冷轧带钢再结晶温度的快速检测方法

文档序号:10722427阅读:602来源:国知局
冷轧带钢再结晶温度的快速检测方法
【专利摘要】本发明公开了一种冷轧带钢再结晶温度的快速检测方法,其将冷轧带钢的样品放置在变温硬度计装置中加热炉的炉膛内;用氮气或惰性气体排出加热炉的炉膛内的空气;对样品加热至测试温度点、保温;利用变温硬度计装置中压头孔上的耐热压头,对样品每个测试温度点的硬度值进行测量;根据测量的硬度值绘制硬度值与测试温度的关系曲线,从而确定所述冷轧带钢的再结晶温度。本方法只需要一块试样,就可完成不同温度点的硬度值测量,并确定出冷轧带钢的再结晶温度,使常规方法需要1~2天完成的工作任务,大幅度缩短至1~2小时即可完成;具有制样数量少,设备操作方便,确定再结晶温度快捷,运行成本低廉等诸多特点。
【专利说明】
冷轧带钢再结晶温度的快速检测方法
技术领域
[0001]本发明属于金属材料加工和金属热处理技术领域,尤其是一种冷乳带钢再结晶温度的快速检测方法。
【背景技术】
[0002]冷乳金属材料内部储存了大量畸变能,在热力学上处于非稳定状态。冷乳带钢被加热到一定温度后,金属原子获得了足够的活动能力,克服亚稳态的和稳态之间的位皇,金属在冷变形畸变组织上,通过无畸变晶核和可移动的大角度晶界的形成,及随后晶界的移动,产生无畸变的等轴状新晶粒组织,同时伴随材料的性能恢复到完全软化的状态,这一过程称之为再结晶。
[0003]冷乳带钢的再结晶过程,在工业领域具有非常广泛的应用。通过调节冷乳带钢的乳制压下率以及退火工艺制度,达到操控再结晶温度的目的,从而获得不同的力学行为,满足从浅深冲,到深冲,再到超深冲,不同冲压件对冷乳带钢力学性能的特殊要求。正因为此,确定冷乳带钢的再结晶温度,是优化工业生产过程中相关工艺参数的关键,是降低生产成本,提高冷乳带钢综合力学性能的关键。
[0004]就再结晶温度的测试方法来说,X射线衍射(XRD)技术(含变温XRD技术),热分析技术,显微组织金相分析技术以及硬度测试技术等,均可以表征冷乳带钢的再结晶温度。但相对于工业企业,对检测过程的时效性要求,设备操作过程的方便性要求,测试结果的直观性要求而言,(I)XRD分析方法的缺点在于,分析测试时间长,且不直观;(2)热分析技术的缺点在于设备昂贵,操作不方便,且所需的测试样品尺寸小,不能反映整体性特征;(3)金相分析的缺点在于耗时,费力,效率低,成本高。工业生产实践长期积累的经验指出,检测冷乳带钢的硬度数值与随温度的变化关系,是既直接又方便的方法。
[0005]关小军等人在《金属热处理》2003年第28卷第2期31-33页《不同冷乳状态的ELC-BH钢板连续退火再结晶规律》之中,提供了一种在不同退火温度,不同退火时间条件下,利用表面硬度方法检测超低碳高强度烘烤硬化钢板(ELC-BH)再结晶温度的方法。
[0006]张黄强等人在《武汉科技大学学报:自然科学版》2007年第6期574-576页《CSP冷乳薄板再结晶试验研究》之中,提供了一种CSP冷乳薄板在300°C、400°C、450°C、475°C、500°C、525 °C、550 °C、575 °C、600 °C、625 °C、650 °C、680 °C 不同加热温度条件下保温0.5h,再进行硬度随加热温度的变化曲线,确定再结晶温度的方法。
[0007]尹红国等在《矿冶工程》2008年第28卷第4期《退火工艺对SPCC冷乳薄板组织及性能的影响》一文中,提供了一种利用箱式电阻炉模拟SPCC冷乳板退火工艺制度,测定硬度值随温度的变化关系,确定再结晶温度的方法。
[0008]苏琪琦等人在《上海金属》2009年第2期第53-56页《冷乳压下率对高强度IF钢再结晶温度和力学性能的影响》一文中,提供了一种利用盐浴炉加热IF冷乳带钢,模拟连续退火工艺过程,测试硬度值随温度的变化关系,确定再结晶温度的方法。
[0009]孙中华等人在《河北冶金》2013年第2期第1-7页《SPCC薄板冷乳及连续退火工艺研究》一文中,利用连续退火模拟试验机,在氮气气氛下,对SPCC冷乳带钢进行不同温度的退火处理,测试硬度值随温度的变化关系,确定再结晶温度的方法。
[0010]孙中华等人在《河北冶金》2015年第6期第19-23页《再结晶温度对Fe-36Ni因瓦合金冷乳薄板组织和性能的影响》一文中,利用连续退火模拟试验机,对因瓦合金冷乳带钢进行不同温度的退火处理,测试硬度值随温度的变化关系,确定再结晶温度的方法。
[0011]申请号为201210185480.4的《一种测定冲压用钢再结晶温度的方法》专利申请,提供了一种采用实验室小炉实验模拟罩式退火工艺,通过测定硬度值随退火温度的变化关系,确定冲压用钢再结晶温度的方法;特别强调,对每个退火温度下,试样的一个乳面进行磨制,以便除去氧化铁皮,再进行硬度测试。
[0012]由上述分析可知,利用常规的硬度测试方法,其整个测试过程需要在每个温度点准备3?5个测试样品;并对样品进行退火处理,快速冷却至室温,磨制去除表面氧化铁皮,再进行硬度测量;对每个温度点样品的硬度值取平均值,再绘制硬度平均值随测试温度的变化关系;从而确定冷乳带钢的再结晶温度。由此可见,常规的冷乳带钢再结晶温度测试方法,具有测试流程复杂,制样数量多,操作时间长,运行成本高等诸多的缺点。长期以来,这个问题始终没有合适的解决方法。

【发明内容】

[0013]本发明要解决的技术问题是提供一种冷乳带钢再结晶温度的快速检测方法。
[0014]为解决上述技术问题,本发明所采取的技术方案是:将冷乳带钢的样品放置在变温硬度计装置中加热炉的炉膛内;用氮气或惰性气体排出加热炉的炉膛内的空气;对样品加热至测试温度点、保温;利用变温硬度计装置中压头孔上的耐热压头,对样品每个测试温度点的硬度值进行测量;根据测量的硬度值绘制硬度值与测试温度的关系曲线,从而确定所述冷乳带钢的再结晶温度。
[0015]本发明所述冷乳带钢的样品加工成长条状,放置在顶部带嵌槽的金属块内,金属块放置在顶部带凹槽的样品台上,样品台置于加热炉的炉膛内。
[0016]本发明所述加热炉炉膛内的空气排出至氧含量低于lOOppm。
[0017]本发明所述加热温度为400?700°C,保温时间为3?5min。
[0018]本发明每个测试温度点的硬度值测量3?5次。
[0019]采用上述技术方案所产生的有益效果在于:本发明只需要一块试样,就可完成不同温度点的硬度值测量,并确定出冷乳带钢的再结晶温度,使常规方法需要I?2天完成的工作任务,大幅度缩短至I?2小时即可完成;具有制样数量少,设备操作方便,确定再结晶温度快捷,运行成本低廉等诸多特点。
【附图说明】
[0020]下面结合附图和【具体实施方式】对本发明作进一步详细的说明。
[0021 ]图1是实施例1中SPCC冷乳薄板的硬度值与测试温度的关系曲线;
图2是实施例2中MR钢冷乳薄板的硬度值与测试温度的关系曲线;
图3是实施例3中因瓦合金冷乳薄板的硬度值与测试温度的关系曲线;
图4是常规方法检测SPCC冷乳薄板的硬度值与测试温度的关系曲线; 图5是常规方法检测因瓦合金冷乳薄板的硬度值与测试温度的关系曲线;
图6是实施例1多次检测SPCC冷乳薄板的硬度值与测试温度的关系曲线。
【具体实施方式】
[0022]本冷乳带钢再结晶温度的快速检测方法适用于SPCC冷乳薄钢板、MR钢冷乳薄钢板、Fe-36Ni因瓦合金冷乳薄钢板、IF钢冷乳薄钢板、TRIP钢冷乳薄钢板、TWIP钢冷乳薄钢板、BH钢冷乳薄钢板等,可采用市售带有加热炉的高温硬度计,例如阿基米德公司的高温硬度计、威尔逊公司的高温硬度计,工艺步骤如下所述:
(I)将测试冷乳带钢加工成1mm(宽)X25mm(长)X0.3mm(厚)的样品,并放入顶部带嵌槽的金属块内,露出样品的检测面;带嵌槽的金属块采用高温合金材料,尺寸为12mm(宽)X30mm(长)X5mm(高),嵌槽尺寸为Ilmm(宽)X30mm(长)X0.4mm(高),设置嵌槽的目的是为防止加热过程中冷乳薄板发生严重变形;这样既能防止冷乳带钢加热过程中的变形,又有利于对样品进行硬度测试。
[0023]将金属块放置于顶部带凹槽的样品台上,样品台置于变温硬度计装置自带的加热炉炉膛内;所述样品台是指直径为40mm、厚度为5mm的高温合金圆盘,凹槽开在圆盘顶部的中心位置,尺寸为12.5mm(宽)X30mm(长)X Imm(高);样品台及凹槽对带嵌槽的金属块起到定位作用,防止金属块移动过程中发生位置偏移。
[0024](2)盖上加热炉上盖,通入高纯氮气或惰性气体至加热炉炉膛内的氧含量低于10ppm时,对炉膛加热;通入的氮气纯度为99.99%,当检测的氧含量小于10ppm时,加热过程中对试样表面不会形成影响测试结果的氧化层;而且,随着通气时间延长,炉膛内的氧含量会持续降低,对测试结果不会有任何负面影响。
[0025](3)对样品的加热温度范围为再结晶温度范围,即开始再结晶温度至完全再结晶温度,冷乳带钢一般为400?700°C ;在每个测试温度点保温3?5min,再进行测量硬度值,主要是保证有充足的时间,使冷乳带钢发生再结晶,显微组织中出现明显的再结晶组织。
[0026](4)利用安装于变温硬度计压头孔的耐热压头,对每个测试温度点保温后的样品硬度值进行测量,每个温度点的测量次数为3?5次;耐热压头的材料是一种专门用于硬度测试的蓝宝石,在1500°C以下仍具有稳定的高硬度;蓝宝石安装在高温合金压杆上,这种高温合金压杆可保证,在700°C以下温度测试过程中,不会发生压杆软化现象,保证硬度值测量的准确性。
[0027](5)为避免试样表面的硬度测试点重合或距离太近,每次硬度值测量完毕,利用加热炉自带的水平移动杆,推动金属块向前移动,即每测量一次硬度值向前推一次金属块。
[0028](6)在变温硬度计的数显显示屏上读取每次测量的结果,计算每个测试温度点的平均硬度值,绘制每个温度点测量的平均硬度值与测试温度的关系曲线,从而确定所述冷乳带钢的再结晶温度。冷却炉膛至室温后,即可取出样品。
[0029]实施例1:本冷乳带钢再结晶温度的快速检测方法采用下述具体工艺。
[0030](I)按上述尺寸,将SPCC冷乳带钢样品置于金属块的嵌槽内,金属块放置于样品台上,样品台置于变温硬度计装置自带的加热炉的炉膛内。
[0031 ] (2)加热炉的炉膛通入高纯氮气5min,检测到氧含量低于10ppm;通电,对炉膛加热。
[0032](3)样品的测试温度点分别为4000C、500 °C、600°C、700 °C,保温时间均为3min ;对每个测试温度点的样品硬度值测量4次;每次硬度值测量完毕,利用加热炉自带的水平移动杆,推动金属块向前移动,进行下一次的测量。
[0033](4)读取测量的结果,计算平均值,绘制平均硬度值与测试温度的关系曲线,确定所述SPCC冷乳带钢的再结晶温度;冷却炉膛至室温,取出样品。
[0034]本实施例测定的SPCC冷乳带钢的平均硬度值与测试温度的关系曲线如附图1所示,由图1可见,该SPCC冷乳带钢的再结晶温度为6150C。采用常规检测本实施例中的SPCC7令乳带钢样品,平均硬度值与测试温度的关系曲线如附图4所示,由图4可见,本检测方法与常规检测检测的再结晶温度一致,检测结果准确。采用上述SPCC冷乳带钢样品及工艺重新检测三次,检测得到的平均硬度值与测试温度的关系曲线如附图6所示,由图6可见,本方法检测结果精确。
[0035]所述常规的硬度测试方法为:整个测试过程需要在每个温度点准备3?5个测试样品;并对样品进行退火处理,快速冷却至室温,磨制去除表面氧化铁皮,再进行硬度测量;对每个温度点样品的硬度值取平均值,再绘制硬度平均值随测试温度的变化关系;从而确定冷乳带钢的再结晶温度。
[0036]实施例2:本冷乳带钢再结晶温度的快速检测方法采用下述具体工艺。
[0037](I)按上述尺寸,将MR钢冷乳带钢样品置于金属块的嵌槽内,金属块放置于样品台上,样品台置于变温硬度计装置自带的加热炉的炉膛内。
[0038](2)加热炉的炉膛通入高纯氮气1min,检测到氧含量低于10ppm;通电,对炉膛加热。
[0039](3)样品的测试温度点分别为500 0C、550 °C、600 °C、700 °C,保温时间均为4min ;对每个测试温度点的样品硬度值测量5次;每次硬度值测量完毕,利用加热炉自带的水平移动杆,推动金属块向前移动,进行下一次的测量。
[0040](4)读取测量的结果,计算平均值,绘制平均硬度值与测试温度的关系曲线,确定所述MR钢冷乳带钢的再结晶温度;冷却炉膛至室温,取出样品。
[0041]本实施例测定的MR钢冷乳带钢的平均硬度值与测试温度的关系曲线如附图2所示,由图2可见,该MR钢冷乳带钢的再结晶温度为650°C。
[0042]实施例3:本冷乳带钢再结晶温度的快速检测方法采用下述具体工艺。
[0043](I)按上述尺寸,将Fe_36Ni因瓦合金冷乳带钢样品置于金属块的嵌槽内,金属块放置于样品台上,样品台置于变温硬度计装置自带的加热炉的炉膛内。
[0044](2)加热炉的炉膛通入高纯氮气8min,检测到氧含量低于10ppm;通电,对炉膛加热。
[0045](3)样品的测试温度点分别为500 0C、550 °C、600 °C、650 °C、700 °C,保温时间均为5min;对每个测试温度点的样品硬度值测量3次;每次硬度值测量完毕,利用加热炉自带的水平移动杆,推动金属块向前移动,进行下一次的测量。
[0046](4)读取测量的结果,计算平均值,绘制平均硬度值与测试温度的关系曲线,确定所述Fe_36Ni因瓦合金冷乳带钢的再结晶温度;冷却炉膛至室温,取出样品。
[0047]本实施例测定的Fe_36Ni因瓦合金冷乳带钢的平均硬度值与测试温度的关系曲线如附图3所示,由图3可见,该Fe-36Ni因瓦合金冷乳带钢的再结晶温度为623°C。采用常规检测本实施例中的Fe-36Ni因瓦合金冷乳带钢样品,平均硬度值与测试温度的关系曲线如附图5所示,由图5可见,本检测方法与常规检测检测的再结晶温度一致。
[0048]实施例4:本冷乳带钢再结晶温度的快速检测方法采用下述具体工艺。
[0049]检测SPCC冷乳带钢样品,本实施例与实施例1检测工艺的区别在于:步骤(2)中通气时间为7min,步骤(3 )中每个测试温度点保温时间为5min、测量3次。本实施例测定的SPCC冷乳带钢的再结晶温度为613°C。
[0050]实施例5:本冷乳带钢再结晶温度的快速检测方法采用下述具体工艺。
[0051 ]检测MR钢冷乳带钢样品,本实施例与实施例2检测工艺的区别在于:步骤(2)中通气时间为6min,步骤(3)中每个测试温度点保温时间为4min、测量4次。本实施例测定的MR钢冷乳带钢的再结晶温度为646°C。
[0052]实施例6:本冷乳带钢再结晶温度的快速检测方法采用下述具体工艺。
[0053]检测Fe_36Ni因瓦合金冷乳带钢样品,本实施例与实施例3区别在于,步骤(2)中通气时间为9min,步骤(3 )中每个测试温度点保温时间为3min、测量5次。本实施例测定的Fe-36Ni因瓦合金冷乳带钢的再结晶温度为620°C。
【主权项】
1.一种冷乳带钢再结晶温度的快速检测方法,其特征在于:将冷乳带钢的样品放置在变温硬度计装置中加热炉的炉膛内;用氮气或惰性气体排出加热炉的炉膛内的空气;对样品加热至测试温度点、保温;利用变温硬度计装置中压头孔上的耐热压头,对样品每个测试温度点的硬度值进行测量;根据测量的硬度值绘制硬度值与测试温度的关系曲线,从而确定所述冷乳带钢的再结晶温度。2.根据权利要求1所述的冷乳带钢再结晶温度的快速检测方法,其特征在于:所述冷乳带钢的样品加工成长条状,放置在顶部带嵌槽的金属块内,金属块放置在顶部带凹槽的样品台上,样品台置于加热炉的炉膛内。3.根据权利要求1所述的冷乳带钢再结晶温度的快速检测方法,其特征在于:所述加热炉炉膛内的空气排出至氧含量低于lOOppm。4.根据权利要求1所述的冷乳带钢再结晶温度的快速检测方法,其特征在于:所述加热温度为400?700 °C,保温时间为3?5min。5.根据权利要求1一 4任意一项所述的冷乳带钢再结晶温度的快速检测方法,其特征在于:每个测试温度点的硬度值测量3?5次。
【文档编号】C21D8/02GK106093103SQ201610425022
【公开日】2016年11月9日
【申请日】2016年6月15日
【发明人】孙中华, 张雲飞, 刘需, 陈文 , 韩彦光
【申请人】河北钢铁股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1