基于量子海鞘群的无线信道衰减模型拟合方法与流程

文档序号:17791139发布日期:2019-05-31 20:15阅读:206来源:国知局
基于量子海鞘群的无线信道衰减模型拟合方法与流程

本发明涉及一种无线信道衰减模型拟合方法,特别是一种基于量子海鞘群的无线信道衰减模型拟合方法,涉及无线通信领域。



背景技术:

在无线通信中,信号的衰减是影响通信系统质量的一个重要原因,因而在进行通信系统仿真与理论分析时,对信号衰减的模拟是极为重要的一部分。由于在不同的场景下影响信号衰减的原因不尽相同,所以在不同场景下用来模拟信号衰减的统计分布模型也不尽相同,其中常用的分布模型有单边高斯分布、莱斯分布与瑞利分布等。但是随着众多学者的深入研究,发现nakagami-m分布可以很好的模拟诸多场景下的信号衰减,可以通过调整其参数来模拟不同环境下信号衰减情况,因此nakagami-m衰减模型通常被认为是最好的信号衰减模型。nakagami-m分布有着非常强大的模拟多种无线电信道衰减特性的能力,无线通信中的许多信道衰减模型包括单边高斯分布、莱斯分布与瑞利分布都可以通过nakagami-m分布模拟,也就是nakagami-m分布可以在不同参数下模拟其中任意一种分布模型,所以nakagami-m分布模型可以灵活的被用来研究室内室外不同传输环境下的信号衰落问题。

一般使用正态累积分布函数或逆累积分布函数来对采用nakagami-m衰减模型的通信系统进行模拟仿真或理论分析。越来越多的研究表明nakagami-m的逆累积分布函数在通信系统分析中具有重要的作用,但是由于nakagami-m的逆累积分布函数只有在其形状参数取1时才有闭合表达式,而在其它参数下均没有闭合表达式,给学者们的研究带来了极大的困难。为了解决这一问题,学者们已经提出一些方法来拟合不同参数下的nakagami-m逆累积分布函数曲线,从而得到在给定参数下nakagami-m逆累积分布函数的闭合表达式。但是由于采用的拟合方程与求解方法不同,导致对nakagami-m逆累积分布函数的拟合性能也有差异。外国学者beaulieu,nc与cheng,c在ieeetransactionsonvehiculartechnology上发表的名为“efficientnakagami-mfadingchannelsimulation”文中给出了一种nakagami-m逆累积分布函数的拟合方法,但是其采用方法需要两个方程与六个参数,方程与求解的复杂度较高;随后学者mehmetbilim与ibrahimdeveli于wirelesspersonalcommunications发表的名为“anewnakagami-minversecdfapproximationbasedontheuseofgeneticalgorithm”一文中,提出了较为简化的只需要一个方程与五个参数的拟合方法,但是从其文中可以看到,其所提出并求解得到的拟合方程在自变量将要达到1时,对nakagami-m逆累积分布函数的拟合已经明显偏离准确值。最后,在yasinkabalci发表的两篇分别名为“onthenakagami-minversecumulativedistributionfunction:closed-formexpressionanditsoptimizationbybacktrackingsearchoptimizationalgorithm”与“animprovedapproximationforthenakagami-minversecdfusingartificialbeecolonyoptimization”的文章中,作者分别采用了两种不同的算法回溯搜索算法与人工蜂群优化来对其提出的新拟合方程进行优化求解,与前人相比,其所提出的新方程仅需要四个参数并且取得了更好的效果。但是从其文中所给结果同样可以看出,该方法事实上只有在自变量接近1时才能准确拟合nakagami-m逆累积分布函数,而在其它自变量处均有明显的偏离。综上,已有方法中受限于所提出的拟合方程与优化方法,均无法在完整的定义域范围内实现对nakagami-m逆累积分布函数的准确拟合。为了实现对nakagami-m逆累积分布函数的更好拟合,在此提出一种新的拟合方程。同时由于已有的拟合方法如遗传算法、人工蜂群优化与回溯搜索方法等存在着不同程度的收敛速度慢与寻优精度较低的问题,考虑将一种新的智能方法海鞘群智能与量子计算结合来获得两者的双重优势,大幅提高寻优速度,从而更高效地求解nakagami-m逆累积分布。



技术实现要素:

针对上述现有技术,本发明要解决的技术问题是提供一种新的智能方法海鞘群智能与量子计算结合,能够大幅提高寻优速度,从而更高效地求解nakagami-m逆累积分布的基于量子海鞘群的无线信道衰减模型拟合方法。

为解决上述技术问题,本发明一种基于量子海鞘群的无线信道衰减模型拟合方法,包括以下步骤:

步骤一:设置nakagami-m分布的参数并获取nakagami-m逆累积分布的准确数据集:

设随机变量x表示在nakagami-m衰减信道中的信号衰减幅度随机变量,x服从nakagami-m分布,x概率密度函数表达式为其中γ(m)为gamma函数,m为nakagami-m分布的形状参数,γ为nakagami-m分布的尺度参数,e为自然常数;根据概率密度函数与累积分布函数间的关系得到nakagami-m分布的累积分布函数,累积分布函数表达式为同时用表示nakagami-m分布的逆累积分布函数,其中a,b,c,d为待优化的参数,tanh-1(x)表示反双曲正切函数;

设置形状参数m与尺度参数γ,假设取s个nakagami-m分布的累积分布函数的采样点的横坐标分别表示为xk,k=1,2,…,s,采样点的横坐标组成的向量为x=[x1,x2,…,xs],这些采样点横坐标处对应的nakagami-m累积分布函数的函数值分别用yk,k=1,2,...,s表示,即yk=fx(xk),yk组成的向量表示为y=[y1,y2,...,ys],则用(x,y)表示nakagami-m累积分布函数的采样点集合,设用(xinv,yinv)表示nakagami-m逆累积分布函数的采样点集合,其中将nakagami-m累积分布函数的自变量作为nakagami-m逆累积分布函数的函数值将nakagami-m累积分布函数的函数值作为nakagami-m逆累积分布函数的自变量然后得到nakagami-m逆累积分布函数的采样点数据集合,即(xinv,yinv)=(y,x);

步骤二:随机生成所有海鞘的量子位置,并将海鞘的量子位置映射到对应的位置:

对第i只海鞘,i=1,2,...,n,随机产生其量子位置其中为第i只海鞘量子位置的第j维,且i=1,2,...,n,j=1,2,...,d,n为海鞘群中的海鞘数量,d为问题的维度,t为迭代次数,初始时t=0;第i个量子位置对应的位置为其中为第i只海鞘位置的第j维,且i=1,2,...,n,j=1,2,...,d;设位置中的第j维的定义域为[fj,gj],fj与gj分别表示第j维位置的下界与上界,fj<gj,则从海鞘的量子位置到该量子位置对应的位置的映射方法为:

步骤三:对所有海鞘位置进行适应度评价,记录初始时所有海鞘的位置作为对应海鞘的历史最优位置,对应的量子位置作为历史最优量子位置,并把适应度最小的海鞘位置作为食物位置,该适应度最小的海鞘位置对应的量子位置作为食物的量子位置,适应度评价方法如下:

选择均方根误差作为适应度函数,第i只海鞘位置的适应度函数为d=4,每个海鞘位置的四个变量分别对应a,b,c,d四个参数,在每个逆累积分布函数的横坐标处,得到的近似值为步骤一中得到的采样点数据集合(xinv,yinv)中,yinv中的每一个元素即为nakagami-m逆累积分布函数在向量xinv中每一个对应元素处的标准值,根据均方根误差的定义可以得到第i只海鞘位置的适应度函数在初始代,把当前第i只海鞘的位置作为对应海鞘的历史最优位置且i=1,2,...,n,并把对应的量子位置作为历史最优量子位置计算出所有海鞘的适应度值后,取出历史最优位置适应度值最小的海鞘位置,将其作为第t次迭代中的食物位置即同时得到食物位置对应的量子位置

步骤四:依次对所有的第i只海鞘的量子旋转角、量子位置与位置,按照以下策略一或策略二对其第j维进行更新,j=1,2,...,d:

首先产生一个[0,1]之间的均匀随机数如果则根据策略一更新第i只海鞘的量子旋转角量子位置及位置策略一满足:其中w1,w2,w3,w4为量子旋转角控制参数,为分布在[0,1]之间的均匀随机数,为第t次迭代中食物量子位置的第j维,为第i只海鞘的历史最优量子位置的第j维;如果则根据策略二更新第i只海鞘的量子旋转门量子位置及位置策略二满足:为随机选择的第l,l∈{1,2,...,n}只海鞘的历史最优量子位置的第j维;

步骤五:对所有的第i只海鞘,依次按照策略三对其第j维的量子旋转角、量子位置与位置进行更新,其中j=1,2,...,d,策略三满足:

步骤六:根据步骤三的方法对所有海鞘新的位置进行适应度评价,并更新每个海鞘的历史最优位置,每个海鞘对应的历史最优量子位置和食物的量子位置及对应的位置;

步骤七:如果当前迭代次数超过预先设定的最大迭代次数,迭代终止,输出的食物位置即为最优解,即拟合方程的系数,进而得到最佳拟合方程;否则,令t=t+1,并返回步骤四。

本发明的有益效果:本发明针对在求解nakagami-m逆累积分布的拟合问题时,现有方法由于寻优精度低、寻优速度慢耗时过长导致的拟合效果差、偏离严重的缺点,提出了一种新的nakagami-m逆累积分布拟合方法:基于量子海鞘群的无线信道衰减模型拟合方法。

与现有技术相比,本发明具有以下优点:

(1)本发明提出了一种新的nakagami-m逆累积分布的拟合方程,在不增加方程复杂度的前提下可以极大地提高曲线拟合精度,方法可靠性更高。

(2)仿真结果表明,与原有海鞘群优化方法相比,本发明的收敛速度更快,运算速度更快,计算复杂度更低,从而证明了本发明的高效性。

(3)仿真结果表明,在相同条件下,在某些极端的nakagami-m分布参数下,原有的海鞘群体优化方法无法找到最优解,而提出的方法仍能找到最优解,从而证明了本方法的有效性。

附图说明

图1为基于量子海鞘群的无线信道衰减模型拟合方法流程图;

图2为在m=0.5,γ=2的参数下,ssa与qssa的对比图;

图3为在m=1,γ=1的参数下,ssa与qssa的对比图;

图4为在m=4,γ=1的参数下,ssa与qssa的对比图;

图5为在m=10,γ=2的参数下,ssa与qssa的对比图;

图6为图2寻优结果下的拟合曲线;

图7为图3寻优结果下的拟合曲线;

图8为图4寻优结果下的拟合曲线。

具体实施方式

下面结合附图对本发明具体实施方式做进一步说明。

为便于叙述,将基于量子海鞘群的无线信道衰减模型拟合方法简记为qssa,将基于海鞘群的无线信道衰减模型拟合方法简记为ssa。

本发明针对在求解nakagami-m逆累积分布的拟合问题时,现有方法由于寻优精度低、寻优速度慢耗时过长导致的拟合效果差、偏离严重的缺点,提出了一种新的nakagami-m逆累积分布拟合方法:基于量子海鞘群的无线信道衰减模型拟合方法。

本发明是通过如下技术方案实现的,主要包括以下步骤:

步骤一、设置nakagami-m分布的参数并获取nakagami-m逆累积分布的准确数据集。

设随机变量x表示在nakagami-m衰减信道中的信号衰减幅度随机变量,则x服从nakagami-m分布,则其概率密度函数表达式为其中γ(m)为伽玛(gamma)函数,m为nakagami-m分布的形状参数,γ为nakagami-m分布的尺度参数,e为自然常数。根据概率密度函数与累积分布函数间的关系可以得到nakagami-m分布的累积分布函数,其表达式为同时用表示nakagami-m分布的逆累积分布函数。由于nakagami-m分布的逆累积分布函数不存在闭合表达式,所以这里提出一种新的方程来拟合该函数,即其中a,b,c,d为待优化的参数,tanh-1(x)表示反双曲正切函数。

首先设置形状参数m与尺度参数γ,假设取s个nakagami-m分布的累积分布函数的采样点的横坐标分别表示为xk,k=1,2,...,s,采样点的横坐标组成的向量为x=[x1,x2,...,xs],这些采样点横坐标处对应的nakagami-m累积分布函数的函数值分别用yk,k=1,2,...,s表示,即yk=fx(xk),其组成的向量表示为y=[y1,y2,...,ys]。这样可以用(x,y)表示nakagami-m累积分布函数的采样点集合。设用(xinv,yinv)表示nakagami-m逆累积分布函数的采样点集合,其中根据反函数的定义,将nakagami-m累积分布函数的自变量作为nakagami-m逆累积分布函数的函数值将nakagami-m累积分布函数的函数值作为nakagami-m逆累积分布函数的自变量这样即可得到nakagami-m逆累积分布函数的采样点数据集合,即(xinv,yinv)=(y,x)。

步骤二、随机生成所有海鞘的量子位置,并将其映射到对应的位置。

对第i,i=1,2,...,n只海鞘,随机产生其量子位置其中为第i只海鞘量子位置的第j维,且i=1,2,...,n,j=1,2,...,d,n为海鞘群中的海鞘数量,d为问题的维度,t为迭代次数,初始时t=0。第i个量子位置对应的位置为其中为第i只海鞘位置的第j维,且i=1,2,...,n,j=1,2,...,d。设位置中的第j维的定义域为[fj,gj],fj与gj分别表示第j维位置的下界与上界,fj<gj,则从海鞘的量子位置到位置的映射方法为:

步骤三、对所有海鞘位置进行适应度评价,记录初始时所有海鞘的位置作为对应海鞘的历史最优位置,对应的量子位置作为历史最优量子位置,并把适应度最小的海鞘位置作为食物位置,对应的量子位置作为食物的量子位置。适应度评价方法如下。

此处选择均方根误差作为适应度函数,第i只海鞘位置的适应度函数为由于提出的新拟合方程中,待优化的参数只有a,b,c,d四个,因此d=4,并且每个海鞘位置的四个变量分别对应a,b,c,d四个参数。这样在每个逆累积分布函数的横坐标处,得到的近似值为步骤一中得到的采样点数据集合(xinv,yinv)中,yinv中的每一个元素即为nakagami-m逆累积分布函数在向量xinv中每一个对应元素处的标准值。根据均方根误差的定义可以得到第i只海鞘位置的适应度函数在初始代,把当前第i只海鞘的位置作为对应海鞘的历史最优位置且i=1,2,…,n,并把对应的量子位置作为历史最优量子位置计算出所有海鞘的适应度值后,取出历史最优位置适应度值最小的海鞘位置,将其作为第t次迭代中的食物位置即同时得到食物位置对应的量子位置

步骤四、依次对所有的第i只海鞘的量子旋转角、量子位置与位置,按照以下策略一或策略二对其第j,j=1,2,…,d维进行更新。

首先产生一个[0,1]之间的均匀随机数如果则根据策略一更新第i只海鞘的量子旋转角量子位置及位置其中w1,w2,w3,w4为量子旋转角控制参数,为分布在[0,1]之间的均匀随机数,为第t次迭代中食物量子位置的第j维,为第i只海鞘的历史最优量子位置的第j维。如果则根据策略二更新第i只海鞘的量子旋转门量子位置及位置为随机选择的第l,l∈{1,2,…,n}只海鞘的历史最优量子位置的第j维。

步骤五、对所有的第i只海鞘,依次按照策略三对其第j,j=1,2,…,d维的量子旋转角、量子位置与位置进行更新。

步骤六、根据步骤三的方法对所有海鞘新的位置进行适应度评价,并更新每个海鞘的历史最优位置,每个海鞘对应的历史最优量子位置和食物的量子位置及对应的位置。

步骤七、如果当前迭代次数超过最大迭代次数,迭代终止。输出的食物位置即为最优解,也就是拟合方程的系数,从而得到最佳拟合方程。否则,令t=t+1,并返回步骤四。

为便于叙述,将基于量子海鞘群的无线信道衰减模型拟合方法简记为qssa,将基于海鞘群的无线信道衰减模型拟合方法简记为ssa。量子海鞘群和海鞘群的群体规模设置为40,终止迭代次数设置为10000。量子海鞘群的控制参数设置为w1=0.5,w2=1.0,w3=0.2,w4=0.4。海鞘群算法其他参数参考原始文献。

图1:基于量子海鞘群的无线信道衰减模型拟合方法流程图

图2:在m=0.5,γ=2的参数下,ssa与qssa的对比图。qssa方法拟合的均方根误差为0.0011159,ssa拟合的均方根误差为0.0012521。而且从图中可以看出,qssa的寻优速度比ssa快很多,事实上在该参数下qssa只需2.0026秒即收敛并找到最优解,而ssa在9.2154秒收敛但却是局部收敛,陷入了局部最优,而没有得到全局最优解。

图3:在m=1,γ=1的参数下,ssa与qssa的对比图。qssa方法拟合的均方根误差为0.0088883,ssa拟合的均方根误差为0.077244。而且从图中可以看出,ssa很快陷入了局部最优,而qssa则始终在朝着全局最优解演进。

图4:在m=4,γ=1的参数下,ssa与qssa的对比图。qssa方法拟合的均方根误差为0.0056836,ssa拟合的均方根误差为0.31239。而且从图中可以看出,ssa仍然很快陷入了局部最优,而qssa则很快找到了最优解。

图5:在m=10,γ=2的参数下,ssa与qssa的对比图。qssa与ssa同样找到了最优解,得到的均方误差为0.01697。但是从图中可以看出,qssa的收敛速度比ssa快,qssa耗时6.5116秒,而ssa则需要17.5519秒才找到最优解。

图6:图2寻优结果下的拟合曲线。此时ssa与qssa都可以取得较好地拟合效果。

图7:图3寻优结果下的拟合曲线。此时ssa已偏离标准曲线,而qssa仍然很好地拟合了标准曲线。

图8:图4寻优结果下的拟合曲线。此时ssa已严重偏离标准曲线,而qssa仍然有很好的拟合效果。

本发明涉及一种基于量子海鞘群的无线信道衰减模型拟合方法,它涉及的是无线通信领域。它解决了在对nakagami-m逆累积分布函数进行拟合时,现有的拟合方法包括拟合方程与对方程的求解方法的拟合精度低的问题,本发明通过所提出的新的拟合方程并利用海鞘群体智能和量子计算的优点实现了更高的拟合精度、更快的拟合速度以及更广的适用范围。该方法的步骤为:设置nakagami-m分布的参数并获取nakagami-m逆累积分布的准确数据集;初始化海鞘群的量子位置及位置;对所有海鞘位置进行适应度评价,并确定食物的量子位置与位置;根据策略一或策略二依次更新选定的海鞘的量子旋转角、量子位置与位置;依次对选定的海鞘按照策略三更新量子旋转角、量子位置与位置;对所有海鞘位置进行适应度评价,并更新食物的量子位置与位置;最终输出的食物位置即为拟合方程的最佳系数,即可得到nakagami-m逆累积分布函数的最佳拟合方程。本发明具有更高的拟合精度、更快的拟合速度以及更广的适用范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1