跳汰机智能排料控制系统的制作方法

文档序号:6269700阅读:140来源:国知局
专利名称:跳汰机智能排料控制系统的制作方法
技术领域
本发明跳汰机智能排料控制系统属于机械电子及其控制技术领域,具体涉及一种跳汰机物料分离的模糊控制技术。
背景技术
跳汰机通过排料来实现最终产品(矸石、中煤、精煤)的分离,在物料分层状态一定的情况下,排料控制的优劣是影响精煤灰分与产率的主要矛盾。一方面,排料过程中的床层稳定是一个很重要的控制指标,若因排料造成床层不稳,会破坏分层,造成精煤污染,严重影响分离精度;另一方面,床层厚度期望值的设定也会对产品分离精度产生直接影响。例如中煤段,若期望值设定过高,中煤不能及时排出,则会通过溢流混入精煤,造成精煤污染;若期望值设定过低,又会使精煤随中煤一起从中煤排料口排走,造成精煤流失。我国现有跳汰机的排料控制系统都是由人工设定床层厚度,以此为期望值进行常规逻辑控制或PID控制。而跳汰机的排料过程是一个非线性时变过程,存在许多不确定因素,如床层厚度随原煤煤质、原煤粒度、进排料量等的动态变化而变化,排料闸板的升降与床层厚度的变化之间又存在严重的非线性,所以上述控制往往得不到预期的效果,具体表现如排料闸板或动作迟缓或大起大落,床层超厚、排空波动很大(严重时发生压斗事故),使矸石中带煤、中煤中带精煤的现象严重,而且由于床层厚度设定不当造成精煤流失。这些都给企业带来很大的经济损失。

发明内容
本发明跳汰机智能排料控制系统的目的在于,提供一种能够最大限度地减少排出的矸石中和煤中的错配物,最大限度地减少精煤流失,提高精煤产率,以床层厚度与床层密度为反馈量的跳汰机排料控制系统。
本发明跳汰机智能排料控制系统的特征在于该系统由主控制器I、矸石段浮标传感器II、矸石段闸板开度传感器III、矸石段被控油缸IV、矸石段排料闸板V、中煤段浮标传感器VI、中煤段闸板开度传感器VII、中煤段被控油缸VIII、中煤段排料闸板IX、γ射线密度探测装置X、集中显示单元XI组成,主控制器I为进行数据采集与处理、床层厚度期望值修正、模糊控制计算和控制输出的可编程序控制器PLC;获取矸石段和中煤段的床层密度值的γ射线密度探测装置X;矸石段浮标传感器II为获取矸石段床层厚度的传感器;矸石段闸板开度传感器III为获取矸石段排料口开度的闸板开度传感器;中煤段浮标传感器VI为获取中煤段床层厚度的传感器;闸板开度传感器VII为获取中煤段排料口开度的中煤段闸板开度传感器;集中显示单元XI为实时显示上述床层厚度与闸板开度值的显示单元。
本发明跳汰机智能排料控制系统的特征在于,该系统以床层密度值作为反馈量对床层厚度期望值进行自动调整,并采用模糊控制方法代替常规逻辑控制或PID控制。床层厚度给定值的修正基于床层密度测量信息,通过γ射线密度探测装置VIII获取的底层密度值对给定值进行修正,当底层密度值偏大时,给床层厚度给定值一个负值修正量δ;当底层密度值偏小时,给床层厚度给定值一个正值修正量δ。上述模糊控制系统中,对床层厚度信号与床层厚度期望值间的偏差、偏差变化率与输出均划分9个模糊状态,即正很大(PVB)、正大(PB)、正中(PM)、正小(PS)、零(Z)、负小(NS)、负中(NM)、负大(NB)、负很大(NVB),隶属度函数取三角形函数形式。在此模糊划分下制定模糊规则对排料闸板驱动油缸实施控制。
本发明跳汰机智能排料控制系统是按下述方式工作的系统由γ射线床层密度探测装置X测量出床层密度结果,此测量结果送至可编程控制器I,由可编程控制器I计算出床层厚度期望值修正量δ,用δ对人工输入的床层厚度设定值Hs进行自动修正。系统由浮标位移传感器II、VI获取床层厚度信号Hi送至可编程控制器I,与修正过的床层厚度期望值Hq进行比较后形成差值e送到模糊控制器XIII。模糊控制器XIII将根据此差值计算出差值变化率ec,并对差值e与差值变化率ec进行模糊化,然后根据模糊算法XII进行模糊逻辑推理,用模糊输入值去适配模糊控制规则,通过相应模糊控制规则适配的程度,得到对应的模糊输出U。然后通过解模糊得到精确输出量u,由可编程控制器I输出到被控油缸IV和VII,被控油缸IV与排料闸板V相连,被控油缸VIII与排料闸板IX相连,排料闸板V和IX的开口量分别由闸板开度传感器IV和VII检测并送至可编程控制器I。排料闸板打开后开始排料,使床层厚度向期望值Hq的方向发生变化,浮标位移传感器II和VI获取的实时床层厚度信号Hi反馈给控制器形成闭环控制。
上述的排料过程模糊控制系统原理框图如附图2所示。
本发明具有如下优点1、用模糊控制方法代替常规逻辑控制或PID控制,能够稳定床层,避免大排大放,使矸石带煤率大大降低,对提高煤的回收率起到重要作用;
2、能随入洗原煤性质的变化自动修正床层厚度期望值,对稳定精煤灰分、减少精煤流失,提高选煤产品的质量起到重要作用。


附图1为跳汰机排料过程模糊控制系统结构图I-可编程序控制器 II-矸石段浮标传感器 III-矸石段闸板开度传感器 IV-矸石段被控油缸 V-矸石段排料闸板 VI-中煤段浮标传感器 VII-中煤段闸板开度传感器 VIII-中煤段被控油缸 IX-中煤段排料闸板 X-床层密度探测装置 XI-集中显示单元附图2为跳汰机排料过程模糊控制系统原理框图XII-模糊算法 XIII-模糊控制器 XIV-排料过程Hs-床层厚度设定值 Hs-修正后的床层厚度期望值 Hi-床层厚度实测值δ-床层厚度期望值修正量 e-床层厚度与期望值间的偏差 E-偏差模糊量ec-偏差变化率 Ec-偏差变化率模糊量 U-控制输出模糊量 u-控制输出s-微分算子 ke-偏差量化因子 kec-偏差变化率量化因子 ku-输出比例因子
具体实施例方式实施方式1系统由γ射线床层密度探测装置X测量出床层密度结果,此测量结果送至可编程控制器I,由可编程控制器I计算出床层厚度期望值修正量δ,即当底层密度值偏大时,给床层厚度给定值一个负值修正量δ,当底层密度值偏小时,给床层厚度给定值一个正值修正量δ,修正量δ与底层密度值之间取线性关系。用δ对人工输入的床层厚度设定值Hs进行自动修正。系统由浮标位移传感器II、VI获取床层厚度信号Hi送至可编程控制器I,与修正过的床层厚度期望值Hq进行比较后形成差值e送到模糊控制器XIII。模糊控制器XIII将根据此差值计算出差值变化率ec,并对差值e与差值变化率ec进行模糊化,对床层厚度信号与床层厚度期望值间的偏差、偏差变化率与输出均划分9个模糊状态,即正很大(PVB)、正大(PB)、正中(PM)、正小(PS)、零(Z)、负小(NS)、负中(NM)、负大(NB)、负很大(NVB),隶属度函数取三角形函数形式。在此模糊划分下制定模糊规则,然后根据模糊算法XII进行模糊逻辑推理,用模糊输入值去适配模糊控制规则,通过相应模糊控制规则适配的程度,得到对应的模糊输出U。然后通过解模糊得到精确输出量u,由可编程控制器I输出到被控油缸IV和VII,被控油缸IV与排料闸板V相连,被控油缸VIII与排料闸板IX相连,排料闸板V和IX的开口量分别由闸板开度传感器IV和VII检测并送至可编程控制器I。排料闸板打开后开始排料,使床层厚度向期望值Hq的方向发生变化,浮标位移传感器II和VI获取的实时床层厚度信号Hi反馈给控制器形成闭环控制。
实施方式2对床层厚度信号与床层厚度期望值间的偏差与模糊输出均划分9个模糊状态,即正很大(PVB)、正大(PB)、正中(PM)、正小(PS)、零(Z)、负小(NS)、负中(NM)、负大(NB)、负很大(NVB),对偏差变化率划分8个模糊状态,即正大(PB)、正中(PM)、正小(PS)、正零(PZ)、负零(NZ)、负小(NS)、负中(NM)、负大(NB),正零(PZ)、负零(NZ)的隶属度函数取不对称梯形形式,其它同实施方式1。
实施方式3计算床层厚度期望值修正量δ时,修正量δ与底层密度值之间取二次函数关系,其它同实施方式1。
权利要求
1.一种跳汰机智能排料控制系统的特征在于该系统由主控制器I、矸石段浮标传感器II、矸石段闸板开度传感器III、矸石段被控油缸IV、矸石段排料闸板V、中煤段浮标传感器VI、中煤段闸板开度传感器VII、中煤段被控油缸VIII、中煤段排料闸板IX、γ射线密度探测装置X、集中显示单元XI组成,主控制器I为进行数据采集与处理、床层厚度期望值修正、模糊控制计算和控制输出的可编程序控制器PLC,获取矸石段和中煤段的床层密度值的γ射线密度探测装置X,矸石段浮标传感器II为获取矸石段床层厚度的传感器,矸石段闸板开度传感器III为获取矸石段排料口开度的闸板开度传感器,中煤段浮标传感器VI为获取中煤段床层厚度的传感器,闸板开度传感器VII为获取中煤段排料口开度的中煤段闸板开度传感器,集中显示单元XI为实时显示上述床层厚度与闸板开度值的显示单元;该系统以床层密度值作为反馈量对床层厚度期望值进行自动调整,并采用模糊控制方法代替常规逻辑控制或PID控制,床层厚度给定值的修正基于床层密度测量信息,通过γ射线密度探测装置VIII获取的底层密度值对给定值进行修正,当底层密度值偏大时,给床层厚度给定值一个负值修正量δ;当底层密度值偏小时,给床层厚度给定值一个正值修正量δ,上述模糊控制系统中,对床层厚度信号与床层厚度期望值间的偏差、偏差变化率与输出均划分9个模糊状态,即正很大(PVB)、正大(PB)、正中(PM)、正小(PS)、零(Z)、负小(NS)、负中(NM)、负大(NB)、负很大(NVB),隶属度函数取三角形函数形式。在此模糊划分下制定模糊规则对排料闸板驱动油缸实施控制。
2.上述一种跳汰机智能排料控制系统工作方式,其特征在于是系统由γ射线床层密度探测装置X测量出床层密度结果,此测量结果送至可编程控制器I,由可编程控制器I计算出床层厚度期望值修正量δ,用δ对人工输入的床层厚度设定值Hs进行自动修正,系统由浮标位移传感器II、VI获取床层厚度信号Hi送至可编程控制器I,与修正过的床层厚度期望值Hq进行比较后形成差值e送到模糊控制器XIII,模糊控制器XIII将根据此差值计算出差值变化率ec,并对差值e与差值变化率ec进行模糊化,然后根据模糊算法XII进行模糊逻辑推理,用模糊输入值去适配模糊控制规则,通过相应模糊控制规则适配的程度,得到对应的模糊输出U。然后通过解模糊得到精确输出量u,由可编程控制器I输出到被控油缸IV和VII,被控油缸IV与排料闸板V相连,被控油缸VIII与排料闸板IX相连,排料闸板V和IX的开口量分别由闸板开度传感器IV和VII检测并送至可编程控制器I,排料闸板打开后开始排料,使床层厚度向期望值Hq的方向发生变化,浮标位移传感器II和VI获取的实时床层厚度信号Hi反馈给控制器形成闭环控制。
全文摘要
一种跳汰机智能排料控制系统属于机械电子及其控制技术领域,具体涉及一种跳汰机物料分离的模糊控制技术。提供一种能够最大限度地减少排出的矸石中和煤中的错配物,最大限度地减少精煤流失,提高精煤产率,以床层厚度与床层密度为反馈量的跳汰机排料控制系统。该系统以床层密度值作为反馈量对床层厚度期望值进行自动调整,并采用模糊控制方法代替常规逻辑控制或PID控制。床层厚度给定值的修正基于床层密度测量信息,通过γ射线密度探测装置Ⅷ获取的底层密度值对给定值进行修正。用模糊控制方法代替常规逻辑控制或PID控制,能够稳定床层,避免大排大放,使矸石带煤率大大降低,对提高煤的回收率起到重要作用;能随入洗原煤性质的变化自动修正床层厚度期望值,对稳定精煤灰分、减少精煤流失,提高选煤产品的质量起到重要作用。
文档编号G05B13/00GK1763677SQ20051010932
公开日2006年4月26日 申请日期2005年10月17日 优先权日2005年10月17日
发明者熊诗波, 魏晋宏, 杨洁明, 李文英, 程珩 申请人:太原理工大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1