基于人工路标的移动机器人系统、停靠方法及存储介质与流程

文档序号:15131521发布日期:2018-08-10 08:07阅读:181来源:国知局

本发明涉及移动机器人定位与导航技术领域,具体地,涉及一种基于人工路标的移动机器人系统、停靠方法及存储介质。



背景技术:

随着智能制造的发展,移动机器人作为智能仓储和柔性制造的重要组成部分,近年来得到了高度重视和广泛的应用。在货物叉取搬运、物流拣选抓取、自动充电等应用场景中,移动机器人需要频繁的完成停靠,停靠的精度对移动机器人的任务的完成效果至关重要,也是限制移动机器人在工业场景中应用的主要因素之一。

移动机器人的停靠是指在相对于另一物体的某一位置处的到达和停止动作,而精确的定位和导航控制是完成停靠任务需要面临的两个挑战。移动机器人的定位是指机器人通过传感器对自身的运动和周围环境的测量来确定机器人在参照系中的相对位置的方法,是移动机器人研究的基本问题。

针对停靠任务,目前有不同的解决方案,各自存在一些不足。有的系统需要事先确定机器人的运动路径并铺设好磁条等导航装置。有的系统在停靠点处安装红外传感器等辅助装置,但是受限于传感器的功率导致机器人能实现准确停靠的范围很小。有的系统最终停靠的精度依赖于路标的安装精度,路标的安装位置需要事先进行准确的标定。



技术实现要素:

针对现有技术中的缺陷,本发明的目的是提供一种基于人工路标的移动机器人系统、停靠方法及存储介质。

根据本发明提供的基于人工路标的移动机器人系统,包含人工路标与移动机器人;所述移动机器人包含结构本体、传感器以及控制器,传感器与控制器安装在结构本体上;

所述控制器包含以下模块:

路标识别模块:获取来自传感器的周围环境数据,识别人工路标;

定位模块:计算获得结构本体相对人工路标的实时位姿,计算实时位姿与目标位姿之间的偏差数据;

导航控制模块:根据偏差数据生成导航控制指令。

优选地,所述人工路标上设置有色块部,色块部包含第一色块与第二色块,所述第一色块与第二色块的反射率不等;

所述传感器包含激光传感器,激光传感器能够扫描到色块。

优选地,所述人工路标包含第一矩形板与第二矩形板这两块矩形板,所述第一矩形板与第二矩形板之间存在夹角。

优选地,所述传感器还包含里程计,所述激光传感器包含激光测距传感器;

所述第一色块为黑色色块,所述第二色块为白色色块。

优选地,包含多个人工路标,多个人工路标上的第一色块与第二色块的排列顺序存在不同。

本发明还提供了一种上述的基于人工路标的移动机器人系统的停靠方法,包含以下步骤:

路标识别步骤:获取来自传感器的周围环境数据,识别人工路标;

定位步骤:计算获得结构本体相对人工路标的实时位姿,计算实时位姿与目标位姿之间的偏差数据;

导航控制步骤:根据偏差数据生成导航控制指令。

优选地,还包含示教步骤:获取在设定位姿下周围环境数据,识别出人工路标,解算出结构本体相对人工路标的位置与朝向,生成目标位姿信息。

优选地,所述定位步骤包含以下步骤:

步骤s1:获取在激光测距传感器可识别出人工路标的范围内的虚拟参考点的位置与朝向;

步骤s2:根据放置的人工路标的实际尺寸、矩形板之间夹角以及路标表面的色块排列特征,计算出结构本体在虚拟参考点处对路标的理想测量数据,作为模板数据;所述模板数据为路边上的点的集合,模板数据中每个点包含三个维度的信息,分别是该点的二维位置信息和对应色块的归一化激光反射强度信息,点集记作sr;

步骤s3:对激光测距传感器读出的每一帧激光数据中的点按相邻点间欧式距离进行聚类,然后对每个聚类中的点进行直线拟合;从拟合出的所有直线中,根据人工路标的几何特征与表面色块特征筛选出人工路标相应的两条直线,将这两条直线所包含的数据点记为点集sc;

步骤s4:为点集sc中的每个点在点集sr中寻找一个对应点,对应点的判定标准为两点之间的归一化激光反射强度信息小于预设的匹配阈值并且两点之间距离最小;

步骤s5:计算出一个旋转矩阵与一个平移向量使得所有对应点的距离的总和最小;将计算获得的旋转矩阵与平移向量用于估计结构本体当前位置和朝向相对于虚拟参考点的位置和朝向。

本发明还提供了一种基于人工路标的移动机器人定位系统,包含以下模块:

模块m1:获取在激光测距传感器可识别出人工路标的范围内的虚拟参考点的位置与朝向;

模块m2:根据放置的人工路标的实际尺寸、矩形板之间夹角以及路标表面的色块排列特征,计算出结构本体在虚拟参考点处对路标的理想测量数据,将所述理想测量数据作为模板数据;所述模板数据为路边上的点的集合,模板数据中每个点包含三个维度的信息,分别是该点的二维位置信息和对应色块的归一化激光反射强度信息,点集记作sr;

模块m3:对激光测距传感器读出的每一帧激光数据中的点按相邻点间欧式距离进行聚类,然后对每个聚类中的点进行直线拟合;从拟合出的所有直线中,根据人工路标的几何特征与表面色块特征筛选出人工路标相应的两条直线,将这两条直线所包含的数据点记为点集sc;

模块m4:为点集sc中的每个点在点集sr中寻找一个对应点,对应点的判定标准为两点之间的归一化激光反射强度信息小于预设的匹配阈值并且两点之间距离最小;

模块m5:计算出一个旋转矩阵与一个平移向量使得所有对应点的距离的总和最小;将计算获得的旋转矩阵与平移向量用于估计结构本体当前位置和朝向相对于虚拟参考点的位置和朝向。

本发明还提供了一种存储有计算机程序的计算机可读存储介质,所述计算机程序被处理器执行时实现上述的停靠方法中的步骤。

与现有技术相比,本发明具有如下的有益效果:

1、本发明能够使机器人停靠在可观测路标的区域内不同位置和朝向,对环境改造程度小,路标的位置不需要准确标定。

2、本发明可用于移动机器人自动充电对接、agv货物叉取搬运、物流移动机械臂拣选抓取等对停靠精度有高要求的场景。

3、本发明所使用的人工路标上无需安装任何设备和传感器,成本低廉;使用移动机器人上的激光传感器进行路标的识别和定位,定位过程中融合了激光强度信息,系统工作的工作范围大,定位精度高。

4、本发明通过示教方法给出停靠目标位姿,人工路标放置的位置和朝向不需要准确标定,并且系统自动计算出停靠目标位姿,系统安装和设置简单方便,有较好的柔性。

附图说明

通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:

图1示出本发明实施例的系统框图;图中:υ为速度控制指令,ω为角度控制指令,x为实际位姿;

图2示出本发明实施例的停靠任务示意图;

图3示出本发明实施例所用的人工路标示意图。

图中示出:

具体实施方式

下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。

在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。

如图1所示,本发明提供的基于人工路标的移动机器人系统,包含人工路标2与移动机器人。所述移动机器人包含结构本体110、传感器以及控制器,传感器与控制器安装在结构本体110上,所述控制器包含以下模块:路标识别模块101:获取来自传感器的周围环境数据,识别人工路标2;定位模块102:计算获得结构本体110相对人工路标2的实时位姿,计算实时位姿与目标位姿之间的偏差数据;导航控制模块103:根据偏差数据生成导航控制指令。

如图3所示,所述人工路标2上设置有色块部,色块部包含第一色块201与第二色块202,所述第一色块201与第二色块202的反射率不等,所述传感器包含激光传感器,激光传感器能够扫描到色块。所述人工路标2包含第一矩形板与第二矩形板这两块矩形板,所述第一矩形板与第二矩形板之间存在夹角,所述矩形板的排布角度与尺寸大小均可以依据运行环境进行实际调整;优选地,所述第一色块201为黑色色块,所述第二色块202为白色色块。此外,相比在实施例中仅使用一个人工路标2,优选例中本发明还可以设置有多个人工路标2,多个人工路标2上的第一色块201与第二色块202的排列顺序存在不同。优选地,所述传感器还包含里程计,所述激光传感器包含激光测距传感器。

本发明还提供了一种上述的基于人工路标的移动机器人系统的停靠方法,包含以下步骤:路标识别步骤:获取来自传感器的周围环境数据,识别人工路标2;定位步骤:计算获得结构本体110相对人工路标2的实时位姿,计算实时位姿与目标位姿之间的偏差数据;导航控制步骤:根据偏差数据生成导航控制指令。优选地,还包含示教步骤:获取在设定位姿下周围环境数据,识别出人工路标2,解算出结构本体110相对人工路标2的位置与朝向,生成目标位姿信息。

所述定位步骤包含以下步骤:步骤s1:获取在激光测距传感器可识别出人工路标2的范围内的虚拟参考点的位置与朝向;步骤s2:根据放置的人工路标2的实际尺寸、矩形板之间夹角以及路标表面的色块排列特征,计算出结构本体110在虚拟参考点处对路标的理想测量数据,作为模板数据;所述模板数据为路边上的点的集合,模板数据中每个点包含三个维度的信息,分别是该点的二维位置信息和对应色块的归一化激光反射强度信息,点集记作sr;步骤s3:对激光测距传感器读出的每一帧激光数据中的点按相邻点间欧式距离进行聚类,然后对每个聚类中的点进行直线拟合;从拟合出的所有直线中,根据人工路标2的几何特征与表面色块特征筛选出人工路标2相应的两条直线,将这两条直线所包含的数据点记为点集sc;步骤s4:为点集sc中的每个点在点集sr中寻找一个对应点,对应点的判定标准为两点之间的归一化激光反射强度信息小于预设的匹配阈值并且两点之间距离最小;步骤s5:计算出一个旋转矩阵与一个平移向量使得所有对应点的距离的总和最小;将计算获得的旋转矩阵与平移向量用于估计结构本体110当前位置和朝向相对于虚拟参考点的位置和朝向。其中,所述理想测量数据实际上就是指通过理论计算获得的数据。

优选实施方式:

根据移动机器人的工作任务,移动机器人需要在人工路标2正前方的某一点处,以正对着人工路标2的位姿停靠,如图2所示。移动机器人在停靠的过程中,使用移动机器人上的传感器采集周围环境数据,路标识别模块101识别停靠点附近摆放的人工路标2,定位模块102将识别结果作为输入,解算出结构本体110相对于人工路标2的实时位姿,进而得到与通过示教得到的停靠目标位姿之间的偏差,导航控制模块103将该位姿偏差作为输入,计算出导航控制指令控制结构本体110移动到期望停靠的目标点并以期望的朝向停下。

本发明提供的基于人工路标的移动机器人系统在使用前,需要先设置停靠的目标位姿作为系统的输入,所述目标位姿是由示教得到的。示教的过程包括,将移动机器人以期望的位置和朝向摆放在人工路标2前方,通过传感器采集周围环境数据,通过路标识别模块101识别出人工路标2,通过定位模块102解算出结构本体110相对于人工路标2的位置和朝向,完成一次示教,示教结果作为停靠的目标位姿数据,存储在移动机器人控制器中,便完成了停靠目标位姿的设置。停靠目标点可以在设置阶段设置一个或多个。

传感器包含里程计和激光传感器,里程计用于累计结构本体110的运动信息,记录结构本体110的运动轨迹。激光传感器用于采集周围环境的数据,其数据形式为激光射线所在障碍物上的点的集合,每个点的信息包括点在二维空间中的位置信息和该点的反射强度信息。

所述人工路标2是由两块相同大小的矩形板组成,两矩形板的边长40cm,并呈120°布置。人工路标2的两块矩形板上,在激光传感器可以扫描到的高度上涂有黑白相间的色块,如图3所示。黑白色块的排列顺序包含着编码信息,激光传感器根据反射强度的差异可以识别这些编码,用于区分不同的人工路标2或者同一人工路标2上不同的矩形板。对于同一个人工路标2,选择激光传感器先扫描到的矩形板上的编码作为该人工路标2的编码。在本优选实施例中,激光传感器的扫面方向为逆时针方向,扫过黑白色块的顺序为“白黑白黑”。以白色代表数字1,黑色代表数字0,在图3中,人工路标2右侧的矩形板上的编码为“1010”。

所述路标识别模块101,以激光传感器读出的每一帧数据作为输入。将输入数据中的点按相邻点间欧式距离进行聚类,然后对每个聚类中的点进行直线拟合;从拟合出的所有直线中,根据人工路标2的几何特征和表面是否能够识别出编码信息为筛选标准,筛选出对应人工路标2的两条直线的数据点集,该点集以及人工路标2上识别出来的编码作为路标识别结果。在本优选实施例中,识别出的路标编码为“1010”。

本发明还提供了一种基于人工路标的移动机器人定位系统,包含以下模块:模块m1:获取在激光测距传感器可识别出人工路标2的范围内的虚拟参考点的位置与朝向;模块m2:根据放置的人工路标2的实际尺寸、矩形板之间夹角以及路标表面的色块排列特征,计算出结构本体110在虚拟参考点处对路标的理想测量数据,将所述理想测量数据作为模板数据;所述模板数据为路边上的点的集合,模板数据中每个点包含三个维度的信息,分别是该点的二维位置信息和对应色块的归一化激光反射强度信息,点集记作sr;模块m3:对激光测距传感器读出的每一帧激光数据中的点按相邻点间欧式距离进行聚类,然后对每个聚类中的点进行直线拟合;从拟合出的所有直线中,根据人工路标2的几何特征与表面色块特征筛选出人工路标2相应的两条直线,将这两条直线所包含的数据点记为点集sc;模块m4:为点集sc中的每个点在点集sr中寻找一个对应点,对应点的判定标准为两点之间的归一化激光反射强度信息小于预设的匹配阈值并且两点之间距离最小;模块m5:计算出一个旋转矩阵与一个平移向量使得所有对应点的距离的总和最小;将计算获得的旋转矩阵与平移向量用于估计结构本体110当前位置和朝向相对于虚拟参考点的位置和朝向。其中,所述理想测量数据实际上就是指通过理论计算获得的数据。

本发明还提供了一种存储有计算机程序的计算机可读存储介质,所述计算机程序被处理器执行时实现上述的停靠方法中的步骤。

以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1