矢量信号处理方法及采用该方法的矢量信号处理系统的制作方法

文档序号:6574264阅读:231来源:国知局
专利名称:矢量信号处理方法及采用该方法的矢量信号处理系统的制作方法
技术领域
本发明涉及数字信号处理技术的一种计算机程序相关的方法和 系统。具体地说,本发明涉及一种矢量信号处理方法及采用该方法的 矢量信号处理系统。本发明还涉及提供一种用于实现该技术的计算机 程序。
背景技术
在大量实际技术问题中都涉及到矢量信号的分析。如在电信技 术中通过对经信道传输的信号的矢量分析来确定信道行为;在地球科 学研究和地震勘探中通过对地震波矢量信号分析来确定地球内部构 造、预告地震活动或活确定油气资源和其它矿产资源的分布;对矢量 雷达数据的分析和利用;以及在生物医学研究和治疗中通过对生物信 号波的矢量分析来确定诊测对象的性质和变化。在现有矢量信号的分析处理技术中,或者基于对矢量信号的正 交性假设,将矢量信号按正交变换分解为标量信号来处理,或者将矢 量信号的某一分量直接作为标量信号来处理。在本质上,上述的这种 将矢量信号按正交变换分解为标量信号来处理以及将矢量信号的某 一分量直接作为标量信号来处理方法只是对矢量信号的一种近似处 理技术,其处理结果的误差将随着矢量信号偏离正交的程度的增加而 增加。事实上,这种对矢量信号的正交性的假设前提既是不严格的, 也是不符合实际情况的,它往往直接或潜含着如下假设,即信号的传 播介质其物理、力学性质必须具有均匀、各向同性、完全弹性等特性。同时,这种对矢量信号的正交性的假设还隐含着对信号源的单一性假定。例如中国专利公开CN1422407就公开了这种假设下的一种矢量信 号处理方法。该文件在此引用作为参考。在信号处理的实际应用领域中,这些假设的特性显然大大地偏离真实情况中的介质特性,至少是实际的情况并不能得到很好地满足 这些假设的条件。比如非限制性地以地震信号的处理为例,在地震信 号处理问题中应用矢量信号的分析处理时,由于真实地球介质的非均 匀性、各向异性、高速、低速界面、倾斜和弯曲界面的广泛存在,一 方面使不同偏振类型或偏振方向的地震体波矢量信号,如纵波与横波 或不同横波之间出现显著的非正交偏振;另一方面使不同传播路径但 同时到达观测点的地震偏振体波矢量信号,如某些震中距的直达波、 反射波、转换波、折射波等构成的广泛的非正交关系。同样,非正交 关系在只存有单一纵波的声纳信号中也普遍存在。主动声纳从真实目 标和非真实目标同时反射,如果两者与声纳源的距离相当而反射路径和方向不同,以及海水可能存在的各向异性和非均匀性都会构成非正 交矢量信号。又如实际中存在的电磁波信号也是如此,空间中大量的 电磁信号来自不同方向,其偏振构成非正交,当信号的载波频率相同 时,信号之间的干扰无法通过正交分离加以排除。由此可见,非正交 性广泛存在于矢量信号之间,是矢量信号最普遍的特征。矢量信号的 非正交关系增加了信号的复杂性,降低了信号的信噪比。现有的正交 信号处理技术对于非正交矢量信号难以发挥有效的作用,特别是需要 从矢量信号中解析出那些弱能量的信号一直是信号处理的难题。地震波中广泛存在着非正交矢量信号。在对于这样一个典型领 域的非正交矢量信号的研究中,我国和国际上已经获得了一些成果, 例如Li, X.Y and Crampin, S. (1993. Linear transform techniques for analysing split shear-waves in four-component seismic data, Geophysics, 58, 240-256),对出现在地震波中的非正交矢量信号物理成因和几何 因素做出了研究分析并给出了不同情况下的矢量信号分离设想和方 法;指出了非正交在各向异性介质中的普遍存在,并在对矢量信号作一些限定之后给出了平面矢量信号分离的数学表达式;Li, X.Y., MacBeth, C. and C腿pin, S. (1998. Interpreting non-orthogonal split shear-waves for seismic anisotropy in multicomponent VSPs, Geophys. Prospec., 46, 1-27)。本申请的发明人对矢量的合成与分离进行了全面、系统地的研 究,建立了三维空间任意方向矢量信号分离的数学表达式,第一次在 国际上给出了在矢量信号中包含不多于三个原始独立矢量信号时矢 量信号个数的准确判据,并依据地震学基础理论给出了搜索地震矢量 信号偏振方向的地震学判据。关于本申请的发明人的这些研究成果可 参见论文1.雷军,三分量地震矢量波场的分离与重建,中国地震 局地质研究所博士学位论文,1999; 2,Lei Jun, 2005. A method for non-orthogonal seismic polarization-vector separation, Geophys.丄Int. 162,965-974。上述的这些论文被结合在此作为参考。但是,本申请人所研究的上述方法并没有解决矢量信号的个数 多于三个时的一般性判据,并且如前所述的那样,要求观测点所有不 同路径的信号来自同一个信号源。而在许多实际物理环境和通讯技术 问题中广泛存在的是非单一信号源引起的非正交矢量信号。发明内容因此,本发明的目的在于克服现有技术中的不足而提出一种矢量信号处理方法及采用该方法的矢量信号处理系统。本发明的方法和系统提供了在矢量信号的个数多于三个时的一般性判方法和采用该方法的矢量信号处理系统,并且解决了观测点所有不同路径的信号来 自非同一信号源的条件下的矢量信号处理的问题。从而提高了信号分析结果的可靠性,并且能够从矢量信号中解析出那些弱能量的信号来 获得已有技术不能获知的结论。根据本发明的一个技术方案,提供一种矢量信号处理方法,用 于分离和重建合成矢量信号f中包含的多个具有独立空间方向的矢 量信号;其特征在于包括步骤在预定时窗内的n (n》3)个时间点 对接收的合成矢量信号进行采样;根据所说的合成矢量信号的n (n 》3)个采样的其中任意选择的三个采样来确定组成该输入合成矢量 信号的原始独立矢量信号的个数;确定所说的各个原始独立矢量信号 的空间方向;用波动矢量仿射坐标变换分离和重建出各个原始独立矢 量信号。根据本发明的上述技术方案,其中所说的任意选择的三个采样 是连续采样或不连续采样,并且对于合成矢量信号进行采样的采样频 率满足奈奎斯特准则。根据本发明的上述技术方案,其中所说的根据所说的合成矢量信号的n (n》3)个采样的其中任意选择的三个采样来确定组成该输 入合成矢量信号的原始独立矢量信号的个数的步骤进一步包括步骤 采用把计算矢量的叉乘和矢量的混合积的时域分析与计算矢量的功 率谱值的频域分析相结合的方式来确定组成该输入合成矢量信号的 原始独立矢量信号的个数。根据本发明的上述技术方案,其中采用计算矢量的叉乘和矢量 的混合积的时域分析来确定组成该输入合成矢量信号的个数不大于 3的原始独立矢量信号,其特征在于包括步骤以所说的任意三个采 样点上取各个分量值构成常矢量a、 b和c,并对其中任意选择的常 矢量a与b进行叉乘;当所述a与b叉乘的结果为零时,则确定在 该两个采样点上只包含1个原始独立矢量信号,而当所述a与b叉乘 结果为非零时,则确定在该两个采样点上包含点多于1个的原始独立 矢量信号;计算a、b和c的混合积;当所说的混合积的结果为零时, 则确定在所说的三个采样点上的原始独立矢量信号的个数不大于2 个,而当所说的混合积的结果为非零时,确定在所说的三个采样点上 的原始独立矢量信号的个数为3个。将上述矢量的叉乘和混合积判断 方法相结合确定原始独立矢量信号个数不大于3个条件下所选采样 点矢量信号的个数。根据本发明的上述技术方案,其中采用计算矢量的功率普值的 频域分析来确定组成该输入合成矢量信号的个数大于3的原始独立 矢量信号,其特征在于包括步骤分别计算输入的合成矢量信号的各 个分量的功率谱值;计算所述的计算出的功率谱值的所有的峰值的个数;根据所述的计算出的功率谱值在各个分量上的大小来计算功率谱 值的所有峰值的方向矢量;检索所说的功率谱值的所有峰值的方向矢 量重合性,从而得到重合的功率谱峰值个数;从所说的计算出的功率 谱值的所有峰值的个数中减去所说的重合的功率谱峰值个数,从而获得原始独立矢量信号的个数。根据本发明的上述技术方案,其中所说的确定所说的各个原始 独立矢量信号的空间方向的步骤进一步包括第一步骤,计算输入合 成矢量信号中的原始独立矢量信号的功率谱峰值的各个分量;第二步 骤,根据计算的功率谱峰值的各个分量来分别计算每一个原始独立矢 量的空间方向,并将如此计算的每一个原始独立矢量的空间方向作为 各个原始独立矢量信号空间方向的初始值;第三步骤,计算所说的输 入合成矢量信号(f)的傅里叶谱(F);第四步骤,生成在一定的范 围的一组空间方向增量;第五步骤,根据产生的该一组空间方向增量 来调整所说的原始独立矢量信号的空间方向的初始值,以获得该原始 独立矢量信号的空间方向的修正值;第六步骤,在N维空间中,将各 个所述的空间方向的修正值以及谱矢量信号(F)进行波动矢量仿射 坐标变换,以便获得各个原始独立矢量信号的谱波形;重复第四到第 六步骤,并将重复后的原始独立矢量信号的谱波形结果与重复前的原 始独立矢量信号的谱波形结果比较,直到各个谱波形的全部互相关值 在给定的基矢量方向取得极小值为止,并将此时的方向矢量作为所说 的原始独立矢量信号的空间方向。根据本发明的上述技术方案,其中,在原始独立矢量信号的数 量不大于三个的条件下,所说的用波动矢量仿射坐标变换分离和重建 出各个原始独立矢量信号的步骤进一步包括步骤根据各个原始独立 矢量信号的方向矢量和合成矢量信号(f),采用三维波动矢量仿射 坐标变换直接获得各个原始独立矢量信号的时域信号波形;或在原始 独立矢量信号的数量大于三个的条件下,所说的用波动矢量仿射坐标 变换分离和重建出各个原始独立矢量信号的步骤进一步包括步骤;根 据各个原始独立矢量信号的方向矢量和合成矢量信号(f)的频谱矢 量信号(F),采用N (N>3)维波动矢量仿射坐标变换分离得到各个 原始独立矢量信号的频谱波形;对得到的各个原始独立矢量信号的频 谱波形作傅里叶反变换,从而得到各个原始独立矢量信号的时域信号 波形。根据本发明的另一技术方案,提供一种采用上述数字矢量信号处理方法的数字矢量信号处理系统,用于分离和重建组成输入合成矢量 信号的多个不同空间方向的原始独立矢量信号,其特征在于包括数字信号采集装置,用于在预定时窗内的n (n》3)个时间点对接收的合 成矢量信号进行采样;矢量数量确定装置,用于根据所说的合成矢量 信号的n (n》3)个采样的其中任意选择的三个采样来确定组成该输入 合成矢量信号的原始独立矢量信号的个数;矢量方向确定装置,用于 确定所说的各个原始独立矢量信号的空间方向;矢量分离/重建装置, 用波动矢量仿射坐标变换分离和重建出各个原始独立矢量信号;控制/ 存储装置,控制整个系统的信息/信令的传输和操作并存储采样和中间 数据;以及,输出装置,输出由矢量分离/重建装置产生的各个原始独 立矢量信号。根据本发明的再一个技术方案,提供一种计算机程序产品,其使 得计算机执行如上述方法技术方案的数字矢量信号处理方法,并且能 够使得执行所述发放的计算机系统构成上述信号处理系统的一部分, 从而以便分离和重建组成输入合成矢量信号的多个不同空间方向的原 始独立矢量信号。本发明具有的显著优点在于不依赖各个应用领域矢量信号的先 验知识,对输入的合成矢量信号中包含的独立矢量的个数没有限制, 对各个原始独立矢量信号的到时、振幅、相位、空间方向、和波形没 有限制。本发明的信号处理方法和系统对矢量信号没有正交性的限制。而 现有信号处理技术要么主要针对标量信号,要么要求矢量信号具有正 交关系并利用简单的正交变换将矢量信号分解为标量信号来处理。如 技术背景中所述,严格地说许多物理和通讯领域的信号并不满足上述 要求。事实上,只有完全单一方向的矢量信号才可以看作标量信号。本发明针对多个相互叠加的、非正交的矢量信号进行分离,并将 在获得原始独立矢量信号数量和各个原始独立矢量信号空间方向的前 提下重建出矢量信号的到时、振幅、相位和波形。分离得到的各个独 立的矢量信号,如果扣除各自的矢量因子,才是真正意义上单一空间 方向的标量信号,才真正具备现有信号处理技术所要求的条件。本发明是一种针对任意非正交合成矢量信号的处理技术,本质上 是一种坐标变换方法,最大限度地保留了原始矢量数字信号所包含的 信息。适用于复杂信号和具有较强干扰的低信噪比矢量信号的处理。 该方法同时给出合成矢量信号中包含的各个原始独立矢量信号的到 时、相位、振幅、空间方向和波形。该技术对合成矢量信号中独立矢 量的个数没有限制。


为了更全面地阐释本发明的方法和系统,现将参照附图对本发明 的实施过程进行描述,这将使得本发明的上述方法和系统的优点变得 显见,其中图1是时间域离散数字矢量信号的示意图;图2是说明根据本发明的分离和重建输入的合成矢量信号中原 始独立矢量信号的方法的总体流程示意图;图3是说明图2所示的本发明方法中的用于确定输入的合成矢量信号中原始独立矢量信号个数的处理方法的流程图;图4是说明图2所示的本发明方法中的用于确定输入的合成矢量信号中原始独立矢量信号空间方向的处理方法的流程图;图5是说明图2所示的本发明方法中的分离输入的合成矢量信号重建原始独立矢量信号波形的处理方法的流程图。图6是实施图2所示的本发明方法的一个矢量信号处理系统的实施例的示意框图。
具体实施方式
考虑到三维空间数物理信号的具有一定的代表性,在以下的实施 例的说明过程中,在没有特说明的情况下都是以三分量数字矢量信号 为例来描述的。图1是时间域离散数字矢量信号的示意图。参照图1,通过三个 或多个传感器并按固定采样率得到包括三分量11或多分量12的合成输 入信号的数字矢量信号f。该信号是一个和矢量信号,由至少一个或多个原始独立矢量信号叠加合成。这些信号可以是电磁波信号、地震波信 号、生物医学信号或其它波动矢量信号。小方格从上到下代表矢量信号 的不同分量。时间从左到右增加,水平方向的每一个小方格代表一个时 间采样点。在以t,为起点至t2为终点的时间窗Wt内,矢量信号子集flWt 的总采样点为M。 ta、 tb和t。为时间窗Wt内任意三个时间点。t,、 12可以 是整个矢量信号的起点和终点。也可以是矢量信号中的某一段,这种情 况正如图1中所显示的那样。首先对于本发明实施基于的基本技术原理构思作一个总体详述。在本说明书中用粗体字母(a、 b、 c…)表示一般矢量,用带三角帽的 字母表示坐标基矢量,用非粗体字母(wn, n=l, 2...)表示标量。通 常用小写字母(f)表示时域变量,用大写字母(F)表示频率域变量。本发明提供一种解决非正交矢量信号相互投影的波动矢量仿射坐 标变换分离信号处理技术,包括如下包括步骤-确定所说的输入合成矢量中各个独立的非正交矢量信号的空间方向;将所说的各个矢量信号的方向矢量与输入合成矢量逐一点乘; 根据所说的各个非正交矢量信号的方向矢量构成的空间仿射坐标系来确定空间仿射坐标系的量度系数矩阵;分离和重建所说的合成矢量信号中各个原始独立矢量信号的波形,并由此确定所说的原始独立矢量信号的其它各项参数,如振幅、到时和相位等。本发明提供一种确定输入的合成矢量信号中原始独立矢量信号个 数N的信号处理技术,包括原始独立矢量信号个数不大于3情况下的 如下步骤1) 在输入的合成矢量信号(两分量、三分量或多分量)的任意三个时间点t。
tb和te上取各个分量值构成三个常矢量a、 b和C。2) 将a与b叉乘,艮P:axb (1)3) 如果式(1)为零,表示a和b的方向相同,或者说该两个时 间点上只包含1个独立的矢量信号;如果式(1)为非零,表示a和b的方向不同,或者说该两个时间点上原始独立矢量信号的个数多于1 个,转入下一步。4) 计算a、 b和c的混合积,艮P:(abc) (2)5) 如果式(2)为零,表示a、 b和c的在一个平面,或者说该三 个时间点上原始独立矢量信号的个数为2个;如果式(2)为非零, 表示a、 b和c的不在一个平面,或者说该三个时间点上原始独立矢量 信号的个数达到3个;6) 重复(1)到(5),在输入的合成矢量信号的整个时间轴上扫描, 就能准确得到每一个时间点上输入的合成矢量信号中包含的原始独立 矢量信号的个数。从(l)-(6)不仅可靠获得在不同时间段上独立矢量的个数,同时还 可获得各个原始独立矢量信号的起始和结束时间,其分辨率达到一个 釆样点。当输入的合成矢量信号中原始独立矢量信号的个数大于3时,原 始独立矢量信号的个数需在频率域中确定。本发明提供一种确定输入的合成矢量信号中原始独立矢量信号个 数N的信号处理技术,包括原始独立矢量信号个数大于3情况下的如 下步骤1) 分别计算输入的合成矢量信号(两分量、三分量或多分量)各 个分量的功率谱值;2) 计算(l)中功率谱所有峰值的个数;3) 根据(l)中功率谱在各个分量上的大小,计算功率谱所有峰值 的方向矢量;4) 检索(3)中功率谱所有峰值的方向矢量是否重合,得到重合的功率谱峰值个数;5) 功率谱所有峰值的个数与重复的功率谱峰值个数的差就是原始独立矢量信号的个数。功率谱的峰值代表能量,通常与各个原始独立矢量信号有关。但 由于各个矢量信号不一定是谐波,功率谱峰值的个数往往多于实际原始独立矢量信号的个数,所以只有那些方向矢量独立的功率谱峰值才 代表不同的矢量信号;本发明提供一种确定输入的合成矢量信号中原始独立矢量信号方向矢量的信号处理技术,包括如下步骤1) 计算输入的合成矢量信号(两分量、三分量或多分量)中原始 独立矢量信号的功率谱峰值的各个分量;2) 根据(l)中功率谱峰值的各个分量,计算它们的空间方向,并 用方向矢量 -UN); (3)表示。式中0和伊分别代表矢量在球面坐标系中的纬度和经度。3) 将(2)的结果作为各个原始独立矢量信号空间方向的初始值。 由于矢量信号中可能存在一定分布和强度的噪音(矢量),噪音矢量信号可能在较宽的频带上干扰各个功率谱峰值的方向矢量,使其 并不代表各个原始独立矢量信号的真实方向。严格地说,只要噪音信 号具有矢量信号的特征,噪音信号也是可以分离的矢量信号。4) 计算输入的合成矢量信号f的傅里叶谱F;将F称为谱矢量信号。谱矢量信号F与时域矢量信号f中各个原 始独立矢量信号的空间方向一致,因为傅里叶变换不改变矢量信号的 方向信息;5) 在一定的范围,产生一组空间方向增量 (d《,d^,),(/ = l,2,...N) (4)6) 调整方向矢量的初值,并令新的方向矢量 S, (A p)=靜+ d《,p + d"), (Z = 1,2,.. .N) (5)7) 在N维空间中,将S, = 1,2,…N) (6)以及谱矢量信号F带入下列波动矢量仿射坐标变换关系 (W,,W2,…Wj-(G)-'(F^,F.^,…F.^J (7)式中'.,表示矢量的内积,上标表示矩阵的逆。由式(7) 得到各个原始独立矢量信号的谱波形(W风W2(cy),…WN(ffl)) (8)式中,矩阵G (9) 是以方向矢量^(^,伊),(/ = 1,2,...:^) (6)为基矢量的仿射坐标系量度系数矩阵的逆矩阵。8)重复(5)到(7),并将新的结果与前一个结果比较,直到各个谱波形的全部互相关值在给定的基矢量方向取得极小,此时的方向矢 量^ 1,2,渴 (6) 就代表各个原始独立矢量信号的空间方向;本发明提供一种用波动矢量仿射坐标变换分离矢量信号,重建原 始独立矢量信号随时间变化的过程(时域波形)的矢量信号处理技术, 包括原始独立矢量信号个数不大于3情况下的如下步骤 将各个原始独立矢量信号的方向矢量 &(6>,^)(/ = 1,2,3) (10) 和矢量信号f带入下列波动矢量仿射坐标变换关系 <formula>formula see original document page 16</formula> 得到各个原始独立矢量信号的时间过程(时域波形) (Wl(0,w2(0,w3(0) (12) 上式中G (9) 是以^(^,伊),(!'= 1,2,3) (10)为基矢量的三维空间仿射坐标系量度系数矩阵的逆矩阵。同样, 在原始独立矢量信号个数等于2的平面问题中,在确定了 S,(6>,p)(Z = l,2) (13) 之后,对任意给定的S3(6>,p) (14)的情况都会得到W3为零,不影响W!和W2。本发明提供一种用波动矢量仿射坐标变换分离矢量信号,重建原 始独立矢量信号随时间变化过程(波形)的矢量信号处理技术,包括 原始独立矢量信号个数大于3情况下的如下步骤1)将各个原始独立矢量信号的方向矢量<formula>formula see original document page 16</formula>和谱矢量信号F带入下列波动矢量仿射坐标变换关系 (W,, W2,...WNy" = (G广(F .£2,...F W (7)2) 得到各个原始独立矢量信号的谱波形 (,),W2(ty),..WN(")) (8)3) 对(2)中得到的各个谱波形作傅里叶反变换,得到各个原始独立矢量信号的时域波形.-(Wl(0,w2 (,)".,(,)) (12)原始独立矢量信号的方向矢量及其时域波形包含了矢量信号的所 有特征。其中,矢量信号的方向矢量反映了矢量信号传播路径信息及 者矢量信号的偏振信息;时域波形携带了矢量信号的所有其它基本信 息,包括到时、振幅、相位和频率特征。图2是说明根据本发明的分离和重建输入的合成矢量信号中原始 独立矢量信号的方法的总体流程示意图,该总体流程用200表示。总体流程200中的第一步S21中输入数字矢量信号f,第二步S22 选择一个预定的数字信号时间窗Wt。该数字信号时间窗Wt选取的原则是其包括了能够反映合成矢量信号的数字矢量信号f的实质特征内容的 采样的子集。然后以步骤S23截取时间窗wt的输入的合成矢量信号的子 集flwt。在总体流程200的第四步S30中,确定合成输入信号中包含的 原始独立矢量信号的个数。在得知原始独立矢量个数之后下一步S50确 定每一个原始独立矢量信号的空间方向。步骤S30和S50之后得到的信 息再加上由步骤S23在时间窗wt中得到的原始矢量信号的子集f]wt,就 构成了在步骤S24中进行数字矢量信号处理所需的所有基本信息。其中, 在步骤S30所得到的原始独立矢量信号的个数是所有的信号处理现有技 术中都没有实现过的,因此是本发明的第一核心点。步骤S30的实现过 程将在下面参照图3进行详述。通过步骤S50获得的每一个原始独立矢 量信号的空间方向是发明的第二核心点,该每一个原始独立矢量信号的 空间方向的信息也是许多现有信号处理技术希望获得的信息。这里所说 的现有信号处理技术主要包括协方差矩阵、偏振分析及偏振滤波,以及 其它由它们发展起来的各类信号处理技术。但由于这些技术没有脱离矢 量的正交性假设,而实际应用领域的数字矢量信号存在广泛的非正交关系,因此现有信号处理结果偏差无法从根本上改善。步骤S50的实现过程将在下面参照图4进行详述。在上述处理的基础上,总体流程200在步骤S60中采用非正交波动 矢量仿射坐标变换而得到最后在步骤S80中将被输出的所有原始独立矢 量信号的时域波形(Wl, W2"..WN) (12) 以及矢量方向,,<^),(/ = 1,2,渴 (6)总体流程200的以上步骤构成了本发明的基本步骤和内容。图3是说明图2所示的本发明方法中的用于确定输入的合成矢量 信号中原始独立矢量信号个数的处理方法的流程图。参照图3,为了 分离包含多个原始独立矢量信号的合成矢量信号(和矢量信号),首先 必须确定和矢量信号中所包含的原始独立矢量信号的个数。步骤S30是 本发明的关键过程之一,它包括步骤S31-S37的时域处理技术和步骤 S40-S44的频率域处理技术。在步骤S30中,第一步骤S23是在预定的间窗wt内截取输入的合 成矢量信号子集f|wt,在三个不同的时间点ta、 tb和t。分别从信号子集中 选取不同分量的信号构成三个常矢量a、 b和c。其中对于三个不同的时 间点t" tb和te的选取原则,对于输入的合成矢量信号而言将遵从奈奎 斯特采样准则。在时域内,步骤S31是作为计算机程序的判断、控制过程,即如果 任意矢量a、 b和c分别为零,表明该采样时间点上的矢量信号为零。 此时,如果a、 b和c所在采样点的时间连续,那么进入步骤S32,该采 样时间段矢量信号的个数N=0。如果a、 b和c不为零,进入步骤S33的判断控制处理。a、 b和c 中任意两个矢量,如a和b的叉乘axb-O,则表示a、 b共线,即存在 一个非零矢量信号,随后进入步骤S34,确定独立的矢量个数N-1。如果axb^ 0,表示a、 b不共线,进入S35的判断控制过程。当 矢量的混合积(abc) = 0时,表示矢量a、 b和c处于同一个空间平面。 处理过程进入步骤S36,确定独立的矢量个数N二2。如果(abc) # 0,则进入步骤S37,确定输入数据中矢量的个数N》3。如果不同矢量信号包含不同的频率成分,则它们在频谱上就会存在 差异。通过频率域分析技术来检测矢量信号个数是本发明的另一个重要 核心部分,图3中的步骤S40-S44示出了通过频率域分析技术来检测矢 量信号个数的过程。其中将信号的频谱记为F,其功率谱记为F2。在图3的步骤S40中计算输入信号的功率谱F2|wt。功率谱中矢量 信号的矢量特征被完全保留。功率谱峰值直接反映信号的能量强弱。但 单个功率谱峰值可能并不能代表一个独立的矢量信号,因为一个矢量信 号可能包含不同的频率成份。在步骤S41检索到所有功率谱峰值,其个 数是Na。在步骤S42计算出所有功率谱峰值的矢量方向 e,(~),(/ = l,2"..N) (3) 步骤S43检索方向矢量相同的峰值个数,即方向矢量重合的次数 Nb。步骤S44计算原始独立矢量信号的个数N,即N-Na-Nb。图4是说明图2所示的本发明方法中的用于确定输入的合成矢量 信号中原始独立矢量信号空间方向的处理方法的流程图,即图2中的 步骤S50包括的全部的子步骤。在步骤S40中输入了合成矢量信号在时 间窗Wt内的一个子集flwt的功率谱F2|wt,该子集中的方向矢量相互独 立的峰值个数为N,由步骤S30给出。在步骤S51中计算独立谱峰值点方向矢量 ^(A伊),("1,2,…N)。 (3) 由于矢量信号中可能存在一定强度的噪音(矢量)干扰,功率谱峰 值的方向矢量并不完全与各个原始独立矢量信号的空间方向一致。步骤 S51计算出功率谱各个峰值的方向矢量,是各个原始独立矢量信号空间 方向的近似参考值。为了获得矢量信号准确的空间方向,还需要步骤S23 输入的合成矢量信号子集,步骤S52通过快速傅里叶变换FFT计算得到 谱矢量信号F|wt。步骤S53-S55是搜索矢量信号准确空间方向的子流程。其中,在步 骤53中,通过己知的矢量信号参考空间方向去分离谱矢量子集F|wt, 从而得到N个谱波形;在步骤54种计算各个谱波形的互相关值;然后执行步骤S55,在一定的空间范围内产生一组方向增量 (《d^),(/ = l,2,...N) (4) 在步骤S56中,将该组方向增量叠加在由步骤S51所给出的各个原始独立矢量信号方向矢量的初值上,形成一组新的方向矢量 靜+ d《,炉+ dp,),("l,2,…N) (15)重复执行由步骤S53-S56的子流程,直到在步骤S54中代表各个原始独立矢量信号的谱波形的互相关值达到极小值为止。随后该字流程转向步骤S57,确定此时的方向矢量<formula>formula see original document page 20</formula>就是最终要获得的矢量信号的方向矢量,即令<formula>formula see original document page 20</formula>一般而言,由步骤S53-S56形成的子流程的运算量与方向增量的大小相关。方向增量的取值应考虑输入的合成矢量信号的信噪比。噪音越大方向增量也应相对提高。运算量与方向增量的大小呈高次指数增长关系。图5是说明图2所示的本发明方法中的分离输入的合成矢量信号 重建原始独立矢量信号波形的处理方法的流程图。参照图5,它是在 图2中以步骤S60表示的本发明的最后一个处理步骤。在完成了上述步 骤S20、 S30和S50的处理子流程之后,就已经获得了将数字矢量信号 分离为原始独立矢量信号的所有数字矢量信号的基本信息,该基本信息 在步骤S24中输入。步骤S61是判断矢量个数N并控制执行流程的步骤,当选定时间 窗Wt内原始独立矢量信号的个数N小于等于3时,则转向步骤S62,直 接在时域中来实现矢量信号的分离。具体方法是将所有矢量信号的方向 矢量£,物),0' = 1,2,3) (6)带入下列波动矢量仿射坐标变换关系<formula>formula see original document page 20</formula>在步骤S80,得到所有独立矢量的时间波动过程,即输出的时域波形(,,4),,) (12)和每一个原始独立矢量信号的方向矢量£,(6>,伊),(/ = 1,2,3) (6)在步骤S61中,当判断在选定时间窗wt内输入的合成矢量信号f]wt 中的原始独立矢量信号的个数N大于3时,则转入步骤S62进行计算, 得到谱矢量Flwt,然后进入步骤S63,在频率域中按下列波动矢量仿射 坐标变换关系(W'Uf =(G)-l(F.^,F;.F.^J (7)分离谱矢量信号FIWt,得到频率域中的谱波形-(W, ( ), W2 (w),…WN (6))) ( 8)在步骤S64中,将分离后的谱波形作逆傅里叶变换,从而进入步骤 S80得到时间域波形和每一个原始独立矢量信号的方向矢量。前面已经详细介绍了根据本发明的矢量信号处理方法的实施例, 下面将参考附图6来描述执行所述方法的矢量信号处理系统。如图6所示,根据本发明一个实施例的矢量信号处理系统100 包括数字信号采集装置101、控制/存储装置102、由矢量数量确定 装置1031和矢量方向确定装置1032构成的矢量参数确定装置103、 矢量分离/重建装置104、以及输出装置105。具体地说,数字信号采集装置101是针对使用环境和被测对象 而选择的探测采样系统。它可以包括多个采集信道,每一道信号的探 测系统都包括多分量信号换能器、数字信号采集和数字编码传输系 统。其中,换能放大器首先将弹性波、声波、电磁波或水下压力波、 地震波和生物医学信号波等因应用场合与对象而异的矢量信号放大 并转换为电信号,通过多分量放大换能来确保矢量信号的信息不丢 失、不失真。并且在预定时窗内的n (n》3)个时间点对接收的合成 矢量信号进行采样,从而将数字信号采集将换能放大器获得的电信号 采集转换为数字信号。通过适当的有线或无线传输方式将采集到的数字信号传输到控 制/存储装置102,对数字编码的采样数据进行存储。在将采样数据 送入矢量参数确定装置103。在将采样数据送入矢量参数确定装置103的同时,控制/存储装 置102按照上述公式(1)和公式(2)并采用时域和频域结合的技术 来控制矢量参数确定装置103中的矢量数量确定装置1031来确定输 入的合成矢量中所包含的原始矢量的个数。具体地说,是采用时域和 频域结合的技术,根据所说的合成矢量信号的n (n》3)个采样的其 中任意选择的三个釆样来确定组成该输入合成矢量信号的原始独立 矢量信号的个数;并且该控制/存储装置102按照上述公式(3)至公 式(9)采用时域和频域结合的技术来控制矢量参数确定装置103中 的矢量方向确定装置1032来确定输入的合成矢量中所包含的原始矢 量的每一个的空间方向。同样在控制/存储装置102的控制下,矢量分离/重建装置104 根据来自矢量参数确定装置103的确定的矢量的数量和矢量的方向 参数,依据由上述公式(10)至(12)限定的波动矢量仿射坐标变换 方法来分离和重建出各个原始独立矢量信号。输出装置105可以是任何适合来输出图象的显示或打印装置。 产生的最终的结果,即期望的原始独立矢量信号将通过输出装置105 输出。控制/存储装置102控制整个系统的信息/信令的传输和操作并 存储采样和中间数据,是本发明实施例的控制和存储的核心部分。其 中不仅存储了采集的被测对象的原始数据采样、在程序控制下产生的 中间数据,而且存储反映上述的本发明方法的核心控制程序。事实上,输入了本发明的控制程序产品的计算机系统即可构成上 述的本发明的实施例的矢量信号处理系统100的一部分,并且是最主 要的部分。如同本领域技术人员所能理解的那样,无论通过计算机的 程序软件的方式还是通过固化了软件的计算机系统的方式来实施本发 明都是显而易见的。本发明的矢量信号处理方法和采用该方法的矢量信号处理系统 可以应用在多个领域的矢量信号分析和处理中。尤其是应用在通过对 合成矢量信号的测量和数据采集而获得组成该被测合成矢量的多个原 始矢量信号的场合。虽然已经以优选实施例描述了本发明,但本发明并不局限于上述 实施例,反之,还可以不脱离这里所附权利要求的范围来做出各种修 改。对所属技术领域的技术人员来讲,对本发明的这种修改和变更不 仅是显然的而且不脱离本发明的范围和精神。
权利要求
1. 一种数字矢量信号处理方法,用于分离和重建组成输入合成矢量信号的多个不同空间方向的原始独立矢量信号,其特征在于包括步骤在预定时窗内的n(n≥3)个时间点对接收的合成矢量信号进行采样;根据所说的合成矢量信号的n(n≥3)个采样的其中任意选择的三个采样来确定组成该输入合成矢量信号的原始独立矢量信号的个数;确定所说的各个原始独立矢量信号的空间方向;用波动矢量仿射坐标变换分离和重建出各个原始独立矢量信号。
2. 如权利要求l所述的矢量信号处理方法,其特征在于, 其中所说的任意选择的三个采样是连续采样或不连续采样,并且对于合成矢量信号进行采样的釆样频率满足奈奎斯特准则。
3. 如权利要求l所述的矢量信号处理方法,其特征在于, 其中所说的波动矢量仿射坐标变换分离和重建出各个原始独立矢量信号的步骤进一步包括步骤确定所说的输入合成矢量中各个独立的非正交矢量信号的空间 方向;将所说的各个矢量信号的方向矢量与输入合成矢量逐一点乘; 根据所说的各个非正交矢量信号的方向矢量构成的空间仿射坐标系来确定空间仿射坐标系的量度系数矩阵;分离和重建所说的合成矢量信号中各个原始独立矢量信号的波形,并由此确定所说的原始独立矢量信号的振幅、到时和相位参数。
4. 如权利要求l所述的矢量信号处理方法,其特征在于,其中所说的根据所说的合成矢量信号的n (n》3)个采样的其中 任意选择的三个采样来确定组成该输入合成矢量信号的原始独立矢 量信号的个数的步骤进一步包括步骤采用把计算矢量的叉乘和矢量的混合积的时域分析与计算矢量 的功率谱值的频域分析相结合的方式来确定组成该输入合成矢量信 号的原始独立矢量信号的个数。
5. 如权利要求4所述的矢量信号处理方法,其中采用计算矢量 的叉乘和矢量的混合积的时域分析来确定组成该输入合成矢量信号 的个数不大于3的原始独立矢量信号,其特征在于包括步骤以所说的任意三个采样点上取各个分量值构成常矢量a、b和c, 并对其中任意选择的常矢量a与b进行叉乘;当所述a与b叉乘的结果为零时,则确定在该两个采样点上只 包含1个原始独立矢量信号,而当所述a与b叉乘结果为非零时,则 确定在该两个采样点上包含点多于1个的原始独立矢量信号;计算a、 b和c的混合积;当所说的混合积的结果为零时,则确定在所说的三个采样点上 的原始独立矢量信号的个数不大于2个,而当所说的混合积的结果为非零时,确定在所说的三个采样点上的原始独立矢量信号的个数为3个。
6. 如权利要求4所述的矢量信号处理方法,其中采用计算矢量 信号的功率普值的频域分析来确定组成该输入合成矢量信号的个数 大于3的原始独立矢量信号,其特征在于包括步骤分别计算输入的合成矢量信号的各个分量的功率谱值;计算所述的计算出的功率谱值的所有的峰值的个数;根据所述的计算出的功率谱值在各个分量上的大小来计算功率 谱值的所有峰值的方向矢量;检索所说的功率谱值的所有峰值的方向矢量重合性,从而得到 重合的功率谱峰值个数;从所说的计算出的功率谱值的所有峰值的个数中减去所说的重合的功率谱峰值个数,从而获得原始独立矢量信号的个数。
7. 如权利要求l所述的矢量信号处理方法,其特点在于, 其中所说的确定所说的各个原始独立矢量信号的空间方向的步骤进一步包括第一步骤计算输入合成矢量信号中的原始独立矢量信号的功 率谱峰值的各个分量;第二步骤根据计算的功率谱峰值的各个分量来分别计算每一 个原始独立矢量的空间方向,并将如此计算的每一个原始独立矢量的 空间方向作为各个原始独立矢量信号空间方向的初始值;第三步骤计算所说的输入合成矢量信号(f)的傅里叶谱(F);第四步骤生成在一定的范围的一组空间方向增量;第五步骤根据产生的该一组空间方向增量来调整所说的原始 独立矢量信号的空间方向的初始值,以获得该原始独立矢量信号的空 间方向的修正值;第六步骤在N维空间中,将各个所述的空间方向的修正值以 及谱矢量信号(F)进行波动矢量仿射坐标变换,以便获得各个原始 独立矢量信号的谱波形;重复第四到第六步骤,并将重复后的原始独立矢量信号的谱波 形结果与重复前的原始独立矢量信号的谱波形结果比较,直到各个谱 波形的全部互相关值在给定的基矢量方向取得极小值为止,并将此时 的方向矢量作为所说的原始独立矢量信号的空间方向。
8. 如权利要求l所述的矢量信号处理方法,其特征在于, 在原始独立矢量信号的数量不大于三个的条件下,所说的用波动矢量仿射坐标变换分离和重建出各个原始独立矢量信号的步骤进 一步包括步骤;根据各个原始独立矢量信号的方向矢量和合成矢量信号(f), 采用三维波动矢量仿射坐标变换直接获得各个原始独立矢量信号的 时域信号波形;或,在原始独立矢量信号的数量大于三个的条件下,所说的用波动 矢量仿射坐标变换分离和重建出各个原始独立矢量信号的步骤进一 步包括步骤;根据各个原始独立矢量信号的方向矢量和合成矢量信号(f)的 频谱矢量信号(F),采用N (N>3)维波动矢量仿射坐标变换分离得 到各个原始独立矢量信号的频谱波形对得到的各个原始独立矢量信号的频谱波形作傅里叶反变换, 从而得到各个原始独立矢量信号的时域信号波形。
9. 一种采用权利要求1-8所述数字矢量信号处理方法的数字矢 量信号处理系统,用于分离和重建组成输入合成矢量信号的多个不同 空间方向的原始独立矢量信号,其特征在于包括数字信号采集装置,用于在预定时窗内的n (n》3)个时间点对 接收的合成矢量信号进行采样;矢量数量确定装置,用于根据所说的合成矢量信号的n (n》3) 个采样的其中任意选择的三个采样来确定组成该输入合成矢量信号 的原始独立矢量信号的个数;矢量方向确定装置,用于确定所说的各个原始独立矢量信号的 空间方向;矢量分离/重建装置,用波动矢量仿射坐标变换分离和重建出各 个原始独立矢量信号;控制/存储装置,控制整个系统的信息/信令的传输和操作并存 储采样和中间数据;和输出装置,输出由矢量分离/重建装置产生的各个原始独立矢量 信号。
10. —种计算机程序产品,其使得计算机执行如权利要求1-8所 述的数字矢量信号处理方法,以便分离和重建组成输入合成矢量信号 的多个不同空间方向的原始独立矢量信号。
全文摘要
一种矢量信号处理方法和采用该方法的系统,用于分离和重建组成一个合成矢量信号的多个不同空间方向的原始独立矢量信号。所说的方法包括步骤在预定的时窗内的n(n≥3)个时间点对接收的合成矢量信号进行采样,根据所说的合成矢量信号的采样来确定组成该输入合成矢量信号的原始独立矢量信号的个数;确定所说的各个原始独立矢量信号的空间方向;用波动矢量仿射坐标变换分离出各个原始独立矢量信号。公开的方法和系统同时涉及把时间域矢量信号的处理和频率域矢量信号的处理相结合。所处理的矢量信号可以是平面两分量、空间三分量以及多维空间多分量的观测数据。
文档编号G06F17/15GK101256552SQ20071008030
公开日2008年9月3日 申请日期2007年2月27日 优先权日2007年2月27日
发明者军 雷 申请人:北京大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1