一种基于射孔测试联作系统的地层参数反演方法

文档序号:25723018发布日期:2021-07-02 21:07阅读:144来源:国知局
一种基于射孔测试联作系统的地层参数反演方法

本发明涉及油气藏开发技术领域,尤其是涉及一种基于射孔测试联作系统的地层参数反演方法。



背景技术:

通过对取得的测试资料和回收的地层流体进行数据处理和分析可以对测试地层进行定量的评价,可获得地层的温度、原始压力、平均有效渗透率等参数。根据这些参数,我们就可以预测产油量、产气量和产水量,可以判断测试层有无开采价值,如何开采以及有无必要采取增产措施,能帮助我们及时、准确地认识新油藏,加快勘探步伐,扩大勘探成果,科学指导增产措施。采用常规方法对气田井筒进行测量,压力和压力导数数据失真,振荡剧烈,导致匹配效果差,测量结果不准确。联作工艺最大的优越性是在负压条件下射孔后立即进行测试,因而能够提供最真实的地层评价机会。联作工艺可缩短试油周期,降低试油成本。采用常规射孔试油,起下管住次数多,周期长,劳动量大,在井深3000m左右试一层油平均需15~20天。如果采用联作一次下井射开整个产层,工序既连续又能在最短的时间内取准测试资料,试一层油仅需4~6天,大大缩短了试油周期,加快了勘探速度,同时减轻了劳动强度,降低了试油成本。因此研究一种新的适用于油气藏地层参数反演方法十分必要。



技术实现要素:

本发明提供一种基于射孔测试联作系统的地层参数反演方法,用以处理常规方法试油周期长、测量结果不准确等问题。针对常规试井反演分析方法不足,提出射孔测试联作技术,该方法将射孔与试井相结合,通过在射孔枪上安装压力计,可以在射孔前、射孔中和射孔后测量井筒压力,根据测得的射孔前、射孔中和射孔后的压力数据绘制压力曲线和压力导数曲线,将理论曲线与测得压力数据所绘制的曲线进行匹配,最后进行反演地层的渗透率、井筒表皮等参数。

本发明提供一种基于射孔测试联作系统的地层参数反演方法,包括以下步骤:

(1)根据射孔测试联作技术获得的一组井筒压力p和井筒温度t数据;

(2)将所述压力p和所述温度t数据转换为井筒流量q数据;

(3)利用图版拟合试井解释方法,将现场压力数据与理论曲线进行拟合匹配,反演获得地层参数,所述地层参数包括渗透率、井筒存储常数和表皮因子。

进一步地,步骤(2)中,所述压力p和所述温度t数据转换为井筒流量q数据的过程由以下推出:

首先,srk状态方程:

当为单组分气体时,tr=t/tc,

当为多组分气体时,则必须考虑各组分气体之间的相互作用,此时的

其中,p为井筒压力,单位为pa;t为井筒温度,单位为k;v为气体体积,单位为m3;r为气体常数,r=8.314j/(mol·k);ω为偏心因子;tc代表临界温度,单位为k;pc代表临界压力,单位为pa;xi和xj为i组分和j组分的摩尔数,kij为i组分和j组分之间的二元交互系数,ai和aj则为假设各自为单组分气体通过方程(2)计算得到的;

同理,bi也是假设各自为单组分气体通过方程(3’)计算得到;

气体状态方程:

pv=zrt(27)

其次,联合公式(1)和(4),得到气体偏差因子z方程:

z3-z2+(am-bm-bm2)z-ambm=0(28)

根据测量得到的所述压力p和所述温度t数据,根据方程(5)-(7)得到气体偏差因子z,

再次,地层中气体流动的连续性方程:

其中,r为地层计算半径,单位为m;φ为孔隙度;μ为流体的粘度,单位为pa·s;k为渗透率,单位为m2;ct为总压缩系数,ct=cg+cr,cg为气体压缩系数,cr为岩石压缩系数,cg和cr单位均为pa-1

然后,考虑表皮效应:

其中,pwf表示井底压力,单位为pa;skin表示表皮因子;t为时间,单位为s;r为地层计算半径,单位为m;rw为井筒半径,单位为m;

然后,内边界条件:

其中,c为井筒存储常数,单位为m3/pa;

外边界条件:

p(r→∞,t)=0(34)

初始条件:

p(r,t=0)=pi(35)

然后,将控制方程(8)-(12)(14)改写为拟压力形式(13),拟压力定义:

其中,m为拟压力定义;

从地层流入井筒的气体产量:

其中,h为地层厚度,单位为m,

然后,采用如下的无量纲定义:

无量纲时间

无量纲拟压力

无量纲半径

无量纲井筒存储常数

无量纲流量

然后,将控制方程(13)-(14)改写无量纲方程组:

然后,对方程组(15)进行laplace变换得到方程组(16):

然后,求解方程组(16),得到公式(17):

然后,对laplace空间上的气体产量进行laplace数值反演,真实空间气体产量qd,由下述公式(18)-(19)stehfest数值反演获得:

气体体积产量:

然后,根据(10)、(14)和(15)联合得到:

c为井筒储存常数:

c=cgvw(44)

vw是井筒体积,单位为m3

cg为气体压缩系数,单位为pa-1

然后,根据公式(20)-(23),将测量得到的所述压力p和所述温度t数据,转换为井筒流量q(t):

气体体积v(t):

进一步地,步骤(3)中所述的理论曲线是由步骤(2)中的公式(17)-(18)计算得到的无量纲qd曲线。

进一步地,步骤(3)中所述的图版拟合是试井解释方法中常规的参数获得方法,具体过程为首先通过理论推导获得无量纲理论解,然后将实测数据进行处理,在双对数坐标轴上通过位置和形态属性进行拟合。

进一步地,步骤(1)中所述的井筒压力p和所述的井筒温度t数据是射孔后测量的井筒压力和井筒温度数据。

图版拟合试井解释方法具体参考书籍《渗流力学》孔祥言5.6.2章节,以及文章liy,yuq,jiac,etal.ratetransientanalysisforcouplingdarcyflowandfreeflowinbead-stringfracture-cavedcarbonatereservoirs[j].journalofpetroleumscienceandengineering,2020:107809.

其中试井分析过程如下:将实测井底压力数据曲线在理论图版上进行拟合,得出参数cde2s,任取一个拟合点m,根据公式(49)(27)(28)得到渗透率k、井筒存储常数c、表皮因子s;

其中下标m代表拟合点m的相应参数值。同时,当压力趋于稳定时,该压力值即为原始地层压力。

本发明提供一种基于射孔测试联作系统的地层参数反演方法,针对油气藏开采的实际情况,解决了常规试井无法获得准确非等温地层参数的问题,可以得到准确的非等温地层参数,适用于非等温油气藏实际生产过程中的地层参数反演计算,大大缩短了试油周期,降低了试油成本。

附图说明

图1为常规试井不考虑温度的压力的对数-对数曲线和压力导数曲线;

图2为实施例井射孔前、后井筒压力和温度的变化;

图3为实施例井射孔后井筒压力和温度的变化;

图4为实施例井气体体积与流量匹配结果。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚,下面将结合附图和本发明的实施例,对本发明所述的一种基于射孔测试联作系统的地层参数反演方法作进一步的阐述,以帮助本领域技术人员对本发明的发明构思、技术方案有更完整、准确和深入的理解。

实施例

本实施例针对四川盆地东部地区普光气田某一口气井射孔前、射孔中和射孔后井筒压力和温度变化进行分析,然后反演计算地层参数,包括以下步骤:图1为常规试井不考虑温度的压力的对数-对数曲线和压力导数曲线。

(1)本实施例井储层性质如表1所示。施工时,在射孔前就在井筒内安装压力计和温度计,记录了射孔前和射孔后的压力及温度数据,如图2所示,下入压力计后,所有测量数据均为井筒数据。井筒压力和温度数据在射孔前是几乎不变的,我们称之为初始井筒压力和初始井筒温度。

(2)本实施例打孔后,利用压力计和温度计测量井射孔前、后井筒压力和温度的变化,所测得井筒压力和温度数据如图2和3所示。射孔后压力和温度数据均出现先升高后下降的情况。因此本实施例中初始井筒压力和初始井筒温度为射孔前记录数据;后续带入公式(1)-(26)的压力和温度为射孔后记录的数据,具体数值绘制于图2。图2横轴为时间轴,0.00-0.05h时间内井筒压力数据和温度数据为射孔前井筒压力数据和温度数据,可以分析出实施例井在射孔前井筒压力和温度恒定不变;0.05-0.075h时间内为射孔阶段井筒压力数据和温度数据,可以分析出射孔阶段井筒压力和温度数据陡然升高与降低,数据振荡不稳定;0.075-0.30h时间内为射孔后压力数据和温度数据,可以分析出射孔后压力呈先降后升趋势,最终压力21.36mpa略高于井筒初始压力21.32mpa,射孔后温度由403.52k逐渐降低温度逐渐降低,最终温度396.12k略高于初始温度395.78k。

(3)根据得到的射孔后记录的井筒压力和温度数据,将现场数据按照如上所述公式(1)-(26)转换为气体体积和气体流量。

(4)根据得到的气体体积和气体流量,进行图版拟合(图版拟合试井解释方法具体参考书籍《渗流力学》孔祥言5.6.2章节,以及文章liy,yuq,jiac,etal.ratetransientanalysisforcouplingdarcyflowandfreeflowinbead-stringfracture-cavedcarbonatereservoirs[j].journalofpetroleumscienceandengineering,2020:107809.),将现场数据与理论曲线匹配;其中,所述的理论曲线是由公式(17)-(18)计算得到的无量纲qd曲线。其中,图版拟合是试井类解释方法中最常用的参数获得方法,具体过程为首先通过理论推导获得无量纲理论解,然后将实测数据进行处理,在双对数坐标轴上通过位置、形态等关键属性进行拟合。图版拟合目前是已经非常成熟且普遍采用的试井类解释方法,可直接进行使用,不需要进行特定详细描述。如图4所示,初期受到爆炸波的影响,现场数据存在振荡,中后期现场数据曲线与理论曲线吻合较好。

根据理论曲线进行地层参数反演计算,按照如上所述公式(26)-(28)计算本实施例井地层参数反演结果如表2所示。

表1实施例井储层性质

表2实施例井地层参数反演计算结果

最后应说明的是:显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明的保护范围之中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1