一种井下选煤厂设备硐室底板位移动态监测系统的制作方法_2

文档序号:8923398阅读:来源:国知局
方面将两个使用不同协议的网络连接在一起,实现两种协议之间的转换,同时发布管理节点的通信任务,并把接收的数据转发到外部网络上,在未接收到采集命令时处于低功耗状态(睡眠状态),直至定时时间到或由中断唤醒,发送传感器节点采集数据的命令。为了确保发送的数据包被传感器节点接收到,在数据包的发送中采用APS层确认应答机制,如果发送数据包后在规定的时间内没有接收到应答确认信息,则重新发送,连续三次发送失败,则视此次操作无效。
[0020]SINK节点包括能量管理模块B、处理器模块B和通信模块B,SINK节点与传感器节点的连接采用无线(采用串口通信做备用时通信模块B设置串口通信电路),因此SINK节点的通信模块B上也设置了 Zigbee模块,而SINK节点与基站的连接采用有线的形式,可采用光纤或其它的串口接线如RS-485,这是因为SINK节点与基站之间数据传输较多,且距离可能较远,无线的传输模式在井下的效果并不好,所以通信模块B设置了调制解调器采用有限光纤与基站连接,保证数据高速度传输的可靠性,有限光纤可以设置在井下通道的上方或侧壁,避免受到挤压与腐蚀。处理器模块B可以采用单片机,并设置数据库,对通信模块B进行控制并收发传感器节点和基站的数据、命令,并对数据进行存储。
[0021]Zigbee模块采用顺舟科技的SZ06,其具体参数为:工作频段2.4GHz,可用频段数16个,无限传输速率250Kbps,发射功率25dBm,工作电压5?24V,工作温度_40°C?85°C,无PA室内通信距离200m,无PA室外通信距离2000m,满足井下传感器节点与SINK节点的传输需求,若传感求节点与SINK节点的距离较大,可采用XBEE型号的Zigbee模块进行数据传输。
[0022]嵌入式计算机是以应用为中心,以计算机技术为基础,并且软硬件可裁剪,适用于应用系统对功能、可靠性、成本、体积、功耗有严格要求的专用计算机系统,其主要是对SINK节点发送监测主机的指令,并将SINK节点的数据发送至监测主机,完成对指令传达和数据汇总、发送、传输的作用,监测主机包括上位机,是指可以直接发出操控命令的计算机,通过监测主机对井下选煤厂硐室进行远程监测。
[0023]ARM单片机较51系列单片机性能提升较大,运行处理的速度快,满足对陀螺仪和加速度计的数据处理以及发送至SINK节点,陀螺仪采用三轴陀螺仪(MPU-6050陀螺仪),加速度计采用三轴加速度计(ADIS16354加速度计),三轴陀螺仪可以提供瞬间的动态角度变化,但是由于其本身的固有特性、温度及积分过程的影响,会产生漂移误差,且随着工作时间的延长而累加变大;而三轴加速度计能够提供静态的角度,但是却容易受到噪声的干扰,使得数据变化较大。为了克服上述问题,在本申请中采用卡尔曼滤波器对信号进行数据融合。卡尔曼滤波是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。如果要计算K时刻的实际角度值,首先要根据K-1时刻的角度值来预测K时刻的角度。根据预测得到的K时刻的角度值得到该时刻的高斯噪声的方差,然后卡尔曼滤波器不断的进行方差递归,从而估算出最优的角度值。
[0024]传感器节点根据井下选煤厂设备硐室的特殊情况,为了不影响选煤设备的正常工作以及人员的通行,需尽量安装在设备基础的帮侧的中间位置,如果采用三轴陀螺仪和三轴加速度计(采用一般的陀螺仪和加速度计则需三个来实现三轴陀螺仪和三轴加速度计的功能),一个传感器节点即可实现对选煤厂设备硐室一台选煤设备基础的动态监测,以此类推。也可在设备基础上设置槽体将传感器节点放置在内,并采用盖板等进行掩盖保护,注意将Zigbee模块的发射点露出,保证无线信号传递的通畅,因为硐室的现场较为复杂,这样可以对传感器节点起到保护的作用,放置工作人员误碰,也保证了硐室的干净整齐性。
[0025]监测主机设置的报警模块可以在监测到硐室倾斜角度和速度过大时进行报警,对井下将要发生事故进行迅速反应,GPRS模块可以与移动商家进行合作,将监测到的报警信息通过短信的形式发送给工作人员,做到双重报警的功能。
[0026]本发明的有益效果是:本发明采用的基于ZigBee的井下选煤厂设备硐室底板位移监测系统可以实现对井下选煤厂设备硐室设备基础的监测,达到对硐室底板位移的监测目的;本系统功耗低、可靠性高、灵敏度高、易集成以及耐恶劣工业环境,节点的安装不影响设备的运行及人员的通行,也不会破坏设备基础的整体和稳定性。
【附图说明】
[0027]下面结合附图对本发明作进一步描述:
图1是本发明井下选煤厂设备硐室底板位移动态监测系统的系统结构图;
图2是本发明传感器节点的系统结构图;
图3是本发明SINK节点的系统结构图;
图4是本发明传感器节点的工作流程图;
图5是本发明SINK节点的工作流程图;
图6是本发明传感器节点设置在设备基础上的结构示意图。
【具体实施方式】
[0028]如图1至图6所示:本发明提供了一种井下选煤厂设备硐室底板位移动态监测系统,包括传感器节点4、SINK节点3、基站2和监测主机1,所述传感器节点4、SINK节点3和基站2均设置在井下,所述监测主机I设置在井上,所述传感器节点4与所述SINK节点3之间通过无线连接,所述SINK节点3、所述基站2和所述监测主机I之间通过有线连接。传感器节点是对井下选煤厂设备硐室内底板位移情况进行监测,并将监测到的数据发送至SINK节点,因为井下硐室的数量是较多的,而井下的情况也较为复杂,所以采用SINK节点对一定区域内的传感器节点进行数据接收以及命令控制,SINK节点再往上与基站连接,若井下的区域较少则设置一个基站对所有的SINK节点进行监测信息汇总并存储,井下区域较大时设置多个基站,保证对所有的SINK节点进行连接控制,基站与监测主机连接,最终将井下硐室内的监测信息汇总至监测主机,实现对井下硐室内底板位移情况的远程动态监测。
[0029]传感器节点主要采集监测数据,并发送给SINK节点,同时接收来自SINK节点的查询命令。当没有数据的发生和命令的接收时,转入休眠模式,使节点功耗降到最低,为了确保发送的数据包被SINK节点接收到,在数据包的发送中采用APS层确认应答机制,如果发送数据包后在规定的时间内没有接收到应答确认信息,则重新发送,连续三次发送失败,则视此次操作无效。同时,为了保证无线传感器网络的质量,该节点定时向父节点发送Ping命令以监测当前的链路状态,连续五次确实后继续进入睡眠状态。
[0030]所述传感器节点4包括传感器模块5、能量管理模块AS、处理器模块A6和通信模块A7,所述传感器模块5包括陀螺仪9和加速度计10,所述能量管理模块AS采用电池供电或外接电源提供所述传感器节点工作的所有电能,所述处理器模块A6采用单片机控制所述传感器节点4的运行以及处理采集到的数据和所述SINK节点3发来的数据,所述通信模块A7包括Zigbee模块All,负责与所述SINK节点3进行数据的无线收发和交换控制信息。传感器节点包括传感器模块、能量管理模块A、处理器模块A和通信模块A,陀螺仪是用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置,陀螺仪与加速度计进行配合使用实现对硐室内底板的位移、角度和加速度的监测。处理器模块A包括单片机,单片机是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O 口和中断系统、定时器/计数器等功能集成到一块硅片上构成的一个小而完善的微型计算机系统,处理器模块A对传感器节点进行控制将监测数据向SINK节点发送,并起到同步定位、功耗管理、任务调度和通信协议等作用,通信模块A采用的是Zigbee模块,ZigBee是一种基于标准的远程监控、控制和传感器网络应用技术,数据传输速率低:10Kb/S~250Kb/S,专注于低速率传输应用;功耗低:在低功耗待机模式下,两节普通5号电池可使用6~24个月;成本低:Zigbee数据传输速率低,协议简单;网络容量大:网络可容纳65,OOO个设备;延时短:典型搜索设备时延为30ms,休眠激活时延为15ms,活动设备信道接入时延为15ms,网络的自组织、自愈能力强,通信可靠。这里实现传感器节点与SINK节点的无线连接,硐室内设备较大,人员走动较多,采用有线连接占用空间较多,且接线复杂容易出错,工作人员也容易误碰,采用Zigbee模块对设备和人员都起到了保护作用。传感器节点与SINK节点也可采用串口通信作为备用,将通信线路埋入地面,这样在无线通信发生故障时可以紧急采用串口通信进行数据传输。
[0031]所述SINK节点3包括能量管理模块B14、处理器模块B12和通信模块B13,所述通信模块B13包括Zigbee模块B15和调制解调器16,所述Zigbee模块B15负责与传感器节点4进行数据的无线收发和交换控制信息,所述
当前第2页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1