一种基于聚类融合算法的双模态脑肿瘤MRI分割方法与流程

文档序号:17542496发布日期:2019-04-29 14:50阅读:230来源:国知局
一种基于聚类融合算法的双模态脑肿瘤MRI分割方法与流程

本发明涉及医学图像分析技术领域,具体为一种基于聚类融合算法的双模态脑肿瘤mri分割方法。



背景技术:

脑肿瘤列肿瘤相关性死亡的首位病因,其中胶质瘤是成人中最常见的原发性脑肿瘤,占成人恶性原发性肿瘤的70%,平均存活时间为1年,脑肿瘤具有生长速度快、复发率高和致残率高等特点,因此早期诊断和治疗能够减少对患者造成的痛苦,在所有影像学诊断方法中,核磁共振成像被认为是诊断脑肿瘤最敏感的方法,具有对比度高和无创的优点,mri脑肿瘤分割为神经病理学分析提供了有价值的信息,可以辅助于规划治疗策略、检测疾病进展和预测患者预后。

mri脑肿瘤分割具有一定的技术难度,主要体现在以下方面:(1)胶质瘤可能会出现在大脑的任何位置,其形状、结构和大小各不相同,(2)部分高级别的胶质瘤,显弥漫、浸润性生长,在图像中表现为肿瘤部位和周围脑组织的灰度值梯度小,边界模糊,(3)脑组织的结构复杂,正常的脑组织包括灰质、白质、脑室和脑脊液等,病变组织包括肿瘤和水肿区域,其中肿瘤又包括坏死区、增强区和非增强区,(4)由于mri采集设备和参数不同、外界噪声和患者个体差异等原因,导致个体图像差异较大,通过调整mri图像的测量参数和注射造影剂,可以获得多种模态的mri,常见的模态有,t1加权、t2加权、t1增强和flair,不同的模态强调信息各有不同,结合多模态的信息有助于解决以上技术难点,图像分割方法分为有监督分割和无监督分割,目前用于mri的有监督分割方法主要有基于卷机神经网络,和基于地图集的方法,有监督分割需要大量的人工标注数据来训练模型,但是人工标注数据和训练模型的过程耗费很多人力、资源和时间,而无监督方法具有省时省力,适用性广等优点,基于聚类的无监督方法以像素点为样本,根据其特征分为若干的类,同一个类别中的像素点彼此相似,距离小,与其他类别中的像素点相异,距离大。

目前常用的聚类方法有k均值聚类、模糊c均值聚类、谱聚类、混合高斯模型和层次聚类等,有学者提出了水平集与k均值聚类结合的脑肿瘤分割方法,这种方法初始化水平集轮廓对后续结果有影响,需要调整能量函数的参数,但是脑肿瘤图像个体间差别很大,很难找到对所有图像都合适的参数,对于脑肿瘤mri病变区分割的问题,k均值聚类相比于其他聚类方法,速度更快,算法更简单高效,然而k均值聚类不同的距离函数对图像分割的影响较大,单一的距离函数不能够满足所有类型图像的分割,现有的基于聚类的图像分割方法中,将像素点聚为若干类簇,但是如何从若干类簇中自动选择目标区域仍待解决,而且聚类结果中通常包含大量噪声点和错误分类的像素点,本发明提出了多种距离函数融合的k均值聚类方法,可以从分割后的图像中自动识别病变区域,以及有效去除噪声点的后处理方法。



技术实现要素:

(一)解决的技术问题

针对现有技术的不足,本发明提供了一种基于聚类融合算法的双模态脑肿瘤mri分割方法,具备能够实现简单快速的无监督脑肿瘤图像分割等优点,解决了现有基于聚类的脑肿瘤mri分割方法,算法复杂,速度较慢,参数较多,k均值聚类简单快速,但是效果不稳定,对不同mri切片的分割效果参差不齐的问题。

(二)技术方案

为实现上述能够实现简单快速的无监督脑肿瘤图像分割的目的,本发明提供如下技术方案:一种基于聚类融合算法的双模态脑肿瘤mri分割方法,包括以下步骤:

步骤1输入肿瘤患者的不同模态图像,包括t2加权和flair图像,对输入的图像进行灰度值归一化;

步骤2筛选图像中脑部区域对应的像素点,提取像素点的多模态的邻域像素点灰度值作为该像素点的特征;

步骤3结合三种距离的k均值聚类对像素点分类,自动调整聚类数目;

步骤4从若干类中自动选出包含肿瘤的类;

步骤5使用一系列形态学处理,除去错误分类的像素点,精确提取病变区,包括肿瘤和水肿。

优选的,将图像灰度范围统一线性归一化为0至255的范围,去除背景区域的像素点,只计算包含脑区的部分(非零区),如此便组成了n×p的样本空间,其中n为待聚类的像素点数,p为特征维数。

优选的,对像素点聚类的三种距离具体为:平方欧氏距离、余弦距离和城市街区距离。

优选的,基于聚类融合算法的算法进一步细化如下:

stpe1:输入样本空间s,样本为n个像素点,根据t2加权和flair图像特点,病变区域在两图中均显高亮度,白质在两图中均显较低亮度,灰质和脑室在t2加权图中显高亮度而在flair图中显低亮度,故设置k均值算法初始聚类数k=3,从n个样本中随机选取k个类簇的聚类中心计算每个样本到聚类中心的平方欧氏距离:

stpe2:将每个样本划分到距离值最小的聚类中心的类簇中,计算每个类簇中样本的平均值,作为新的聚类中心:

stpe3:其中表示第t次迭代聚类中心的第k个类簇,表示第k个类簇中样本的个数,这里的求和是指类簇中所有元素在每列属性上的和,是一个p维向量,表示为:

ck=(ck,1,ck,h,…,,ck,h)(3)

stpe4:如此循环迭代,直至t=t时停止迭代,得到k个最终聚类中心计算n个样本与k个聚类中心的距离,得到大小为n×k的距离矩阵dsqe,元素表示i个样本到j个聚类中心的距离,其中i=1,…,nj=1,…,k,第一次聚类中k=3,将样本分为3类,将(1)式平方欧氏距离换为余弦距离:

stpe5:重复上述算法t次迭代得到距离矩阵dcos,再将平方欧氏距离换为城市街区距离:

j为x和的第j维,重复上述算法t次迭代得到距离矩阵dcb。

stpe6:将dsqe,dcos,dcb中相应类别编号对应,将用三种距离聚类的样本定位至原图中的像素点,由此分别获得三种矩阵对应的三个聚类结果图,首先,k类像素点中在flair图像上平均灰度值最大的一类,记为类别1,距离矩阵的第1行表示类别1的聚类中心,接下来,计算剩余聚类中心与第一类聚类中心的距离,按照距离由小到大的顺序,分别记为类别2到类别k,对应于距离矩阵的第二至第k列,最后,得到了列换序后的矩阵dsqe*,dcos*,dcb*,对三个距离矩阵各个元素求和得到dadd:

dadd=dsqe*+dcos*+dcb*(6)

将样本x归为与其距离最小的聚类中心的类别。

(三)有益效果

与现有技术相比,本发明提供了一种基于聚类融合算法的双模态脑肿瘤mri分割方法,具备以下有益效果:

该基于聚类融合算法的双模态脑肿瘤mri分割方法,通过利用了不同mri模态的成像特点,结合不同模态的信息和邻域信息,提高分割的准确度,在k均值算法中结合使用三种距离计算方法,改善了使用单个距离分割效果不稳定的情况,对于来自不同设备的图像具有鲁棒性,能够自动识别病变区域,本发明提出的后处理方法,有效的提升了分割的准确率,从而达到了算法实施简单、高效和运算速度块的目的。

附图说明

图1是本发明的多模态mri脑肿瘤图像无监督分割方法的总体流程图。

图2是本发明改进的k均值聚类算法的流程图;

图3是本发明实施例的示例性流程示意图;

图4是本发明的方法中形态学操作的实施例的示例性流程示意图;

图5是本发明在brats2015真实临床数据上的脑肿瘤分割结果示意图;

图6是本发明算法在10个脑肿瘤图像的相似系数。

具体实施方式

本发明以脑肿瘤分割的应用为目标,从分割结果中提取肿瘤特征,用于制定治疗计划、分析肿瘤生长趋势和治疗效果评估,同一组织在不同模态的磁共振图像上有不同的灰度范围,本发明结合两种模态有效区分病变和正常区域,并结合像素点的邻域像素信息,使病变区边界更精确,本发明改进了k均值聚类算法,结合了三种距离计算公式,提升了算法的稳定性和精确度,本发明提出的形态学后处理方法能够有效提升分割精度。

输入同一个病人的t2加权和flair两个模态的图像,由于图像来源于不同的设备,导致图像灰度范围不一致,故将图像灰度范围统一线性归一化为0至255的范围,筛选有用像素点,提取像素点的特征,去除背景区域的像素点,只计算包含脑区的部分(非零区),由于背景部分的灰度值为0,只需要对脑区的像素点聚类,而脑区的面积仅占整幅图的三分之一以下,去除背景部分可以大幅度减小计算量,提升计算速度,以提取出的像素点作为样本,以每个像素点及其周围相邻的8个像素点分别在t2加权和flair图像上的灰度值作为特征,即每个像素点用18维特征描述,用相邻像素点灰度值描述当前像素点,有助于找出病变区的边界,排除异常值噪声点的干扰,如此便组成了n×p的样本空间s,其中n为待聚类的像素点数,p为特征维数,基于三种距离函数的k均值算法对像素点聚类,即对图像进行分割,由于mri个体间差异较大,使用单一距离在不同图像之间聚类效果差异大,故本发明融合三种距离对像素点聚类,这三种距离分别是:平方欧氏距离、余弦距离和城市街区距离。

输入样本空间s,样本为n个像素点,根据t2加权和flair图像特点,病变区域在两图中均显高亮度,白质在两图中均显较低亮度,灰质和脑室在t2加权图中显高亮度而在flair图中显低亮度,故设置k均值算法初始聚类数k=3,从n个样本中随机选取k个类簇的聚类中心计算每个样本到聚类中心的平方欧氏距离;

将每个样本划分到距离值最小的聚类中心的类簇中,计算每个类簇中样本的平均值,作为新的聚类中心:

其中表示第t次迭代聚类中心的第k个类簇,表示第k个类簇中样本的个数,这里的求和是指类簇中所有元素在每列属性上的和,是一个p维向量,表示为:

ck=(ck,1,ck,2,…,,ck,p)(3)

如此循环迭代,直至t=t时停止迭代,得到k个最终聚类中心计算n个样本与k个聚类中心的距离,得到大小为n×k的距离矩阵dsqe,元素表示i个样本到j个聚类中心的距离,其中i=1,…,nj=1,…,k,第一次聚类中k=3,将样本分为3类,

将(1)式平方欧氏距离换为余弦距离:

重复上述算法t次迭代得到距离矩阵dcos,再将平方欧氏距离换为城市街区距离:

j为x和的第j维,重复上述算法t次迭代得到距离矩阵dcb,将dsqe,dcos,dcb中相应类别编号对应,

将用三种距离聚类的样本定位至原图中的像素点,由此分别获得三种矩阵对应的三个聚类结果图,首先,k类像素点中在flair图像上平均灰度值最大的一类,记为类别1,距离矩阵的第1行表示类别1的聚类中心,接下来,计算剩余聚类中心与第一类聚类中心的距离,按照距离由小到大的顺序,分别记为类别2到类别k,对应于距离矩阵的第二至第k列,最后,得到了列换序后的矩阵dsqe*,dcos*,dcb*,对三个距离矩阵各个元素求和得到dadd:

dadd=dsqe*+dcos*+dcb*(6)

将样本x归为与其距离最小的聚类中心的类别,从k类中自动识别病变区所属类别,上一步中将图像像素点分为了k个未知特定含义的类簇,本发明结合mri的先验知识,自动识别肿瘤所属类簇,通常,t2加权图像中,病变区和脑室均显高信号,flair图像中,病变区显高信号,脑室以及其他脑组织显较低信号,故以flair图像作为判断肿瘤所属类簇的标准,具体方法如下:

将k个像素点类簇映射到flair图像上,计算每个类簇中的像素点在flair图像上灰度值的平均值,判断平均值最大的类簇为包含病变区的类别,提取此类簇像素点,其余像素点灰度值归零,通过一系列形态学操作,精确病变区范围,首先,选择最大连通区域,除去小的错误分类的像素点,其次,设置边长为3的八角形作为结构元素,对图像进行腐蚀操作,腐蚀操作可以断开病变区和错误分类的灰质之间的连接,再次选择最大连通区域,可以有效去除灰质部分,最后,使用上述结构元素进行膨胀操作,将病变区还原至原来的大小,由于肿瘤在图像上的特点,边界圆滑无锯齿,故选择最接近圆形的八角形结构元素,形态学操作后的形状特征更接近真实值,判断是否需要调整聚类数k,计算分割后病变区的大小slesion和脑区的大小sbrain,判断是否满足:

slesion<r·sbrain(4)

其中r=0.5,因为脑肿瘤的病变区一般不会超过脑区的一半,如果超过一半,说明聚类数小,不足以分辨出病变区,需要增加聚类数目,本发明的发明人选择不同病人的图像尝试不同k值的分割,发现最佳聚类数k为3、4或5。

表1:

表1是本发明算法对10幅脑肿瘤图像处理的结果,相似系数(dice)是常用的评价标准,由表可得,单一使用一种距离的k均值聚类算法对多数图像是有效的,但是对一些图像分割的准确率较低导致分割失败,比如平方欧氏距离对图像2的分割,余弦距离对图像3的分割,城市街区距离对图像3的分割,当综合使用三种距离时,对于表1中的9张图像,其准确率高于使用单一距离,从四种方法的平均准确度来看,本发明方法的准确度明显高于其他三种方法,本发明方法的稳定性有很大的提升。

图1是本发明一实施例的总体流程图,本法起始于步骤101,然后在步骤102,输入t2加权和flair图像,对其灰度值线性归一化,提取用于分割的脑区像素点及其特征,接下来,在步骤103,结合使用平方欧氏距离、余弦距离和城市街区距离的k均值聚类,将三种距离聚类后的距离矩阵相加综合判断像素点所属类别,并提取出病变区域所属类别,然后在步骤104,经过若干步的形态学操作,去除噪声点和错误分类的像素点,提取出病变区域,在步骤105判断分类数是否有效,如果无效,则增加聚类数重复步骤103和104,若有效,在步骤106中输出分割结果,本发明截止于步骤107,图2是改进的k均值聚类算法的具体流程,分别用基于平方欧氏距离、余弦距离和城市街区距离的k均值聚类,计算三个像素点与聚类中心的距离矩阵,将三个矩阵相加作为最终的距离矩阵来判断像素点所属类别,将每个像素点归类于与其距离最近的聚类中心,图3是按照本发明一实施例,基于多模态磁共振的脑肿瘤图像无监督分割方法的一个示例性流程示意图,图4是本发明一实施例的k均值聚类后形态学处理的示例性流程示意图,图401为k均值聚类分割出的包含病变的区域,包含了较多的正常脑组织,例如灰质和白质,特点是小而杂,通过选择最大连通区域的操作,有效地去除了大量噪声点,得到如图402所示区域,图402仍然包含错误分类的正常脑组织,本发明的发明人综合观察多个病人的不同情况发现,这些错误分类的组织通常与病变区有少量像素点的连接,故进一步采用腐蚀操作,断开连接,结果如图403,接下来,图404展示了选择最大连通区域,去除了小的噪声点,最后,图405是对图404的膨胀操作,图5是本发明在brats2015真实临床数据上的五个患者的脑肿瘤mri病变区分割结果示意图,每一行为一个患者的一张切片,第一列是t2加权图像,第二列是平方欧氏距离k均值聚类结果,第三列是余弦距离k均值聚类结果,第四列是城市街区距离k均值聚类结果,第五列是本发明提出的三种距离结合的k均值聚类结果,第五列是专家手动分割groundtruth,由图可知,其他三种方法均对个别图像分割失败,而本发明方法融合三种距离后对原来使用单一距离方法分割失败的图像也能得到较好的结果,所以本发明的脑肿瘤mri病变区分割方法比直接使用单一距离的k均值聚类方法的

尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1