黑色光伏器件的制作方法

文档序号:29459568发布日期:2022-04-01 09:01阅读:137来源:国知局
黑色光伏器件的制作方法
本发明涉及例如用于驱动电子钟表或电子器件如计算器或用于更大规模太阳能发电的光伏(PV)器件的
技术领域
。现有技术状况基于薄膜非晶硅的典型太阳能电池表现出红色/茄紫色,因为它们反射波长长于大约650nm的光。这通常被认为不美观,因此对某些应用不理想,尽管它们具有优异的效率和开路电压,特别是在室内照明条件下(LED、管形灯、白炽灯泡等)。在电力或电子钟表的特定情况下,深黑色表盘是理想的,以使时间显示的易读性最大化,无论其包含传统指针还是数字显示。在电力或电子钟表的情况下,常规薄膜太阳能电池可集成到表盘中以驱动钟表和将其电池再充电,但是该电池的红色/茄紫色通常不理想,从而限制这样的钟表的市场渗透率。结晶硅太阳能电池(多晶、单晶、微晶等)具有比非晶硅电池黑的颜色,但由于它们的吸收光谱,在室内照明条件下较低效,因此较不适合室内应用,如钟表。对这一问题的典型解决方案是至少部分遮挡非晶太阳能电池,例如通过用常规黑漆涂布或通过位于太阳能电池上方的半透明表盘。关于后一种情况,文献JP2000131463和JP2002148360公开了其中位于太阳能电池前面的正面表盘包含开孔(例如充当指数)以允许少量光到达被表盘遮挡的太阳能电池的布置。这使得表盘的主体能够照传统整饰和根据制表商的需求着色,但严重限制了到达下方太阳能电池的光量。因此,发电量低,这将此类布置的适用性局限于极低功耗的手表。本发明的一个目标因此是至少部分克服现有技术的上述缺点。发明公开更具体地,本发明涉及一种光伏器件,其包含:-导电正面接触层,例如包含透明导电氧化物或类似物;-导电背面接触层,例如包含金属层、透明导电氧化物或类似物,所述背面接触层意图比所述正面接触层更远离入射光源,以界定该器件的“正面”和“背面”侧;-基于半导体的PIN结,其包含夹在P型半导体层和N型半导体层之间的基本非晶的本征硅层(其可以是氢化a-Si:H或未氢化a-Si)。PIN结可以任一取向布置,即P型层或N型层最靠近该器件的正面侧。根据本发明,最靠近所述背面接触层的所述PIN结的层(即在这三个层中,最靠近背面接触层的层)是包含至少2摩尔%锗的硅-锗合金层。Si-Ge合金特别强地吸收在红色波长范围内,即在基于非晶硅的器件通常透射的波长范围内的可见光。这导致该PV器件的深黑色,以补偿非晶硅PV器件的通常红色、茄紫色或紫色,以使其对集成到手表(例如当用作表盘或集成到表圈或手表的其它可见部件中时)、计算器、智能手机和其它便携式电子器件中时的不显眼用途特别有用,而不需要被部分遮挡以保持高品质的美观性。由于非晶电池在暴露于(来自LED’s、荧光灯管等)的典型室内照明时比结晶电池更高效并具有更高开路电压,这与现有技术的结晶电池解决方案相比能够显著增加黑色光伏器件生成的电力的量。有利地,所述硅-锗合金包含至少10摩尔%锗,更优选15%至25%锗,更优选基本20%锗。有利地,该器件进一步包含位于所述正面接触层的光入射侧的基本透明减反射层(如氮氧化硅的层)以助于减少镜面反射。这种减反射层可包含多层构造。有利地,所述减反射层表现出低于所述正面接触层的折射率的折射率,以进一步有助于减少镜面反射。有利地,面向正面接触层的硅-锗合金层的表面具有一定粗糙度。这种粗糙度可例如由纹理化的正面(或背面)接触层透过该层堆叠体转移形成,取决于该堆叠体从背面侧还是正面侧沉积(即取决于该器件具有正面侧基底还是背面侧基底)。这种纹理有助于光在该界面处的漫射,以减少反射并加深该器件的黑度。正面(或背面)接触层的rms粗糙度的典型值在10-500nm,更特别是20-300nm的范围内。在一种构造中,该器件可包含位于所述正面接触层的光入射侧的基本透明基底,在这种情况下有利的是在该基底的正面侧提供减反射涂层。如果这种减反射涂层表现出低于所述基底的折射率的折射率,镜面反射最小化。这种减反射层可包含多层构造。在这种正面基底构造中,正面接触层可有利地包含氧化锌和/或氧化锡,其具有由于其沉积而得的纹理表面。这种纹理随后透过后续沉积的层转移到PV结的I型层与硅-锗合金层之间的界面。这种纹理仍有助于光在该界面处的漫射,以减少反射并加深该器件的黑度。在替代性的构造中,该器件可包含直接或间接布置在背向所述背面接触层的光入射侧的所述背面接触层的表面上的基底。在这种背面基底构造中,由于与上文相同的原因,背面接触层可有利地包含氧化锌和/或氧化锡。这仍导致硅-锗合金层的正面表面被纹理化,以改进光在其与I型层的界面处的漫射。有利地,除基于硅-锗合金的层外的PIN或NIP结的层基于非晶硅(a-Si)。这是便宜的、充分理解的技术,并且在基于a-Si的层与下方Si-Ge层之间存在协同效应,因为Si-Ge层吸收通常没有被a-Si吸收的红色光波长。为了完整性,要指出,在PIN结的P型层靠近该器件的正面(光入射)侧的情况下,P和I型层基于a-Si且Si-Ge层是N型掺杂的,在相反情况下,N型层靠近正面,其中N和I型层基于a-Si且Si-Ge层是P型掺杂的。尽管本发明的PV器件可无限制地广泛使用,但其可特别有利地并入钟表,以形成例如所述钟表的表盘和/或表圈的至少一部分。最后,本发明涉及一种制造如上所述的光伏器件的方法,其中所述硅-锗层通过对于这种情况中使用的具体反应器类型(13.56MHz、15mm电极间距、45x55cm电极表面尺寸)的尺寸在下列条件下的等离子体辅助化学气相沉积法沉积:-硅烷流量30-50sccm;-锗烷流量6-10sccm;-氢气流量1200-1500sccm-磷杂环戊二烯流量0.5-1.5sccm(用于N型掺杂)或二硼烷流量0.5-1.5sccm(用于P型掺杂)-压力3.0-3.5毫巴;-等离子体功率100-150W。附图简述在联系以下附图阅读下面的描述时更清楚显现本发明的进一步细节,附图图解了:-图1:具有正面侧基底的根据本发明的PV器件的示意性横截面;图2:具有背面侧基底的根据本发明的另一PV器件的示意性横截面;图3:根据本发明的另一PV器件的示意性横截面;图4:常规电池和具有两种不同的吸收层厚度的根据图3的电池的漫反射vs入射光波长的曲线图;和图5:包含根据本发明的PV器件的钟表的示意图本发明的实施方案图1图解根据本发明的黑色光伏(PV)器件1的最简单形式的一个变体的示意性横截面。PV器件1包含任何所需厚度的基本透明基底3,其可由玻璃、聚合物、透明陶瓷如蓝宝石或氧化铝、玻璃-陶瓷或任何其它方便的材料制成。根据材料及其厚度,其可以是基本刚性或柔性的,并且可以是平面的、曲面的或成型为任何所需形状。在本文中,“基本透明”应被理解为表现出至少95%的可见光(350-750nm)透射率,并且所有折射率涉及可见光波长。如本领域中的惯例,器件1具有正面侧(其借助眼睛符号示意性标示,眼睛符号代表看向意图接收入射光的器件1的正面侧的观察者的观看点)和背面侧(其与正面侧相反并意图在使用中背阴)。在背向正面侧的基底3的第一面3a上,提供基本透明的正面接触层5。这种正面接触层5可如图1中所示直接位于所述第一面3a上,或可如众所周知和下文更详细论述的那样间接位于其上,一个或多个补充层介于基底3和正面接触层5之间。正面接触层5可以是例如借助化学气相沉积(CVD)、物理气相沉积(PVD)等在第一表面3a上形成的掺杂或无掺杂的透明导电氧化物,例如氧化锌的层,其使得背向基底3a的正面接触层5的表面5a表现出包含如借助锯齿线示意性表示的多个锥体形式的纹理。用于该层的另一特别合适的材料是CVD沉积的氧化锡,其透明并表现出比氧化锌的边界尖锐的锥体形式更圆润的表面形态。同样可使用其它物质,如氧化铟锡(ITO)等,参见例如出版物TransparentConductingOxides—AnUp-To-DateOverview,AndreasStadler,Materials(Basel).2012Apr;5(4):661–683。典型的薄层电阻为大约5-100Ohm/square。尽管这种纹理不是强制性的,但如下文显而易见,其是理想的,并且也有可能在沉积并非在沉积过程中固有形成纹理表面的不同透明导电材料,如透明导电聚合物或类似物后在单独步骤中将所述表面5a纹理化,这将依循下方层的表面形态。这种纹理化可以机械方式(例如通过机械加工、研磨、磨料刷、喷砂或喷丸处理等)、借助离子蚀刻、激光蚀刻或消融或通过化学蚀刻进行。如何形成纹理(如果存在)并不重要,但理想地,纹理应具有在20-300nm的范围内的最小rms粗糙度值,并可以是随机或非随机的,取决于其如何形成。RMS粗糙度描述在标准ASMEB46.1中并因此是技术人员众所周知的。或者,基底的表面3a可本身是纹理化的,这种纹理转移到纹理层5的表面5a,即使其由并非固有形成纹理表面的材料制成。无论如何形成正面接触层5,其厚度理想地为0.1至5μm厚,优选1.5至2μm厚。直接或间接地在正面接触层5的所述表面5a上布置众所周知的PIN或NIP结。例如,如下文更详细论述,层7可以是P掺杂的非晶硅,层9是本征非晶硅层(a-Si或a-Si:H),且层11是N掺杂的半导体层。相反的布置也可能,其中层7是N型非晶硅层,且层11是P型半导体层。在表面5a纹理化的情况下,如这些层之间的锯齿形界面示意性地显示,该纹理转移到所有后续沉积的层。如有疑问,“非晶”或“基本非晶”层可参数化为具有小于5%的拉曼结晶度。金属或其它导电物质(例如透明导电氧化物或类似物)的背面接触层13位于层11上,各种层按需要和如众所周知的那样图案化和互连。根据本发明,最靠近背面接触层13的PIN或NIP结的层11包含适当掺杂的硅-锗合金,其中锗的摩尔百分比为至少2%,优选10%至30%锗,更优选15%至25%锗,更优选基本20%锗,余量基本都是硅(和氢——在该层被氢化SiGe:H的情况下)。该层通常具有在10至500nm之间,更特别在30至200nm之间的厚度并通常通过CVD沉积,对于N型SiGe:H使用下列沉积参数:在P型SiGe:H的情况下,参数类似,尽管使用二硼烷或其它P型掺杂剂代替膦,并因此调整流量。硅-锗合金特别强地吸收可见光波长,尤其是在红色波长范围内(长于650nm波长)。在通常吸收350nm至650nm波长范围的常规薄膜非晶硅PV电池中,这一波长范围通常没有被吸收。此外,Si-Ge合金具有大约3-4的类似于a-Si:H的折射率,这通常明显超过靠近PV器件1的正面侧的其它层的折射率。因此,Si-Ge层11没有在a-Si/Si-Ge界面处增加额外反射,以使剩余红光能够直接进入Si-Ge层。此外,该正面纹理通过多次反射增强光再循环到吸收层并因此导致光吸收的最大化,从而能够制成深黑色电池,尽管本征层为通常不吸收红色波长(>700nm)并因此通常具有紫色/茄紫色/红色的非晶硅。实质上,本发明能在提供理想的深黑色的同时利用非晶电池对便携式应用的优点(开路电压、在室内照明条件下的效率)。如众所周知,通过适用于各个层的任何合适的方法从透明基底3向背面接触层13沉积所需顺序的层,以形成PV器件1的这一变体。为此,如众所周知,可根据所用材料采用化学气相沉积(具有或不具有等离子体辅助的CVD等)、物理气相沉积(PVD、溅射等)、旋涂、喷涂等的变体。一经构成,PV器件1可视需要封装。这种配置也提供PV器件1的特别稳固的顶面,其容易操作和通过常规手段清洁。图2图解从背面基底15向正面接触层5构造的PV器件1的另一变体。在这一实施方案中,基底15可由任何方便的材料制成,无论透明还是不透明,并以附图标记13–11–9–7–5的顺序沉积这些层。这些层与图1的实施方案相比没有改变,并可在正面接触层5上沉积一个或多个附加层,如保护层。在这种构造中,有利的是背面接触层13为如上所述自动地并随其沉积过程表现出表面纹理的物质,如氧化锌或氧化锡。或者,背面接触层13或基底15的正面可如上所述纹理化,并且任何合适的导电材料,包括金属可用于该背面接触层13。这种纹理确保Si-Ge层11的正面侧界面也纹理化,以提供如上所述的光漫射最大化的相同优点,尽管这不是强制性的。图3图解图1的实施方案的一个有利的变体,其中并入附加层以改进PV器件1的黑度。可独立于基底的位置适用相同的原理,因此可直接准用于图2的实施方案。因此不必详细描述相应的实施方案。如所示,图3的实施方案采用两种策略进一步改进PV器件1的黑度,它们可单独或结合使用。进一步加深颜色的第一个措施是存在减反射涂层17,其包含施加在面向预期观看方向,即背向Si-Ge合金层11的基底3的表面上的一个或多个层。这种减反射涂层17也可具有防刮和抗磨性质,这样的涂层本身是众所周知的,特别是在眼镜领域,以减少镜面反射和因此减少闪光。其实例公开在例如US9726786、WO2008112047、DE102015114877、US9817155和许多其它文献中。或者,如果减反射涂层11在使用中有可能暴露于划伤并具有差的耐划伤性等,可在减反射涂层11上提供附加防刮涂层(未显示)。在本发明中,减反射涂层17有利地具有比紧邻的下方层(在图3的实施方案的情况中是基底3)低的折射率。这减少背反射并因此加深颜色。加深颜色的第二个措施是介于基底3和正面接触层5之间的另一减反射层19。该层通常具有介于基底3和纹理层5之间的折射率值,并可例如是厚度在10至200nm之间,更优选在70至90nm之间的氮氧化硅层。该层也可以是表现出经过该层的厚度递增的渐变折射率的多层。更有利地,如果折射率从正面侧经过该层堆叠体到PIN或NIP结的I层逐渐提高,进一步减少反射。例如,可使用下列折射率值:通过制造具有下列特征的一系列PV器件1,实验验证本发明的效果。器件A:现有技术状况的PV电池,具有图1的结构,只是层11包含n型μc-Si:H和SiOx:H。层结构如下:器件B:具有图1的结构的根据本发明的PV器件1。层结构如下:层材料厚度基底3玻璃0.5mm正面接触层5ZnO1.5-2.0μmPV结层5P型a-SI:H12nm本征层7I型a-SI:H380nmPV结层11N型SiGe:H,Si:Ge比大约5:130nm背面接触层13Al/NiV200nm器件C:根据本发明的PV器件1,具有图3的结构但不包括减反射层19。层结构如下:层材料厚度减反射涂层17MgF295nm基底3玻璃0.5mm正面接触层5ZnO1.5-2.0μmPV结层5P型a-SI:H12nm本征层7I型a-SI:H380nmPV结层11N型SiGe:H,Si:Ge比大约5:130nm背面接触层13Al/NiV200nm器件D:根据本发明的PV器件1,具有图3的结构但不包括减反射涂层17。层结构如下:层材料厚度基底3玻璃0.5mm减反射层19SiNxOy80nm正面接触层5ZnO1.5-2.0μmPV结层5P型a-SI:H12nm本征层7I型a-SI:H380nmPV结层11N型SiGe:H,Si:Ge比大约5:130nm背面接触层13Al/NiV200nm器件E:具有图3的结构的根据本发明的PV器件1。层结构如下:层材料厚度减反射涂层17MgF295nm基底3玻璃0.5mm减反射层19SiNxOy80nm正面接触层5ZnO1.5-2.0μmPV结层5P型a-SI:H12nm本征层7I型a-SI:H380nmPV结层11N型SiGe:H,Si:Ge比大约5:130nm背面接触层13Al/NiV200nm在L*a*b*系统中测量各电池的颜色参数,L*a*b*系统在感觉上统一并与人眼感知相关联。在这种模型中,L*代表亮度(从L*=0,黑色至L*=100,白色),a*是绿-红标度(从a*=-128,绿色至a*=+127,红色),且b*是蓝-黄标度(从b*=-128,蓝色至b*=+127,黄色)。因此,通过L*=a*=b*=0定义完美黑色。同时以SCI(即包含镜面反射分量)模式和以SCE(即仅包括漫反射分量)测量样品。减反射涂层有助于减少镜面反射分量,因此在下面报道的SCI模式测量中看出其效果。另一方面,改变该堆叠体内的层主要影响漫反射分量,因此在SCE模式测量中看出其效果。使用标准D65光源,10°观察者。为了量化获得的颜色多么黑,已如下定义参数Mc,被称为“jetness”:其中其中且其中L*、a*、b*是测得的L*a*b*颜色参数,Xn、Yn、和Zn是基准白色的分量(n=中性)。对于Mc计算,使用Xn=94.811,Yn=100.000和Zn=107.304。与L*、a*和b*同时在测量过程中通过分光光度计直接计算X、Y和Z。由这一定义可以看出,“jetness”Mc越高,样品越黑。所得结果如下:在该表中,归因于SiGe合金层11的颜色值的范围随该层的厚度而变,其厚度由于受控变化而改变。可以清楚看出,通过使用SiGe合金作为最后面的光伏结层11,显著改进器件1的“jetness”,并且减反射涂层17和/或减反射层19的使用改进黑度(blackness),从SCI数据中降低的L*值可以看出,当包括镜面反射分量时这两个措施的组合特别有效。图4图解与其中层11是常规N型层堆叠体的参考相比较,在具有上述器件E的结构的器件1中对层11使用各种厚度的n-SiGe的影响。可以清楚看出,漫反射率Rdiffuse的差异在大约590nm波长以上非常明显,且180nm厚的吸收层11比30nm厚的层更强吸收。图5示意性图解包含两种根据本发明的PV器件的钟表21。第一种形成钟表的表盘23的全部或一部分,另一种集成到表圈25中。无需说,任何特定钟表可包含这些PV器件的任一种,并且例如可在充当表盘23的PV器件1的表面上提供指数。也有可能将本发明的PV器件1并入表壳、表带等,或并入其它器件,如计算器、智能手机的外壳、平板电脑等。最后,要指出,类型A的器件1通常具有9mW/cm2的功率输出,而类型E的器件具有大约8mW/cm2的功率输出,这与例如引言中论述的现有技术中的用部分透明的表盘遮盖PV器件相比是相对较小的降低。尽管已参考具体实施方案描述了本发明,但有可能对其作出变动而不背离所附权利要求书的范围。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1