一种智能制造系统协同控制方法与流程

文档序号:16319524发布日期:2018-12-19 05:37阅读:353来源:国知局
一种智能制造系统协同控制方法与流程

本发明涉及智能制造技术领域,具体涉及了一种基于注塑成型装备的智能制造系统协同控制方法。

背景技术

中国制造2025战略实施,以智能制造为核心,而智能制造以智能装备为基础,面对居高不下的人力成本和传统制造业对劳动力的巨大需求之间的矛盾,构建无人化或者少人化的智能化的工厂,减少对人的依赖,是解决目前矛盾的可行技术路线。

中国注塑成型装备行业拥有自己的智能控制系统的企业很少,绝大多数注塑成型装备企业都是直接从第三方购买注塑成型装备智能控制系统。目前国内研制、生产注塑成型装备智能控制系统的企业也很少,仅有的几家也以研制普通液压注塑成型装备控制系统为主,控制信号也多数采用模拟量,控制系统性能低,还不是严格意义上的“智能控制系统”,这直接限制了我国注塑成型装备的技术含量,可以说目前国产注塑成型装备智能控制系统基本上不具备与国外系统进行抗衡的核心竞争力。

以注塑成型智能化成套装备为例,由多个不同的相互协调的生产过程和生产工序组成,包括注塑成型智能装备、机械手(机器人)、传送带、监测装置、打磨装置等各种加工、监测、传送装备,作为一个智能化的注塑成型工厂,需要考虑各种子系统的协同工作,包括上下料、注塑成型、产品检测、物流等,从而构建一个智能化的生产单元,最终实现信息流和物料流的协同工作,提升整个生产过程的效率。但是目前整个过程需要人工进行各种工艺参数(时间、温度、压力等)的调整,最终产品的质量对工程师的依赖非常大,因此产品的稳定性受到影响。

有鉴于此,确有必要提供一种基于注塑成型装备的智能制造系统协同控制方法,以提高制造的智能化。



技术实现要素:

本发明目的在于克服现有技术的缺点与不足,提供了一种基于注塑成型装备的智能制造系统协同控制方法,降低人为因素对制造产品的影响,提高制造的智能化。

为实现上述目的,本发明采用的技术方案如下:

一种智能制造系统协同控制方法,包括以下步骤:

采集智能制造系统中的各个生产装备的状态、输入和输出数据;

根据装备的状态、输入和输出数据,得到装备某时刻的动态误差;

基于动态误差利用最优性原理中的性能指标函数得到装备的评价函数;

利用神经网络算法获得满足评价函数的最优参数;

根据最优参数对装备进行设定控制。

由上可知,本发明的工作原理为:先求出当前装备的动态误差,基于动态误差利用最优性原理中的性能指标函数得到装备的评价函数,利用神经网络算法获得满足评价函数的最优参数,从而形成一个闭环控制,使整个控制过程具有良好的鲁棒性和稳定性。以注塑成型成套装备为例,把上一次与当前次的注射系统的输出即合膜系统的输入的差值以及注射系统上一次与当前次的状态差作为合膜系统中协同控制系统的输入,再经过评价函数和神经网络算法后输出合膜系统的最优参数值,从而构建无人化参数调整,使得整套注塑成型装备可以自适应协同工作。

作为本发明的一种改进,所述装备某时刻的动态误差为:

其中ui(k)为当前装备i的输入数据,xi(k)当前装备i的状态数据,ui-1(k)为当前装备i的前一工序装备的输入数据,xi-1(k)为当前装备i的前一工序装备的状态数据,ui(k)、xi(k)、ui-1(k)和xi-1(k)都是多维数据向量。

进一步地,所述状态数据包括装备的温度、时间和压力的数据。

作为本发明的一种改进,所述步骤“基于动态误差利用最优性原理中的性能指标函数得到装备的评价函数”包括以下子步骤:

对装备的动态误差进行外部强化修正,得到外部强化信号为:

ri(k)=q+ei(k)pei(k),其中q和p为正权重矩阵;

在外部强化信号基础上,基于贝尔曼最优性原理得到内部强化信号为:

si(k)=ri(k)+αsi(k+1),其中0<α<1为折扣量;

基于最优性原理中的性能指标函数并由内部强化信号迭代得到装备的评价函数为:ji(k)=si(k)+αji(k+1)。

作为本发明的一种改进,所述步骤“利用神经网络算法获得满足评价函数的最优参数”包括以下子步骤:

a.建立参数调整神经网络,参数调整神经网络的输入为装备的动态误差,利用参数调整神经网络逼近参数求取函数xi(k)=argmin(si(k)±αji(k+1)),从而使评价函数值最小,得到参数调整神经网络的输出为装备的状态参数;

b.建立内部信号处理神经网络,内部信号处理神经网络的输入为参数调整神经网络的输出和装备的动态误差;

c.建立评判神经网络,评判神经网络的输入为参数调整神经网络的输出、内部信号处理神经网络的输出和装备的动态误差;

d.通过评判神经网络的输出评判装备的状态参数是否为最优值,如果是,则装备的状态参数即为装备的最优参数,如果否,则调整参数调整神经网络的权重后,重新执行步骤a。

进一步地,所述参数调整神经网络为只包含一个隐层的非线性深度神经网络,所述内部信号处理神经网络为一个三层非线性深度神经网络,所述评判神经网络为一个三层非线性深度神经网络。

与现有技术相比,本发明技术方案的创新点和有益效果在于:

1、首先,每个装备只需要处理从进行上一个生产工序的装备中所获得局部信息,从而降低了装备的信息通讯量和计算量。

2、其次,由于每个装备的参数调整只依赖于局部信息,增加装备的数量对整个系统的影响不大,即整个智能系统的可扩展性增强。

3、再次,基于知识化自动化,每个智能装备都有一个由所有相邻生产装备所确定的强化信号,能够自适应排除外界干扰和装备状况变化对智能制造系统所产生的影响,使得智能制造系统具有较好的鲁棒性。

4、最后,根据不同的生产要求和工作目标,本发明所提到的协同控制方法还可以优化调度多个智能装置,使得整个智能制造系统能够达到最优的生产状态,提高生产效率。

附图说明

图1为本发明智能制造系统协同控制方法的流程图。

具体实施方式

下面结合附图和实施例对本发明作进一步说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部内容。

实施例

请参考图1,一种智能制造系统协同控制方法,包括以下步骤:

s1.采集智能制造系统中的各个生产装备的状态、输入和输出数据;

智能制造系统中各个生产装备数据的采集包括注塑成型智能装备、机械手(机器人)、传送带、监测装置、打磨装置等各种加工、监测、传送装备输入、输出以及状态数据的采集,而注塑成型智能装备又包括注射、合膜、保压、冷却、预塑、开模、取件等子系统,各个生产装备数据的采集:我们通过传感器或者从伺服驱动器(plc/dsp)中采集各个生产装备输入、输出以及状态数据,假设当前装备i的输入为ui(k),输出为yi(k),状态为xi(k),那么这道工序之前的那台生产装备输入为ui-1(k),输出为yi-1(k),状态为xi-1(k)。

s2.根据装备的状态、输入和输出数据,得到装备某时刻的动态误差;

所述装备某时刻的动态误差为:

其中ui(k)为当前装备i的输入数据,xi(k)当前装备i的状态数据,ui-1(k)为当前装备i的前一工序装备的输入数据,xi-1(k)为当前装备i的前一工序装备的状态数据,ui(k)、xi(k)、ui-1(k)和xi-1(k)都是多维数据向量;

其中所述状态数据包括装备的温度、时间和压力的数据。

s3.基于动态误差利用最优性原理中的性能指标函数得到装备的评价函数;

所述步骤“基于动态误差利用最优性原理中的性能指标函数得到装备的评价函数”包括以下子步骤:

对装备的动态误差进行外部强化修正,得到外部强化信号为:

ri(k)=q+ei(k)pei(k),其中q和p为正权重矩阵;

在外部强化信号基础上,基于贝尔曼最优性原理得到内部强化信号为:

si(k)=ri(k)+αsi(k+1),其中0<α<1为折扣量;

基于最优性原理中的性能指标函数并由内部强化信号迭代得到装备的评价函数为:ji(k)=si(k)+αji(k+1)。

s4.利用神经网络算法获得满足评价函数的最优参数;

所述步骤“利用神经网络算法获得满足评价函数的最优参数”包括以下子步骤:

a.建立参数调整神经网络,参数调整神经网络的输入为装备的动态误差,利用参数调整神经网络逼近参数求取函数xi(k)=argmin(si(k)±αji(k+1)),从而使评价函数值最小,得到参数调整神经网络的输出为装备的状态参数;其中的参数调整过程靠神经网络权重的调整,最开始我们会收集大量数据对神经网络进行离线训练,当任意输入一些动态误差,可以准备输出当前设备的最有参数值,我们把训练好的神经网络作为我们需要的参数调整神经网络,并且会利用内部信号处理网络和评判神经网络对参数调整神经网络的输出好坏进行判断,实现一边利用一边优化功能;

b.建立内部信号处理神经网络,内部信号处理神经网络的输入为参数调整神经网络的输出和装备的动态误差;把经过参数调整神经网络计算出来的参数值以及动态误差同时作为内部信号处理神经网络的输入,通过网络层的计算,可以输出内部强化信号给评判神经网络,从而使评判神经网络的判断更加准确,参数调整之后的最优值更能达到预期目标值,同时内部信号处理网络也接受评判神经网络输出值的反馈,不断调整权重,以至于优化强化信号,使强化信号更加精确;

c.建立评判神经网络,评判神经网络的输入为参数调整神经网络的输出、内部信号处理神经网络的输出和装备的动态误差;

d.通过评判神经网络的输出评判装备的状态参数是否为最优值,如果是,则装备的状态参数即为装备的最优参数,如果否,则调整参数调整神经网络的权重后,重新执行步骤a。

其中,所述参数调整神经网络为只包含一个隐层的非线性深度神经网络,所述内部信号处理神经网络为一个三层非线性深度神经网络,所述评判神经网络为一个三层非线性深度神经网络。

s5.根据最优参数对装备进行设定控制。

由上可知,本发明的工作原理为:先求出当前装备的动态误差,基于动态误差利用最优性原理中的性能指标函数得到装备的评价函数,利用神经网络算法获得满足评价函数的最优参数,从而形成一个闭环控制,使整个控制过程具有良好的鲁棒性和稳定性。以注塑成型成套装备为例,把上一次与当前次的注射系统的输出即合膜系统的输入的差值以及注射系统上一次与当前次的状态差作为合膜系统中协同控制系统的输入,再经过评价函数和神经网络算法后输出合膜系统的最优参数值,从而构建无人化参数调整,使得整套注塑成型装备可以自适应协同工作。

与现有技术相比,本发明技术方案的创新点和有益效果在于:

1、首先,每个装备只需要处理从进行上一个生产工序的装备中所获得局部信息,从而降低了装备的信息通讯量和计算量。

2、其次,由于每个装备的参数调整只依赖于局部信息,增加装备的数量对整个系统的影响不大,即整个智能系统的可扩展性增强。

3、再次,基于知识化自动化,每个智能装备都有一个由所有相邻生产装备所确定的强化信号,能够自适应排除外界干扰和装备状况变化对智能制造系统所产生的影响,使得智能制造系统具有较好的鲁棒性。

4、最后,根据不同的生产要求和工作目标,本发明所提到的协同控制方法还可以优化调度多个智能装置,使得整个智能制造系统能够达到最优的生产状态,提高生产效率。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1