一种高精度空地井不同空间重磁数据变换方法与流程

文档序号:15350156发布日期:2018-09-04 23:14阅读:331来源:国知局

本发明属于地球科学技术领域,更具体地说,尤其涉及一种高精度空地井不同空间重磁数据变换方法。



背景技术:

针对矿产、油气资源潜力区域,为了了解地下物质的不同深度上物质的分布,往往在一个地区开展航空、地面、井中重磁测量,从而利用不同空间的数据联合完成地下地质体的深度及物性反演工作,可有效地提高解释结果的精度和可靠性。但是在实际勘探中,不同空间数据的范围和比例尺是不一样的,从而大多时候需要利用其它空间的数据进行换算填补缺失的数据,所以不同空间重磁数据变换技术是进行空-地-井位场数据联合反演的前提,其变换精度也是制约反演精度的主要因素。

不同空间位场数据的获得是采用向上和向下延拓技术来实现,向上延拓采用频率域公式来进行,具有计算速度快、受噪声干扰下小的优点;向下延拓若采用频率域技术进行是不稳定的,且会明显增大噪声的干扰,使测得曲线发生强烈地跳动,从而造成测量精确度低,测得数据不准确的问题,越来越不能满足人们的需求,不利于广泛的推广和普及。



技术实现要素:

本发明的目的是为了解决现有技术中存在的缺点,而提出的一种高精度空地井不同空间重磁数据变换方法。

为实现上述目的,本发明提供如下技术方案:一种高精度空地井不同空间重磁数据变换方法,包括如下步骤:

s1、首先在需要勘测地点的地片面计算再地表面的原始异常数据t,并同时勘测向上延伸的异常数据t-h;

s2、然后利用泰勒展开式方程来计算异常的二阶和四阶垂直导数,并且利用测得的导数来和泰勒展开式计算向下延伸的初始异常数据

s3、然后根据公式计算下界面向上延伸地平面后的异常数据t1,并把t1与原始异常数据t进行比较得出误差数据δt1;

s4、如果δt1均方差大于ε时,则重复步骤2和步骤3来重复计算过程,直到测得的δtm均方差小于ε时输出下延伸异常数据

优选的,所述步骤s1中观测面上重磁异常之间的关系式为:

其中,t0(x,y,0)和t(x,y,h)表示高差为h的两个观测面上的异常,当h>0时表示向上延拓,当h<0时表示向下延拓,对公式(1)进行fourier变换可得到

其中,表示异常t0(x,y,0)的fourier谱,(kx,ky)是分别表示x和y方向上的波数,弥为延拓因子。

优选的,所述步骤s2中泰勒展开式计算深度为h界面上的异常表达式为:

其中,t(x,y,h)是观测面h上的异常,h为延拓高度,t(x,y,0)是观测面上异常,向上延拓运算的泰勒展开式可表示为:

其中,t(x,y,-h)为观测面-h上的异常,将式(3)和(4)相加后可得:

优选的,所述步骤s2中对初始异常数据进行技术的方程式为:

且采用laplace方程来计算异常的二阶和四阶垂直导数:

优选的,所述步骤s3中计算t1与原始异常数据t的公式为:

δt1(x,y,0)=t(x,y,0)-t1(x,y,0)(8)

利用公式(6)将δt1向下延拓高度h,可以得到:

其中,δt1(x,y,h)为异常δt1(x,y,0)下延h后异常,δt1(x,y,-h)为异常δt1(x,y,0)上延h后异常,δt1(x,y,h)作下界面异常的一个修正量,则下界面异常可改写为:

t1(x,y,h)=t(x,y,h)+δt1(x,y,h)(10)。

优选的,所述步骤s4中计算过程,直至δtm(x,y,0)的均方差小于给定值ε,因此下界面h上的最终异常为:

tm(x,y,h)=t(x,y,h)+δt1(x,y,h)+…+δtm(x,y,h)(11)。

本发明的技术效果和优点:本发明提供的一种高精度空地井不同空间重磁数据变换方法,与传统的变换方法相比,本发明以通过泰勒级数展开式证明了向下延拓计算可通过向上延拓和水平导数之和来完成,向上延拓和水平导数的计算是稳定的,受噪音影响较小,且为了弥补导数阶次为有效项造成的误差,采用一种异常向下延拓的水平导数迭代法,有效地增强了计算结果的稳定性和准确性,该发明通过泰勒级数展开式证明了向下延拓计算可通过向上延拓和水平导数之和来完成,向上延拓和水平导数的计算是稳定的,受噪音影响较小,且为了弥补导数阶次为有效项造成的误差,采用一种异常向下延拓的水平导数迭代法,有效地增强了计算结果的稳定性和准确性。

附图说明

图1为本发明的向下延拓迭代过程工艺流程图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

如图1所示的一种高精度空地井不同空间重磁数据变换方法,包括如下步骤:

s1、首先在需要勘测地点的地片面计算再地表面的原始异常数据t,并同时勘测向上延伸的异常数据t-h;

s2、然后利用泰勒展开式方程来计算异常的二阶和四阶垂直导数,并且利用测得的导数来和泰勒展开式计算向下延伸的初始异常数据

s3、然后根据公式计算下界面向上延伸地平面后的异常数据t1,并把t1与原始异常数据t进行比较得出误差数据δt1;

s4、如果δt1均方差大于ε时,则重复步骤2和步骤3来重复计算过程,直到测得的δtm均方差小于ε时输出下延伸异常数据

具体的,所述步骤s1中观测面上重磁异常之间的关系式为:

其中,t0(x,y,0)和t(x,y,h)表示高差为h的两个观测面上的异常,当h>0时表示向上延拓,当h<0时表示向下延拓,对公式(1)进行fourier变换可得到

其中,表示异常t0(x,y,0)的fourier谱,(kx,ky)是分别表示x和y方向上的波数,称为延拓因子。

具体的,所述步骤s2中泰勒展开式计算深度为h界面上的异常表达式为:

其中,t(x,y,h)是观测面h上的异常,h为延拓高度,t(x,y,0)是观测面上异常,向上延拓运算的泰勒展开式可表示为:

其中,t(x,y,-h)为观测面-h上的异常,将式(3)和(4)相加后可得:

具体的,所述步骤s2中对初始异常数据进行技术的方程式为:

且采用laplace方程来计算异常的二阶和四阶垂直导数:

具体的,所述步骤s3中计算t1与原始异常数据t的公式为:

δt1(x,y,0)=t(x,y,0)-t1(x,y,0)(8)

利用公式(6)将δt1向下延拓高度h,可以得到:

其中,δt1(x,y,h)为异常δt1(x,y,0)下延h后异常,δt1(x,y,-h)为异常δt1(x,y,0)上延h后异常,δt1(x,y,h)作下界面异常的一个修正量,则下界面异常可改写为:

t1(x,y,h)=t(x,y,h)+δt1(x,y,h)(10)。

具体的,所述步骤s4中计算过程,直至δtm(x,y,0)的均方差小于给定值ε,因此下界面h上的最终异常为:

tm(x,y,h)=t(x,y,h)+δt1(x,y,h)+…+δtm(x,y,h)(11)。

综上所述:本发明提供的一种高精度空地井不同空间重磁数据变换方法,与传统的变换方法相比,本发明以通过泰勒级数展开式证明了向下延拓计算可通过向上延拓和水平导数之和来完成,向上延拓和水平导数的计算是稳定的,受噪音影响较小,且为了弥补导数阶次为有效项造成的误差,采用一种异常向下延拓的水平导数迭代法,有效地增强了计算结果的稳定性和准确性,该发明通过泰勒级数展开式证明了向下延拓计算可通过向上延拓和水平导数之和来完成,向上延拓和水平导数的计算是稳定的,受噪音影响较小,且为了弥补导数阶次为有效项造成的误差,采用一种异常向下延拓的水平导数迭代法,有效地增强了计算结果的稳定性和准确性。

最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1