一种优化利用改性粘土法消除赤潮的实施方法与流程

文档序号:12064448阅读:348来源:国知局
本发明涉及水环境内藻类灾害治理领域,具体地说涉及一种优化利用改性粘土法消除赤潮的实施方法。
背景技术
:近几十年来,赤潮频繁出现在近海、河口等敏感水域,一些有毒、有害赤潮严重影响了所在水域及邻近区域的水环境质量、生态安全,甚至会直接危害居民身体健康。为保护近海生态环境安全,保障海洋经济健康发展,特别是在一些受赤潮危胁或直接影响的水源地、养殖区、景观等敏感水域,迫切需求切实可行的可以减轻或消除赤潮危害的防控措施。改性粘土法是我国拥有自主知识产权的赤潮治理方法。该方法治理赤潮的基本原理是通过改性粘土颗粒与赤潮生物细胞形成絮凝体,然后在重力作用下沉降脱离水体,从而到达消除赤潮的效果。改性粘土法治理赤潮在近十年来得到了快速应用推广。目前在我国从北到南的不同水域都有成功应用改性粘土防治赤潮的成功实施案例,因此改性粘土法被认为是最有效可行的方法,并受到国内外专家普遍关注。改性粘土法防治赤潮时,通常是采用湿法将改性粘土材料喷洒到爆发赤潮水体表面,通过改性粘土材料与赤潮生物之间的快速絮凝后聚沉脱离水体,从而实现快速消除水体中过量的赤潮生物的目的。由于赤潮爆发时常常会影响较大面积的水域,为快速有效的控制灾害发展,机械化作业是提高改性粘土法现场施工作业效率的有效途径,专利CN101229933发明了一种不依赖于额外机械搅拌的、有效实现粘土法治理赤潮效率的机械装置,ZL201520279270.0发明了一种初步实现粘土法治理赤潮自动化作业的小型装置。这些应用技术发明的应用推动了改性粘土消除赤潮现场喷洒作业的机械化,大大提高了改性粘土法控制赤潮的作业效率。但赤潮现象的复杂性、多变性和难以准确预报的特点,给赤潮防控行动的工程化运行带来诸多的挑战。由于赤潮的生物特性差异和水流动力特点的共同影响,水体内的赤潮生物并不总是在爆发水域内均匀分布,常常以高浓度水团或条带型分散聚集,这种现象为提高改性粘土材料应用效率提出了新要求,必须在现场实施过程时时调整喷洒作业方式。另外,改性粘土与赤潮生物间的絮凝效率是决定该方法除藻效果的关键过程之一。为在现场赤潮消除工程实施过程达到最佳除藻效果,也需要依据改性粘土材料在赤潮水体中的絮凝效果对喷洒作业做针对性调整。而当前针对大范围赤潮的防控通常都采取工程化运行,通常对提高赤潮消除效率和降低改性粘土材料用量同时要求,从而实现工程效益最大化。为实现这些工程化运行的要求,迫切需要构建一套科学、成熟的现场实施方法,提高现场改性粘土喷洒作业的有效性、准确性和程序化,力求精细化作业,避免粗放式投药作业。技术实现要素:本发明目的在于提供一种优化利用改性粘土法消除赤潮的实施方法。为实现上述目的,本发明采用技术方案为:一种优化利用改性粘土法消除赤潮的实施方法,1)以监测获得的赤潮生物及改性粘土絮凝体的特征为依据,构建现场赤潮或赤潮消除的实时状态指标及其标准化量值分级体系(参见表1);2)通过现场实时状态指标及其标准化量值分级体系,获取待测水体中赤潮特征指标值的相应等级代码;3)利用上述等级代码与专家系统(参见表2)进行比对,得到优化利用改性粘土法消除赤潮的作业方案(参见表3)。利用上述获取的作业方案实施现场作业20-30min后,再测定水体内叶绿素活体荧光和改性粘土絮凝体的粒径,根据所观测叶绿素活体荧光值的变化情况初步判定作业的有效性;若水体中叶绿素活体荧光值降幅>15%,继续按照获取的作业方案实施;若水体中叶绿素活体荧光值降幅<15%,获取的作业方案实施消除效果不理想,再次按照现场实时观测结果与专家系统进行比对,得到优化利用改性粘土法消除赤潮的作业方案。上述实时获得待处理赤潮水体的相应作业方案,其实基于物理、化学或生物的方法快速、连续获取水体中赤潮生物和改性粘土絮凝体的相关特征参数,既可以是离线样品分析,也可以是在线连续测量,以在线连续测量方法为优。所述专家系统,该系统由赤潮特征、改性粘土絮凝体特征和改性粘土喷洒作业方案三部分构成,其中赤潮特征包括赤潮生物类型、赤潮分布、强度与密度等;改性粘土絮凝体特征包括改性粘土与赤潮生物形成絮凝体的粒级分布和浓度;作业方案是由喷洒方式、浓度、频次等组合后构成的改性粘土喷洒技术集成。所述现场实时状态指标及其标准化量值分级体系为通过计算水体中赤潮生物和改性粘土絮凝体的特征指标值,依据各指标值划分等级,构建得到现场实时状态指标及其标准化量值分级体系。所述赤潮和改性粘土絮凝体的特征指标中赤潮特征指标包括赤潮严重性、赤潮分布特性、赤潮生物个体形态、赤潮生物个体大小、赤潮生物运动能力;改性粘土絮凝体特征为改性粘土絮凝体的粒径特征(参见表1)。所述赤潮严重性分为低、中和高,相应代码为L、M和H,其中,测定赤潮生物活体荧光值给出的chl.a浓度<15ug/L为低,赤潮生物活体荧光值给出的chl.a浓度在15-30ug/L为中,赤潮生物活体荧光值给出的chl.a浓度>30ug/L为高;所述赤潮分布特性分为弥散型分布、水团及条带型分布,随水流或潮汐移动和赤潮集聚在一些水流不畅的局部区域,相应代码为D、C和G;所述赤潮生物个体形态分为球形或非球形,相应代码为S和N,其中,赤潮优势生物细胞为球形或近球形,其外周没有超过细胞径1/2的硬质凸起或硬质附属细胞器为球形,赤潮优势生物细胞为上述球形或近球形之外形态为非球形;所述赤潮生物个体大小分为小、中和大,相应代码为L、M和H,其中,赤潮生物细胞径<15um为小,赤潮生物细胞径处于15-100um为中,赤潮生物细胞径>100um为大;所述赤潮生物运动能力分为低、中和高,相应代码为L、M和H,其中,本身不具备运动能力,受水流等影响悬浮为低,本身不具备运动能力,但具有趋光性而悬浮;或者具有较弱的浮游能力为中,本身浮游能力较强为高;所述改性粘土絮凝体的粒径分为小、中和大,相应代码为L、M和H,其中,中值粒径(D50)<赤潮生物细胞径为小,中值粒径(D50)为赤潮生物细胞径的1-5倍为中,中值粒径(D50)为赤潮生物细胞径的5倍以上为大。上述赤潮生物特征,描述和度量导致赤潮爆发的藻类生物的大小、密度,以及所形成赤潮的分布样式,如水团型、弥散型等;常用测量方法有荧光法、计数法、分光光度法、色谱法等,快速获取现场赤潮爆发水体中的赤潮生物特征,如赤潮爆发的藻类生物的大小、密度,以及所形成赤潮的分布样式等,优选基于在线活体荧光法观测水体中的赤潮生物特征。上述改性粘土絮凝体特征,描述和度量改性粘土材料与赤潮生物结合后形成絮凝体的粒级、浓度等;常用测量方法有光学在线监测法、显微照相法、重量法等,快速获取改性粘土颗粒进入水体后与赤潮生物形成絮凝体的大小、浓度和粒级分布等形态特征,优选在线激光光散射法。所述相应等级代码顺序与上述测定赤潮和改性粘土絮凝体的特征指标顺序一致。所述作业方案是通过调整喷洒改性粘土的方式、浓度和强度等实现效果优化的目的,其中常用的喷洒改性粘土方式有潵雨式、倾注式和耕耘式等,以潵雨式为优;改性粘土浓度是指喷洒到赤潮水体表面前的改性粘土与海水预混合时的比例;喷洒改性粘土的强度是指在同一位点作业时的持续时间、间隔与喷洒次数等。表1现场实时状态指标及其标准化量值分级表表2改性粘土法消除赤潮的专家认知与决策表注:初次作业方案为根据现场赤潮特征给出的建议作业方案。作业进行20-30min后,同时观测作业现场水体表层1m以内的絮凝体粒度和叶绿素活体荧光值,如果叶绿素荧光值有15%以上降幅,建议按照现行作业方案继续作业;如果叶绿素降幅<15%,可以考虑调整作业方案。调整方案时,首先按照观测到的絮凝体粒径特征对作业效果进行一个分级(参考表1),然后再在此表中原赤潮代码及对应絮凝体特征行查询可以调整的作业方案。表3改性粘土喷洒作业方案代码喷洒方式喷洒强度喷洒浓度CPLL追击、潵雨式低频低CPLM追击、潵雨式低频中CPLH追击、潵雨式低频高CPML追击、潵雨式中频低CPMM追击、潵雨式中频中CPMH追击、潵雨式中频高CPHL追击、潵雨式高频低CPHM追击、潵雨式高频中CPHH追击、潵雨式高频高CHLL扫场、潵雨式低频低CHLM扫场、潵雨式低频中CHLH扫场、潵雨式低频高CHML扫场、潵雨式中频低CHMM扫场、潵雨式中频中CHMH扫场、潵雨式中频高CHHL扫场、潵雨式高频低CHHM扫场、潵雨式高频中CHHH扫场、潵雨式高频高CFLL局部集中、潵雨式低频低CFLM局部集中、潵雨式低频中CFLH局部集中、潵雨式低频高CFML局部集中、潵雨式中频低CFMM局部集中、潵雨式中频中CFMH局部集中、潵雨式中频高CFHL局部集中、潵雨式高频低CFHM局部集中、潵雨式高频中CFHH局部集中、潵雨式高频高喷洒强度是指单位时间内在同一水面重复喷洒改性粘土的次数,低频为<2次/小时,中频为2-5次/小时,高频为>5次/小时。改性粘土法治理赤潮时,通常预先在容器内将改性粘土材料与海水混合形成一定浓度的稀浆,然后再喷洒到赤潮水体表面。喷洒浓度是指该稀浆状改性粘土材料的浓度,低浓度为<100g/L,中浓度为100-200g/L,高浓度为>200g/L。本发明所具有的优点提供了一种优化利用改性粘土法消除赤潮作业方案的筛选方法。该方法基于现场实时获得的水体内赤潮生物和改性粘土絮凝体特征,经过改性粘土消除赤潮作业指导专家系统的程序化决策后提出改性粘土喷洒作业优化方案,从而提高利用改性粘土法治理赤潮现场实施时的作业精细化和程序化,有助于提高利用改性粘土法治理赤潮的现场作业效率,为赤潮防治工程向自动化施工方向发展提供了基础。当然,本发明中的实施方法不仅适用于改性粘土法治理赤潮,当然也适用于未改性的天然粘土法治理赤潮,可以有效提高这些粘土类材料治理赤潮的能效。附图说明图1为本发明实施例提供的基于专家系统的赤潮消除作业指导运行结构图。具体实施方式为了使本发明的目的、技术方案以及优点更清楚明了,以下实施例,对本发明进一步详细说明,应当理解,为此所描述的具体实施例仅仅用于解释本发明,并不用于限制本发明。本发明优化利用改性粘土法消除赤潮的现场实施效果,提高工程实施中改性粘土的除藻效率,针对现有工程实施中因缺少精细化作业方法而导致消除作业目标性不强、用药量粗放等问题,本发明提供了一种高效优化改性粘土法消除赤潮的实施方法。该方法基于一个具备智能化信息处理能力的赤潮防治专家系统,依据现场实时获取的水体中赤潮生物和改性粘土絮凝体的特征指标值,经过专家系统程序化决策后提出优化的作业方案,并根据现场特征指标值的变化实时调整作业方案。运用该方法可以实现改性粘土法治理赤潮现场实施时的作业精细化和程序化,有助于提高利用改性粘土法治理赤潮的现场作业效率。实施例赤潮异弯藻是在我国近海养殖区常见的赤潮生物,通过显微镜镜检发现细胞为椭圆形,结合荧光法、计数法、分光光度法、色谱法测定个体长约8~25μm、宽约6~15μm,具有较强浮游能力,爆发赤潮时常常蔓延在整个海区。青岛某近岸海湾内爆发了赤潮异弯藻赤潮,现场采用在线活体荧光计监测到水体中的叶绿素活体荧光值>30ug/L。对照表1,该区域赤潮分级量化代码判断如下:属严重赤潮(H)、弥散型分布(D)、球形细胞单体(S)、细胞较小(L)、较强浮游能力(H),在各项指标前增加字母B,按照以上顺序得出该次赤潮异弯藻赤潮的代码为BHDSLH。在表2中查询赤潮代码为BHDSLH的建议消除方案为CHHM,序号332。在表3中查询CHHM的改性粘土喷洒作业方案为喷洒方式采取扫场、潵雨式,高频喷洒强度和中等喷洒浓度,现场实施作业可以采用该方案展开。在现场施工30分钟后,采用水下激光光散射粒度仪在作业区表层1米内测得的絮凝体中值粒径(D50)为45um,如果水体中的叶绿素活体荧光值降至25ug/L以内,降幅>15%,可以继续按照该作业方案作业。但若水体中叶绿素活体荧光值仍>25ug/L,降幅<15%,可以初步判定所采用作业方案消除效果不理想,需要及时调整作业方案。对照表1中改性粘土絮凝体粒径特征,絮凝体评定为中(M),在表3中赤潮代码为BHDSLH,絮凝体评级为M行可以查询到建议调整作业方案为CHHH,该方案代码为喷洒方式采取扫场、潵雨式,高频喷洒强度和高喷洒浓度。现场作业时可以调整为该作业方式。通过现场在线观测和改性粘土消除赤潮作业指导专家系统决策,快速为现场赤潮消除作业提供了科学的作业方案,并且可以根据现场实施效果及时优化作业方案,非常符合灾害应急控制迅速反应、快速见效的要求;另外开创了改性粘土法治理赤潮的程序化运行,为赤潮防治工程向自动化施工方向发展提供了基础。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1