遥控器的控制方法及遥控器与流程

文档序号:11530417阅读:872来源:国知局
遥控器的控制方法及遥控器与流程

本发明实施例涉及无人机领域,尤其涉及一种遥控器的控制方法及遥控器。



背景技术:

现有技术中用户手持遥控器可控制无人飞行器飞行,遥控器上安装有摇杆,用户通过操纵摇杆控制无人飞行器的飞行速度以及飞行方向。

摇杆底部安装有霍尔元件,该霍尔元件用于感测摇杆的转动角度,摇杆的转动角度表示用户通过遥控器对无人飞行器的控制信息,但是,若霍尔元件受周围磁场干扰较大时,霍尔元件将无法准确感测摇杆的转动角度,导致无人机的遥控器无法精准的控制无人机,甚至造成无法控制无人机的后果。



技术实现要素:

本发明实施例提供一种遥控器的控制方法及遥控器,以提高无人机飞行的安全性。

本发明实施例的一个方面是提供一种遥控器的控制方法,所述遥控器包括摇杆、用于检测摇杆运动位置信息的位置传感器、以及用于检测周围环境的干扰信号的干扰检测传感器,所述方法包括:

获取所述干扰检测传感器的检测信息;

根据所述检测信息,确定所述位置传感器检测的所述摇杆的运动位置信息的准确性。

本发明实施例的另一个方面是提供一种遥控器,包括:摇杆、用于检测摇杆运动位置信息的位置传感器、用于检测周围环境的干扰信号的干扰检测传感器、以及一个或多个处理器,共同地或单独地工作,所述一个或多个处理器用于:

获取所述干扰检测传感器的检测信息;

根据所述检测信息,确定所述位置传感器检测的所述摇杆的运动位置信息的准确性。

本发明实施例提供的遥控器的控制方法及遥控器,通过在遥控器上设置用于检测周围环境的干扰信号的干扰检测传感器,根据干扰检测传感器的检测信息,确定周围环境中是否存在干扰信号,以及干扰信号的强弱,根据干扰信号的强弱,确定遥控器中用于检测摇杆运动位置信息的位置传感器是否受干扰信号影响较大,进而确定位置传感器检测的摇杆的运动位置信息是否准确,若不准确,可提示用户或进行修正处理,使用户能够即时、准确的控制无人机,保证无人机在飞行过程中的安全性。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为本发明实施例提供的遥控器的控制方法的流程图;

图2为本发明另一实施例提供的遥控器的控制方法的流程图;

图3为本发明另一实施例提供的遥控器的控制方法的流程图;

图4为本发明另一实施例提供的遥控器的控制方法的流程图;

图5为本发明实施例提供的遥控器的结构图;

图6为本发明另一实施例提供的遥控器的结构图;

图7为本发明另一实施例提供的遥控器的结构图。

附图标记:

50-遥控器51-摇杆52-位置传感器

53-干扰检测传感器54-处理器55-显示屏

56-指示灯57-扬声器58-马达

70-惯性测量单元

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。

除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。

下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。

本发明实施例提供一种遥控器的控制方法。本实施例所述的遥控器包括摇杆、用于检测摇杆运动位置信息的位置传感器、以及用于检测周围环境的干扰信号的干扰检测传感器。图1为本发明实施例提供的遥控器的控制方法的流程图。如图1所示,本实施例中的方法,可以包括:

步骤s101、获取所述干扰检测传感器的检测信息。

在本实施例中,用户通过操纵遥控器的摇杆控制无人机,摇杆底部安装有检测摇杆运动位置信息的位置传感器,具体的,该位置传感器可以感测摇杆的转动角度、转动速度,用户通过控制摇杆,使摇杆位于不同的方向和角度,遥控器根据位置传感器感测的摇杆的运动位置信息,生成用于控制无人机的控制命令,以实现对无人机的控制。

由于遥控器容易受周围环境中干扰信号的干扰,导致位置传感器无法准确的感测摇杆的运动位置信息,造成位置传感器感测到的摇杆的转动角度与摇杆实际的转动角度有偏差,进而导致遥控器生成的控制命令不准确。针对该问题,本实施例在遥控器上设置有干扰检测传感器,该干扰检测传感器用于检测周围环境的干扰信号。

步骤s102、根据所述检测信息,确定所述位置传感器检测的所述摇杆的运动位置信息的准确性。

遥控器根据干扰检测传感器的检测信息,确定周围环境中是否存在干扰信号,以及干扰信号的强弱,由于干扰信号可对位置传感器造成干扰,因此,根据干扰信号的强弱,可确定位置传感器检测的所述摇杆的运动位置信息是否准确,当干扰信号的强度大于阈值时,可确定位置传感器检测的所述摇杆的运动位置信息准确性不高。

本实施例通过在遥控器上设置用于检测周围环境的干扰信号的干扰检测传感器,根据干扰检测传感器的检测信息,确定周围环境中是否存在干扰信号,以及干扰信号的强弱,根据干扰信号的强弱,确定遥控器中用于检测摇杆运动位置信息的位置传感器是否受干扰信号影响较大,进而确定位置传感器检测的摇杆的运动位置信息是否准确,若不准确,可提示用户或进行修正处理,使用户能够即时、准确的控制无人机,保证无人机在飞行过程中的安全性。

本发明实施例提供一种遥控器的控制方法。图2为本发明另一实施例提供的遥控器的控制方法的流程图。如图2所示,在图1所示实施例的基础上,本实施例中的方法,可以包括:

步骤s201、获取所述干扰检测传感器的检测信息。

步骤s201与步骤s101的方法一致,此处不再赘述。

步骤s202、根据所述检测信息,确定所述位置传感器检测的所述摇杆的运动位置信息的准确性。

步骤s202与步骤s102的方法一致,此处不再赘述。

步骤s203、若所述位置传感器检测的所述摇杆的运动位置信息不准确,则根据所述检测信息,对所述位置传感器检测的所述摇杆的运动位置信息进行修正。

若遥控器周围环境的干扰信号较为强,导致摇杆底部安装的位置传感器无法准确检测摇杆的运动位置信息,则可根据干扰检测传感器的检测信息,计算所述摇杆的运动位置信息的补偿量,根据所述摇杆的运动位置信息的补偿量,修正所述位置传感器检测的所述摇杆的运动位置信息。

本实施例通过干扰检测传感器的检测信息,计算摇杆的运动位置信息的补偿量,并根据摇杆的运动位置信息的补偿量,修正位置传感器检测的摇杆的运动位置信息,遥控器可根据修正后的摇杆的运动位置信息,控制无人机,解决了位置传感器受干扰信号的干扰而无法准确检测摇杆运动位置信息的情况下,遥控器无法准确控制无人机的问题。

本发明实施例提供一种遥控器的控制方法。图3为本发明另一实施例提供的遥控器的控制方法的流程图。如图3所示,在图1所示实施例的基础上,本实施例中的方法,可以包括:

步骤s301、获取所述干扰检测传感器的检测信息。

在本实施例中,干扰检测传感器具体可以是电场传感器或磁场传感器,电场传感器用于检测周围环境的电场强度,磁场传感器用于检测周围环境的磁场强度。当干扰检测传感器是电场传感器时,检测信息具体为电场强度,当干扰检测传感器是磁场传感器时,检测信息具体为磁场强度。

步骤s302、若所述检测信息大于第一阈值,则预警提示。

为了表示干扰信号的强弱,本实施例提供了第一阈值和第二阈值,第一阈值可以是报警阈值,第二阈值可以是严重报警阈值,当电场强度或磁场强度大于报警阈值时,遥控器发出预警提示,以便用户放弃启动无人机,或者控制无人机返航,避免可能出现的损失。

预警提示的方式可以采用多种提示方式提示用户,多种提示方式可选自视觉提示、听觉提示、触觉提示,视觉提示可通过显示屏显示、指示灯闪烁等实现,听觉提示可通过喇叭、扬声器、蜂鸣器发声实现,触觉提示可通过马达震动、震动电机震动实现。另外,预警提示方式还可以采用多种提示方式同时提示的方式,也可以采用多种提示方式依次提示的方式。

另外,本实施例不限定阈值的个数,以及具体的值。

步骤s303、若所述检测信息大于第二阈值,则关闭所述位置传感器。

当电场强度或磁场强度大于严重报警阈值时,遥控器可直接关闭位置传感器,避免位置传感器收到干扰信号的严重影响。

另外,当电场强度或磁场强度低于严重报警阈值时,遥控器还可直接开启位置传感器,保证位置传感器工作在稳定的环境中。

本实施例通过电场传感器检测周围环境的电场强度或磁场传感器检测周围环境的磁场强度,当电场强度或磁场强度大于报警阈值时,遥控器向用户发出预警提示,以便用户放弃启动无人机,或者控制无人机返航,避免可能出现的损失,当电场强度或磁场强度大于严重报警阈值时,遥控器还可直接开启位置传感器,保证位置传感器工作在稳定的环境中。

本发明实施例提供一种遥控器的控制方法。图4为本发明另一实施例提供的遥控器的控制方法的流程图。如图4所示,在图3所示实施例的基础上,本实施例中的方法,可以包括:

步骤s401、获取霍尔效应传感器的输出电压。

步骤s402、根据所述输出电压,确定所述磁场强度。

步骤s403、若所述磁场强度大于第一阈值,则预警提示。

步骤s404、若所述磁场强度大于第二阈值,则关闭所述位置传感器。

在本实施例中,位置传感器可以是基于霍尔效应的元件,也可以是惯性测量单元(inertialmeasurementunit,简称imu)。基于霍尔效应的元件采用霍尔效应检测所述摇杆的运动位置信息,容易受磁场干扰,因此,本实施例的方法可适用于基于霍尔效应的元件,解决遥控器中基于霍尔效应的元件受磁场干扰,而导致的无法准确感测摇杆的转动角度的问题。

步骤s405、获取所述惯性测量单元检测的所述遥控器的位置和姿态。

步骤s406、根据所述遥控器的位置和姿态,采用体感控制的方式控制无人机。

另外,遥控器还可同时安装有基于霍尔效应的元件和imu,当基于霍尔效应的元件受磁场干扰,无法准确感测摇杆的转动角度时,或者如步骤s404所述的关闭所述位置传感器后,可通过imu感测遥控器的姿态、位置,进而根据遥控器的姿态、位置,控制无人机,即遥控器可作为一个体感设备,感测由于用户手持遥控器的运动信息,而引起的遥控器的姿态变化、位置变化,进而根据遥控器的姿态信息、位置信息,控制无人机。

本实施例通过遥控器中设置imu,当基于霍尔效应的元件受磁场干扰,无法准确感测摇杆的转动角度时,遥控器可根据imu感测的遥控器的姿态、位置,控制无人机,进一步提高了无人机飞行过程中的安全性。

本发明实施例提供一种遥控器。图5为本发明实施例提供的遥控器的结构图。如图5所示,遥控器50包括摇杆51、用于检测摇杆运动位置信息的位置传感器52、用于检测周围环境的干扰信号的干扰检测传感器53、以及一个或多个处理器54,所述一个或多个处理器54用于:获取所述干扰检测传感器的检测信息;根据所述检测信息,确定所述位置传感器检测的所述摇杆的运动位置信息的准确性。

本发明实施例提供的遥控器的具体原理和实现方式均与图1所示实施例类似,此处不再赘述。

本实施例通过在遥控器上设置用于检测周围环境的干扰信号的干扰检测传感器,根据干扰检测传感器的检测信息,确定周围环境中是否存在干扰信号,以及干扰信号的强弱,根据干扰信号的强弱,确定遥控器中用于检测摇杆运动位置信息的位置传感器是否受干扰信号影响较大,进而确定位置传感器检测的摇杆的运动位置信息是否准确,若不准确,可提示用户或进行修正处理,使用户能够即时、准确的控制无人机,保证无人机在飞行过程中的安全性。

本发明实施例提供一种遥控器。在图5的基础上,所述一个或多个处理器54用于:当所述位置传感器检测的所述摇杆的运动位置信息不准确时,根据所述检测信息,对所述位置传感器检测的所述摇杆的运动位置信息进行修正。

一个或多个处理器54对所述位置传感器检测的所述摇杆的运动位置信息进行修正的方法可实现为:根据所述检测信息,计算所述摇杆的运动位置信息的补偿量;根据所述摇杆的运动位置信息的补偿量,修正所述位置传感器检测的所述摇杆的运动位置信息。

本发明实施例提供的遥控器的具体原理和实现方式均与图2所示实施例类似,此处不再赘述。

本实施例通过干扰检测传感器的检测信息,计算摇杆的运动位置信息的补偿量,并根据摇杆的运动位置信息的补偿量,修正位置传感器检测的摇杆的运动位置信息,遥控器可根据修正后的摇杆的运动位置信息,控制无人机,解决了位置传感器受干扰信号的干扰而无法准确检测摇杆运动位置信息的情况下,遥控器无法准确控制无人机的问题。

本发明实施例提供一种遥控器。图6为本发明另一实施例提供的遥控器的结构图。如图6所示,在图5的基础上,遥控器50还包括显示屏55、指示灯56、扬声器57和马达58中的至少一个。

显示屏55、指示灯56、扬声器57和马达58分别与所述处理器通54讯连接;处理器54用于:判断所述检测信息是否大于阈值,若所述检测信息大于阈值,则控制显示屏55、指示灯56、扬声器57和马达58中的至少一个发出预警提示。

或者,处理器54用于:判断所述检测信息是否大于阈值,若所述检测信息大于阈值,则关闭位置传感器52。

本发明实施例提供的遥控器的具体原理和实现方式均与图3所示实施例类似,此处不再赘述。

本实施例通过电场传感器检测周围环境的电场强度或磁场传感器检测周围环境的磁场强度,当电场强度或磁场强度大于报警阈值时,遥控器向用户发出预警提示,以便用户放弃启动无人机,或者控制无人机返航,避免可能出现的损失,当电场强度或磁场强度大于严重报警阈值时,遥控器还可直接开启位置传感器,保证位置传感器工作在稳定的环境中。

本发明实施例提供一种遥控器。图7为本发明另一实施例提供的遥控器的结构图。如图7所示,在上述任一遥控器实施例的基础上,以图6所示实施例为例,干扰检测传感器53具体可以是电场传感器,检测信息包括电场强度。干扰检测传感器53还可以是磁场传感器,检测信息包括磁场强度。磁场传感器具体可以是霍尔效应传感器。

可选的,所述处理器54用于:获取所述霍尔效应传感器的输出电压;根据所述输出电压,确定所述磁场强度。所述位置传感器52采用霍尔效应检测所述摇杆的运动位置信息。

另外,遥控器50还包括:与所述处理器54通讯连接的惯性测量单元70,惯性测量单元70用于检测所述遥控器50的位置和姿态;当所述位置传感器52检测的所述摇杆的运动位置信息不准确时,所述处理器54根据所述遥控器的位置和姿态,采用体感控制的方式控制无人机。

本发明实施例提供的遥控器的具体原理和实现方式均与图4所示实施例类似,此处不再赘述。

本实施例通过遥控器中设置imu,当基于霍尔效应的元件受磁场干扰,无法准确感测摇杆的转动角度时,遥控器可根据imu感测的遥控器的姿态、位置,控制无人机,进一步提高了无人机飞行过程中的安全性。

在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。

所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。

另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。

上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:u盘、移动硬盘、只读存储器(read-onlymemory,rom)、随机存取存储器(randomaccessmemory,ram)、磁碟或者光盘等各种可以存储程序代码的介质。

本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1