一种基于数字图像的大气参数反演观测方法与流程

文档序号:16506192发布日期:2019-01-05 09:02阅读:920来源:国知局
一种基于数字图像的大气参数反演观测方法与流程

本发明涉及大气观测科学技术领域,具体说是一种基于数字图像的大气参数反演观测方法。



背景技术:

当前对大气参数和环境参数的检测对数值预报、环境监测、农业气象、交通疏导等领域具有重大意义。而长期以来边界层大气参数的观测都是以“器测法”为主,在时间空间分辨率、测量成本、测量精度等方面都需要进一步完善,这对于常规观测资料缺乏或观测技术落后的地区,如西藏,西太平洋等地区有着极大的限制。近年来,通过对不同天气条件下近地面同一场景的数字图像在色彩饱和度、边界轮廓等方面的区别研究,发现图像各特征与大气能见度、近地面水汽参数、pm2.5、pm10、近地面温度垂直分布等在内的多种大气参数有着相互作用关系。因此利用数字图像反演边界层大气参数已经成为大气探测领域的热点问题。目前,器测法主要包括透射法、散射法。其中,透射法是通过测量光在一段较长空气柱中的衰减,计算透过率和消光系数,再根据柯西米德定律推导出能见度值,但由于透射仪收发装置占用了大量空间,因而限制了其作用范围。散射法是测量一个小体积空气对光的散射强度,从而计算出消光系数和能见度以及pm2.5、pm10和水汽等参数,但其设备价格高昂,调试工序复杂,所以存在着无法大规模推广使用的缺陷。

针对上述测量方法所存在的占用空间大,监测样本高等问题,国内外学者通过研究数字图像特征与大气参数的对应变化关系,开辟了一种通过数字图像反演出大气参数的道路。

早在2010年,一种基于高通滤波器的城市大气能见度监测数字图像分析方案被发明使用。该方法通过haar函数锐化图像,将合成图像、真实图像和实际大气图像进行对比分析以得到相关城市的大气能见度。然而,该方法对于不同场景需要重构关系式,因此限制了该方法的适用性。现在,在应用大气辐射传输模型获取模拟数据后并,可通过bp神经网络方法进行训练得到反演模型,实现大气参数的反演。基于此,本发明将深度学习引入至大气参数反演的研究,构建了基于图像特征与大气参数之间的相互影响关系的大气参数反演模型。



技术实现要素:

本发明的目的是针对上述现有技术中的不足,提供一种基于数字图像的大气参数反演观测方法。

本发明的目的是通过以下技术方案实现的:

一种基于数字图像的大气参数反演观测方法,包括以下具体步骤:

步骤1,对卫星、航拍及相机等设备获取到的图像进行rgb转换,并对转换后的rgb分量图像进行去噪、归一化预处理,转化为hsi分量图像;同时,实时监测大气参数,所述大气参数包括风速、温度、湿度、pm2.5和pm10,得到大气参数向量fk;

步骤2,在hsi分量图像中分别提取峰值信噪比、对比度、空间频率三种全局特征f2,f2=(fpsnr,fcr,fsf),式中,fpsnr,fcr,fsf分别为峰值信噪比、对比度、空间频率的对应值;

步骤3,利用标准正态分布函数作为权值对hsi分量图像加权,实现对hsi分量图像的分块处理,并对各分块区域图像提取平均方向特征、饱和度特征和平均强度特征;利用bovw模型实现特征向量聚类,并通过计算欧式距离为特征向量加权,最终获得整幅图像的局部特征向量f1,;

步骤4,建立alexnet深度学习网络模型,设t1=f1,t2={f2,fk},将t1,t2同时送入alexnet网络模型中进行并行训练学习,输出训练学习后的模型大气参数;

步骤5,将模型大气参数与实测数据进行误差分析,根据更新准则进行网络参数迭代更新,最终实现大气参数反演;

步骤6,获取实景图像,通过所述大气参数反演观测模型直接得到大气参数。

本发明进一步的设计方案中,步骤3中,利用bovw模型实现特征向量聚类的具体步骤为:

步骤3.1,通过式(1)的k-means聚类算法对提取的局部多特征向量完成聚类,实现特征的筛选及分类,使特征表达更具代表性和目标性,

式中:m为视觉词典大小、i为归类个数、μ为聚类中心、x为待聚类集合、j为聚类中心个数;

步骤3.2,通过式(2)进行平均池化操作,实现局部多特征向量的聚合,保

证向量长度统一;

式中:m为局部多特征向量个数;scj为编码后的矩阵中的元素;

步骤3.3,特征向量加权,设图像的中心坐标为(x0,y0),第k(k=1,2…,9)个分块区域图像的中心坐标为(xk,yk),则坐标点的坐标距离为:确定第k(k=1,2…,9)个分块区域图像的加权特征向量:得到整幅图像的局部特征向量f1,即的集合。

本发明进一步的设计方案中,步骤4中所述alexnet深度学习网络模型具体学习流程为:

步骤4.1:输入层,在完成步骤1、步骤2和步骤3的数据初始化后,利用alexnet深度学习网络可多gpu同步训练的特性,将t1,t2同时送入alexnet深度学习网络进行多gpu同步并行训练;

步骤4.2:隐藏层,由卷积层、池化层和激活函数组成,t1,t2通过五层卷积、两层池化实现图像特征的进一步提取及降采样处理,并通过relu激活函数提高网络各层之间的非线性关系。

步骤4.3:全连接层,对经过隐藏层处理后的特征进行综合拟合,并对数据进行dropout处理;

步骤4.4:输出层,大气参数的向量输出函数为:

式中:wk为权重系数,φj为神经单元输出向量,θk为偏移量。

本发明进一步的设计方案中,步骤5中的误差分析采用最小均方误差,其公

式定义如下:

本发明进一步的设计方案中,步骤5中的更新准则为:

wi+1=wi+vi+1(6)

式中:i是迭代指数,v是动力变量,ε是学习率,是目标关于w对wi的导数在第i批样例上的平均值。

本发明具有以下突出的有益效果:

本发明设备成本低、适用性强、精度高等优点,适用于对相对湿度,风速与pm2.5等大气参数的反演检测,并以此为基础建立图标,寻找大气参数之间的相对关系。

附图说明

图1是实施例中大气参数反演观测方法实现框图;

图2是实施例中大气参数反演观测方法;

图3是实施例中alexnet深度学习网络模型建模框图;

具体实施方式

下面结合附图及实施例对本发明作进一步说明。

实施例

参见附图1和附图2,一种基于数字图像的大气参数反演观测方法,包括以下具体步骤:

步骤1,对卫星、航拍及相机等设备获取到的图像进行rgb转换。为增强大气参数反演模型的适用性,降低原始数据采集的难度及成本,使得反演模型更具普适性,对rgb分量图像进行去噪、归一化预处理,将一幅分辨率为m×n的数字图像转换为hsi分量图像;同时,实时监测大气参数,所述大气参数包括风速、温度、湿度、pm2.5和pm10,得到大气参数向量fk;

步骤2,在hsi分量图像中分别提取峰值信噪比、对比度、空间频率三种全局特征f2,f2=(fpsnr,fcr,fsf),式中,fpsnr,fcr,fsf分别为峰值信噪比、对比度、空间频率的对应值;

步骤3,利用标准正态分布函数作为权值对对hsi分量图像加权,实现对hsi分量图像的分块处理,得到9块分块之后的区域图像,对于图像的第k(k=1,2…,9)个分块区域图像,分别对s、h、i分量图像提取平均方向特征,饱和度特征和平均强度特征,从而得到第k个分块区域图像的多特征向量:

利用bovw模型实现特征向量聚类,并通过计算欧式距离为特征向量加权,最终获得整幅图像的局部特征向量f1;

利用bovw模型实现特征向量聚类的具体步骤为:

步骤3.1,通过式(1)的k-means聚类算法对提取的局部多特征向量完成聚类,实现特征的筛选及分类,使特征表达更具代表性和目标性,

式中:m为视觉词典大小、i为归类个数、μ为聚类中心、x为待聚类集合、j为聚类中心个数;

步骤3.2,通过式(2)进行平均池化操作,实现局部多特征向量的聚合,保证向量长度统一;

式中:m为局部多特征向量个数;scj为编码后的矩阵中的元素;

步骤3.3,特征向量加权,设图像的中心坐标为(x0,y0),第k(k=1,2…,9)个分块区域图像的中心坐标为(xk,yk),则坐标点的坐标距离为:确定第k(k=1,2…,9)个分块区域图像的加权特征向量:得到整幅图像的局部特征向量f1,即的集合。

步骤4,建立alexnet深度学习网络模型,设t1=f1,t2={f2,fk},将t1,t2同时送入alexnet网络模型中进行并行训练学习,输出训练学习后的模型大气参数;

参见附图3,alexnet网络模型具体学习流程为:

步骤4.1:输入层,在完成步骤1、步骤2和步骤3的数据初始化后,利用alexnet深度学习网络可多gpu同步训练的特性,将t1,t2同时送入alexnet深度学习网络进行多gpu同步并行训练;

步骤4.2:隐藏层,由卷积层、池化层和激活函数组成,t1,t2通过五层卷积、两层池化实现图像特征的进一步提取及降采样处理,并通过relu激活函数提高网络各层之间的非线性关系;

步骤4.3:全连接层,全连接层共三层,都各有4096个神经元,对经过隐藏层处理后的特征进行综合拟合,并对数据进行dropout处理;

步骤4.4:输出层,大气参数的向量输出函数为:

式中:wk为权重系数,φj为神经单元输出向量,θk为偏移量。

步骤5,将模型大气参数与实测数据进行误差分析,根据更新准则进行网络参数迭代更新,最终实现大气参数反演;

误差分析采用最小均方误差,其公式定义如下:

更新准则为:

wi+1=wi+vi+1(6)

式中:i是迭代指数,v是动力变量,ε是学习率,是目标关于w对wi的导数在第i批样例上的平均值。

步骤6,获取实景图像,,通过所述大气参数反演观测模型直接得到大气参数。

以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1