序列互补配对形成双链结构,用PBS冲洗,然后氮气吹干,得到核 (银)-卫星(金)纳米颗粒修饰的硅晶片; 步骤4、将核(银)_卫星(金)纳米颗粒修饰的硅晶片与在SEQ ID N0:3所示核苷酸序列 5'端偶联有巯基、3'端偶联有荧光染料的序列片段恒温混匀并振荡反应,使SEQ ID N0:3所 示核苷酸序列末端巯基与金、银纳米粒子共价连接形成金-硫键和银-硫键,然后向溶液中 加入盐溶液,过夜老化; 将老化后的材料取出,与溶解于杂交缓冲液中SEQ ID N0:4所示核苷酸序列恒温混合 孵育,通过DNA互补配对形成DNA双链结构,然后用PBS冲洗,氮气吹干,得到所述硅基SERS芯 片。5. 根据权利要求4所述制备方法,其特征在于,所述银纳米颗粒修饰的硅晶片由以下方 法制备获得: 将单晶硅片依次用去离子水、丙酮、去离子水进行超声清洗,然后再用浓硫酸和过氧化 氢混合溶液清洗; 清洗后的单晶硅片加入到氢氟酸溶液中进行硅-氢化反应,得到表面覆盖Si-H键的硅 晶片,然后光面朝上,放入硝酸银和氢氟酸的混合溶液中,缓慢振荡反应,银离子被Si-H键 还原,在硅晶片表面原位生长上一层均匀的银纳米颗粒,得到银纳米颗粒修饰的硅晶片,最 后用氮气吹干表面。6. 根据权利要求5所述制备方法,其特征在于,所述的过氧化氢质量浓度为40%,浓硫 酸和40 %过氧化氢体积比为1: (0.01~100)。7. 根据权利要求5所述制备方法,其特征在于,所述氢氟酸溶液中氢氟酸的质量浓度为 1 ~40%〇8. 根据权利要求5所述制备方法,其特征在于,所述硅-氢化反应的时间为1~60分钟。9. 根据权利要求5所述制备方法,其特征在于,所述硝酸银和氢氟酸的混合溶液由1M的 硝酸银溶液和质量浓度为40%的氢氟酸溶液按体积比为1:(0.01~100)配制而成。10. 根据权利要求5所述制备方法,其特征在于,所述振荡反应时间为1~60分钟。11. 根据权利要求4所述制备方法,其特征在于,所述纳米金颗粒通过柠檬酸还原法制 备获得。12. 根据权利要求4所述制备方法,其特征在于,SEQ ID NO: 1-2所示核苷酸序列浓度均 为0.001~1M。13. 根据权利要求4所述制备方法,其特征在于,步骤2所述恒温混合孵育为在25°C孵育 16小时。14. 根据权利要求4所述制备方法,其特征在于,步骤2和步骤4所述加入盐溶液为将初 始浓度为1M的盐溶液,每隔两小时分3-5次加入,盐溶液最终浓度为0.01~1M。15. 根据权利要求4所述制备方法,其特征在于,步骤3所述恒温混合孵育为在37°C孵育 24小时。16. 根据权利要求4所述制备方法,其特征在于,步骤4所述振荡反应为在100~600转每 分钟、25 °C下反应1~24小时。17. 根据权利要求4所述制备方法,其特征在于,步骤4所述恒温混合孵育为在37°C孵育 1~24小时。18. 根据权利要求4所述制备方法,其特征在于,步骤4中在SEQ ID NO: 3所示核苷酸序 列5'端偶联有巯基、3'端偶联有荧光染料的序列片段、SEQ ID N0:4所示核苷酸序列浓度均 为0.001~1M。
【文档编号】G01N21/65GK105842225SQ201610179491
【公开日】2016年8月10日
【申请日】2016年3月28日
【发明人】何耀, 史宇, 王后禹
【申请人】苏州大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1