一种用于在磁盘驱动器上自写伺服域和时钟域的电路的制作方法

文档序号:6774802阅读:238来源:国知局
专利名称:一种用于在磁盘驱动器上自写伺服域和时钟域的电路的制作方法
技术领域
本发明一般涉及磁性数据存储设备领域,尤其(但不作限制)涉及一种用于自写伺服和时钟域的集成电路,这种集成电路与以前被写在磁盘驱动器上的伺服域和时钟域在时间上对准,并在相位和频率上与其一致。
背景磁盘驱动器被用于将数据存储在从数码相机到计算机系统和网络的各种现代电子产品中。通常,磁盘驱动器包括一个机械部分或磁头磁盘组合件(HDA),以及被安装到HDA的外表面并采取印刷电路板组合件(PCB)形式的电子设备。PCB控制HDA功能,并在磁盘驱动器与其主机之间提供一个接口。
一般而言,HDA包括用于按一个恒定速度旋转的被固定于一个转子马达组件的一个或多个磁盘、支撑通常经过同心数据磁道(在磁盘表面上被径向间隔)的一排读/写磁头的一个传动组件,以及为传动组件提供旋转运动的音圈马达(VCM)。现代的磁盘驱动器通常利用磁阻磁头技术,该技术使用一个用于将数据写到数据磁道的感应元件和一个用于从记录磁道读取数据的磁阻元件。
人们不断要求磁盘驱动器的数据存储容量日益提高、数据吞吐量更加迅速、每兆字节的价格日益下跌,这使磁盘驱动器制造商开始寻求提高存储容量并改进磁盘驱动器的总体操作效率的方法。目前这一代的磁盘驱动器通常可达到每平方厘米有几个吉比特(吉比特/cm2)的无形位密度。通过增加沿每个磁道存储的位的数目或每英寸的位(BPI)的数目(一般要求改进读/写通道电子设备),并且/或者通过增加每单位宽度的磁道的数目或每英寸的磁道(TPI)的数目(一般要求改进伺服控制系统),可以提高记录密度。
被写到磁盘表面的伺服域提供伺服控制系统所用的位置信息,以便对读/写磁头相对于旋转的磁盘的位置进行控制。当TPI逐渐增加时,并入伺服磁道复写器的伺服域写入技术无法十分准确地提供伺服域,以支持被提高的磁道密度。
磁盘驱动器制造商采取的用于改进伺服控制系统的一种方法是引入一些自我伺服写入方法。1990年3月27日授权给Janz的第4,912,576号美国专利中描述了这类方法中的一种方法。在Janz中,磁盘的一侧为伺服保留,另一侧为数据保留。Janz给出被写在磁盘的伺服侧上的一个外部边缘处的第一个伺服磁道的原理。变换器按第一个相位伺服磁道振幅所指示的径向内移半个磁道,第一个数据磁道被记录在磁盘的数据侧上。这时,变换器再次按第一个数据磁道振幅所指示的径向内移半个磁道,第二个相位伺服磁道被记录在伺服侧上。
1983年11月8日授权给Oliver等人的第4,414,589号美国专利中描述了另一种方法。该对比文献给出伺服写入的原理,其中,通过将移动的读/写磁头之一放在定位装置的移动范围内的第一个限制器处,来确定最佳的磁道间隔。遗憾的是,Oliver的对比文献没有揭示如何使用内部记录数据磁头来建立一个时钟磁道(象外部时钟磁头那样实现这一点)。
1997年3月18日授权给Yarmchuk等人的第5,612,833号美国专利中描述了另一种方法。该对比文献给出了一种方法通过使用用于调整伺服码型的一个或多个部分的相对定时的定时电路、用于为传播脉冲串和产品伺服码型产生写数据的一个码型发生器、用于细致地调整写入码型的一个或多部分的相对定时的一个时间延迟部件、用于测量写入转变的读回振幅的振幅检测电路、用于存储各种数量(例如,读回振幅的所测量的值和参考磁道值)的一个存储器、用于通过其对应的原来的全磁道振幅来使瞬间的读回振幅标准化的一个分配器、一个微处理器序列控制器和具有可变控制参数的一个伺服控制器,来避免在自我伺服写入程序期间发生自我传播的磁道错误,以便在写入程序期间的某种特殊形式的控制之后,可以迅速前进和建立稳定,同时可大大拒绝机械干扰。Yarmchuk的对比文献没有揭示磁盘驱动器内的伺服回路测量电路实施,但揭示了可购得的个人计算机和可购得的数据获取插件程序板(包含定时电路、一个ADC和一个DAC)的运用。
2000年2月29日授权给Chainer等人的第6,031,680号美国专利中揭示了另一种方法,在该方法中,一个产品伺服码型脉冲串被写到第一个磁道,第二个连续的产品伺服码型脉冲串被写到第二个磁道并在第三个磁道上伺服补偿。但是,Chainer的对比文献没有揭示被用于执行所揭示的自我伺服写入方法的电路。
自我伺服写入作为一项技术面临许多挑战。其中的一个挑战是是否能够写入在时间上与以前被写到磁盘的信息配合、在相位和频率上与其一致的信息。写通道与读通道之间的延迟使读回信息的频率一致,但在相位上有相对于写信号(被馈送到写通道)的移动。此外,无论是否基于锁相环(PLL),任何同步系统中的电路偏移本身都作为相对于所需的写入信息的一个附加的相位(或时间)偏移。所以,挑战仍然存在,需要改进被并入磁盘驱动器内的集成电路系统,以便用一种经济、有效的方式来促进磁盘驱动器自我伺服写入技术的发展,该方式能够克服目前磁盘驱动器自我伺服写入技术中的一些限制。
发明概述本发明提供了一种磁盘驱动器,它具有由定位读/写磁头进行存取的可旋转磁盘表面,该定位读/写磁头受定位机构的控制,该定位机构在伺服控制回路的控制下运作,该伺服控制回路包括用于生成将数据写到可旋转磁盘表面的写信号的写通道、被写到可旋转磁盘表面的先前写入的基准标记、用于控制在时间上与以前所写的基准标记基本对准并在频率和相位上与其一致的方式来写入基准标记的定时的伺服写时钟发生器锁相环电路、用于根据以前所写的基准标记而生成逻辑电平信号的脉冲检测器电路、用于通过由脉冲检测器电路检测的逻辑电平信号来生成基准标记写信号(用于将基准标记写到可旋转磁盘表面上)的码型(pattern)发生器、用于在来自写通道的写信号与来自码型发生器的基准标记写信号之间进行切换(用于分别将信息和基准标记写到磁盘驱动器的可旋转磁盘表面上)的多路复用器、用于存储径向位置纠正表格和值(用于将基准标记写到可旋转磁盘表面上)的存储缓冲器,以及用于将基准标记写到集成在驱动器电子设备的可旋转磁盘表面上的使定时信号同步的自我伺服控制和定序电路。
在一个较佳实施例中,自写分别在时间上与以前所写的伺服域和时钟域基本对准并在相位和频率上与其一致的附加伺服域和时钟域信息的方法,这种方法被用于使用磁盘驱动器的读/写磁头,在磁盘驱动器的可旋转磁盘表面上形成数据磁道。写入分别在时间上与以前所写的伺服域和时钟域基本对准并在相位和频率上与其一致的附加的伺服域和时钟域信息所采用的步骤包括测量读/写磁头的读元件与写元件之间相对于可旋转磁盘表面的中心的径向位置之差,用于将信息域写到可旋转磁盘表面上;选择可旋转磁盘表面的数据磁道,用于读取被写到所选数据磁道上的以前所写的信息域并将初始相位纠正值(它对应于所选择的数据磁道)设置为零,以便准备将信息域写到所选择的数据磁道上;将读元件定位在所选择的数据磁道附近,同时,使用以前所写的信息域来获得伺服写时钟发生器锁相环电路的锁相,用于在时间上与以前所写的信息域基本对准并在相位和频率上与其一致的方式将信息域写到所选择的数据磁道上;以及,在时间上与所选数据磁道的以前所写的信息域基本对准并在相位和频率上与其一致的方式,将信息域写到可旋转磁盘表面的第二数据磁道上,同时,将伺服写时钟发生器锁相环电路的锁相保持到以前所写的信息域。
通过阅读以下详细的描述以及有关的附图,读者将明了构成本发明的特征的这些和其他各种特点与优点。
附图简述

图1是按照本发明的一种磁盘驱动器的顶部平面视图,用于在磁盘驱动器上自写伺服域和时钟域的集成电路系统。
图2是图1所示的磁盘驱动器的伺服控制回路的简化功能方框图。
图3提供了图1所示的磁盘驱动器的一种电子控制系统的方框图,示出该电子控制系统的一部分电路,该电子控制系统用于将伺服域和时钟域自写到图1中的磁盘驱动器。
图4是图3中所示的电子系统的磁盘驱动器电子设备部分的简化方框图。
图5是图3中的电子控制系统的读/写电子设备的延迟路径的简化方框图。
图6是图3中所示的电路的伺服写锁相环系统部分的方框图,用于将信息自写到图1中所示的磁盘驱动器。
图7是图3中所示的电路的伺服写锁相环系统部分的另一个实施例的方框图,该部分用于将信息自写到图1中的磁盘驱动器。
图8是图6中的伺服写锁相环系统的时序图。
图9是图6中所示的伺服写锁相环系统的相位测量部分的时序图。
图10是将伺服域或时钟域自写到图1中的磁盘驱动器的可旋转磁盘表面的一种方法的流程图。
详细描述通常参考附图,尤其参考图1,其中示出了根据本发明而构制的磁盘驱动器100的顶部视图。下文不包括磁盘驱动器100的构造的许多细节和变化,因为这已为精通该技术领域的人所熟知,并且对于描述本发明的目的而言是不必要的。
磁盘驱动器100包括支撑各种磁盘驱动器部件(包括一个转子马达组件104)的一个基台102。转子马达组件104支撑构成磁盘组108(也被称作“磁盘组套”)的至少一个轴向对齐的可旋转磁盘表面106。传动组件110(也被称作“E块”或“磁头组组件”(HSA))邻近磁盘组108,该传动组件围绕一个主要的致动马达支架112(也被称作“轴承组件”)旋转。HSA 110包括支撑负载臂116的至少一个传动臂114。每个负载臂116又支撑对应于每个磁盘表面106的至少一个读/写磁头118(也被称作“磁头118”)。读/写磁头118的读磁头部分在形体上可以被分开,也可以在径向或越过磁道的方向上以及在圆周或沿磁道的方向上偏离读/写磁头118的写磁头部分(未示出)。相对较小的磁头偏移是现代磁阻磁头组件的构造的一个共同的特点。此外,通过使用读磁头与写磁头之间的一个相对较大的偏移,可以实现一个自写伺服传播优点。每个磁盘表面106被分成各个基本上同心的圆形数据磁道120(只示出一个数据磁道),在这些数据磁道上,读/写磁头118被确定位置,并且,磁头位置控制信息被写到嵌入式伺服域(没有分开示出)。嵌入式伺服域将多个数据扇区(没有分开示出)分开,供顾客用于存储数据。
HSA 110的位置由主要的致动马达122(也被称作“音圈马达组件”(VCM))来确定和控制,该致动马达包括陷入由磁铁组件126建立的磁场中的一个致动线圈124。被安装在致动线圈124上的一块钢板128(也被称作“顶杆件”)提供具有磁力穿透性的磁通路线,以完成VCM 122的磁性电路。在磁盘驱动器100的操作期间,并且在伺服控制回路(未示出)的控制下,电流通过线圈124,建立电磁场,它与VCM 122的磁性电路相互作用,以便使致动马达124按照众所周知的Lorentz关系进行相对于磁铁组件126的移动。当致动马达124移动时,HSA 110围绕轴承组件112(也被称作“主要的致动马达支架”)旋转,从而对磁头118相对于磁盘表面106的一个所选数据磁道120的位置进行控制。伺服控制回路(未示出)是也包括一种定位机制(没有分开示出)的伺服系统130(没有分开示出)的一个元件。该定位机制包括HSA 110和VCM 122。伺服控制回路(未示出)包括被编程到一个伺服控制电路(未示出)中的伺服控制代码。
为了在读/写磁头118与磁盘驱动器读/写电路(未示出)之间提供必要的导电路径,可将读/写磁头电线(没有分开示出)固定于读/写电线电路132。接下来,读/写电线电路132的路线沿传动臂114从负载臂116出发,进入电线电路负载额通道134,然后继续到电线连接器主体136。在读/写电线电路132通过基台102并进入与被安装到基台102的下侧的磁盘驱动器印刷电路板(PCBA)(也被称作“电子控制系统”)的电通信期间,电线连接器主体136支持电线电路132。电线电路负载额通道134也支持读/写信号电路,该读/写信号电路包括被用于调节在读/写电路(未示出)与读/写磁头118之间通过的读/写信号的前置放大器/驱动器(preamp)138。电子控制系统提供磁盘驱动器读/写电路(控制磁头118的操作),以及磁盘驱动器100的其他接口和控制电路。
磁盘驱动器100具有两个主要的组件--PCBA(未示出)和附着于PCBA的一个磁头磁盘组合件(HDA)。通常被包括在HDA 140内的有HSA 110、VCM 122和磁盘组套108。
回过来看图2,在利用伺服控制代码加以编程的伺服控制电路142的控制下进行操作的定位机构(没有分开示出)提供磁头118的定位控制,这构成伺服控制回路。伺服控制电路142包括控制处理器144、解调器(demod)146,可以包括特定用途集成电路(ASIC)基于硬件的伺服控制器(“伺服引擎”)148,可以包括数字信号处理器150,并且包括易失存储器(VM)152、数字-模拟转换器(DAC)154和马达驱动器电路156。伺服引擎148、DSP 150和易失存储器152的功能都可以随意地被包含在控制处理器144内。利用控制电路142的各个部件来促进(图1中的)HSA 110的磁道跟踪运算,尤其促进用于在达到磁头118相对于(图1中的)所选数据磁道120的定位中控制VCM 122的磁道跟踪运算。
解调器146调节从磁盘106被转换的磁头位置控制信息,以提供磁头118相对于(图1中的)数据磁道120的位置信息。伺服引擎148生成伺服控制回路值,控制处理器144在生成命令信号(例如,VCM 122在执行寻道命令中所用的寻道信号)中使用这些伺服控制回路值,以便在数据传递操作期间保持(图1中的)HSA 110的位置。这些命令信号被DAC 154转换成模拟控制信号,供(在图1中)马达驱动器电路156用于指示磁头118相对于所选数据磁道120的定位以及HSA 110的寻道功能。
图3示出了HDA 140的磁盘驱动器100的功能方框图,以及电子控制系统160。被包括在电子控制系统160内的有驱动器电子设备162和自我伺服-写入电路系统164,这构成本发明的集成电路系统并可以被结合到单一的集成电路中。自我伺服-写入电路系统164(在图3的大虚线部分内被示出)包括一个伺服写入时钟发生器锁相环电路168。图3中的每个箭头表示自我伺服-写入电路系统164(在这里也被称作“自写电路164”)的各个设备或功能之间的至少一个电连接。自写电路164被磁盘驱动器100用来在(图2中的)可旋转磁盘表面106上自写基准标记(在这里也被称作“信息域”)(未示出)。被写到(图2中的)可旋转磁盘表面106的基准标记通常是磁盘驱动器100所用的伺服域(未示出)或时钟域,以便提供有关(图2中的)磁头118相对于(图2中的)磁盘表面106的位置的位置和定时信息,用于在自写伺服程序期间在(图2中的)可旋转磁盘表面106上写入附加的基准标记。
脉冲检测器电路170(在这里也被称作“相位测量电路170”)被包括在自写电路164内,在自写伺服程序期间,该脉冲检测器电路被用来创建来自以前被写到(图2中的)磁盘表面106的一个信息部分(通常是时钟域)的逻辑电平信号。
这些逻辑电平信号被用于确定以前被写到(图2中的)磁盘表面106的信息部分的基本上准确的圆周位置上。
在自写过程中使用相位测量电路170,来测量在不同时间被写到(图2中的)磁盘表面106的各个自写基准标记之间的相位差或时间差。时钟发生器锁相环电路168(包括一个锁相环或PLL)生成一个准确的时钟,用于根据以前被写到(图2中的)磁盘表面106的信息部分的检测和特征来写入附加的基准标记。结合相位测量电路170来使用可编程延迟电路172,以便为被写在(图1中的)邻近的数据磁道120上的伺服域和时钟域执行类似种类的基准标记的磁道与磁道的圆周对齐,即,伺服域与伺服域以及时钟域与时钟域的基本对齐和一致。
可编程延迟电路172利用时钟发生器锁相环电路168的一个时钟信号输出来创建一个延迟或相位可调整的时钟信号。时钟发生器锁相环电路168可以被设计成增加时钟域位的频率,同时保持相位和时间的准确性,并具有一个门控相位检测器结构,以便可以用间歇的、失去的、被排除的或不完全的时钟域保持锁相。相位测量电路170可以是一个模拟电路,也可以是一个模拟和数字混合模式电路。时钟发生器锁相环电路168也可以作为模拟和数字混合模式电路(例如,传统的模拟锁相环或通常被称作“数字锁相环”的数字电路或主要数字电路)来加以执行。可编程延迟电路172可以作为模拟电路或模拟和数字电路来加以执行,也可以作为纯粹的数字电路来加以执行。
脉冲检测器电路174(可以是模拟电路,也可以是模拟和数字混合模式电路)的功能类似于传统的读-写通道集成电路脉冲检测器,其设计具有充分的准确性,以确保邻近的伺服域之间以及邻近的时钟域之间在相位和频率上都定时配合。码型发生器176是一种电路,其功能类似于迄今的传统伺服磁道复写器中所用的码型发生器电路。选择码型发生器176的数字电路来实现以前被写到(图2中的)磁盘表面106的信息部分(伺服域或时钟域)与正在自写程序期间被写到磁盘表面106的基准标记(伺服域或时钟域)之间基本的一致性(振动和歪斜较少)。可编程延迟电路172被用来调整时钟的相位或定时,该时钟用于在自写程序期间从码型发生器176中移出该码型。多路复用器电路178用于在码型发生器176与驱动器电子设备162的标准读/写通道电子设备(未示出)之间切换写信号的来源。
自我伺服控制和定序电路180实行自写程序的执行控制功能,并形成自写程序进行所需的定时信号。自我伺服控制和定序电路180使定时信号与时钟发生器锁相环电路168生成的时钟信号以及驱动器电子设备162的一个水晶时钟(未示出)同步。缓冲存储器182是一种数字电路,用于存储在自写程序期间所使用的径向位置纠正表格和中间值。通过切换多路复用器电路178以便选择来自码型发生器176的信号,可以将伺服域码型和时钟域码型写在磁盘上,从而允许自写程序继续进行。
在另一个较佳实施例中,可编程延迟电路172可以被安置为使被延迟的输出时钟重新与时钟发生器锁相环电路168的输入连接。在那种情况下,可编程延迟电路172被包括在PLL的反馈回路内,PLL可以包括时钟发生器锁相环电路168。这种反馈连接的优点在于允许使用可编程延迟电路来测量时钟发生器锁相环电路168的环响应特征。在另一个较佳实施例中,可编程延迟电路172可以直接被安置在脉冲检测器电路174后面,在这种情况下,可编程延迟电路172将会对来自脉冲检测器电路174的信号(到时钟发生器锁相环电路168和相位测量电路170)进行处理。
图4是驱动器电子设备162的简化方框图,但没有示出(图3中的)驱动器电子设备162上的所有电路。特别是,没有示出涉及将磁盘驱动器连接到主机系统的接口电子设备。所示的电路系统涉及自写程序。控制器-定序器183通常是一种具有一些模拟元件(例如,用于产生来自频率较低的晶体检波器的一个增加时钟信号的模拟锁相环)的数字电路,通常包含一个或多个可编程中央处理器以及随机存取存储器和程序控制存储器。在磁盘驱动器100的操作期间,马达驱动器电子设备电路184为(图1中的)转子马达组件104和(图2中的)VCM 122提供电力。在磁盘驱动器100的典型的操作期间,读/写通道电子设备186执行读功能或写功能。在一个较佳实施例的自写程序期间,(图3中的)多路复用器电路178为(图3中的)码型发生器电路176将读/写通道电子设备186的写部分关闭,但是,读/写通道电子设备186的读部分结合(图2中的)脉冲检测器电路174加以运用,以读取以前被写到(图2中的)磁盘表面106的基准标记。
图5示出了一幅方框图,示出码型发生器176、读/写通道电子设备186的读通道部分188和时钟发生器锁相环电路168中的延迟,这些延迟使读回信息在相位上相对于基准标记写信号移动,自写程序使用这些基准标记写信号将附加的写信号写到磁盘表面106。伺服写时钟发生器锁相环系统168和可编程延迟172的设计补偿了这些相位偏移,以便被写到磁盘表面106的基准标记的安置与以前被写到磁盘表面106的基准标记一致。
图6中的自写电路164能够测量电压受控振荡器190与以前被写到(图5中的)磁盘表面106的基准标记之间的相位误差,能够准确地延迟自写电路164的锁相环时钟部分,并能够将时钟信号多路复用到相位检测器电路192中,以便执行自动化电路/系统校准。相位误差的测量由自写电路164的相位测量电路170来实现。可编程延迟电路172提供了延迟伺服写时钟发生器锁相环电路168的时钟信号的能力,多路复用器194提供了将时钟信号多路复用或切换到相位检测器电路192中的能力。
图7示出伺服写锁相环系统200的方框图,它是(图5中的)自写电路164的另一个实施例。伺服写锁相环系统200包括一个附加的可编程延迟电路202,该可编程延迟电路将一个被延迟的脉冲数据信号提供给被用于将时钟信号切换到相位检测器电路198中的多路复用器194。图7还示出了一个被锁定的锁相环时钟信号204,作为锁相环时钟部分170的一个输出。
图8示出了(图3中的)自写电路164的(图6和图7中的)时钟发生器锁相环和相位测量电路168、170的定时图400。系统定时和相位误差测量源自门,这些门产生于跟(图3中的)自我伺服控制和定序电路180同步的数字逻辑。为了建立PLL的锁相并测量相位误差,使用锁相环门402(也被称作“PLL门402”)来驱动(图7中的)伺服写时钟发生器锁相环电路,并使用相位测量门404(也被称作“PM门404”)来驱动(图3中的)自写电路164的(图6或图7中的)相位测量电路170。关于每个奇数伺服扇区406,第一个基准标记或主要的自写定时域408(在这里也被称作“主要时钟域”408)在第二个基准标记或次要的自写定时域410(在这里也被称作“次要时钟域”410)之前,并可以跟随第三个基准标记或伺服磁道复写器供应伺服域412。关于每个偶数伺服扇区414,次要的自写定时域410在主要的自写定时域408之前,并可以跟随一个伺服磁道复写器供应域412。针对该说明的目的,要注意,被写到(图1中的)一个数据磁道120的每个伺服扇区(奇数406或偶数414)实质上位于被指定为地址符号416的接连的第四种类型的基准标记之间。
被包括在每个奇数伺服扇区406内的是主要的自写定时域408,随后是次要的自写定时域410,随后是第五种基准标记或主要伺服域418,再后面是第二个主要的自写定时域408和第二个次要的自写定时域410(在第六种基准标记或次要的自写伺服域420之前)。在次要的自写伺服域420后面,各个系列的成对的定时域(即由次要的自写定时域(408,410)跟随的主要的自写定时域)填补了各个地址符号416之间的(图1中的)数据磁道120的余额。不言而喻,可以采取定时域和伺服域的不同的布置,并且,这些布置将在本发明的范围内,目标是另一套主要和次要的定时域和伺服域。
(图3中的)自写电路164的(图6或图7中的)相位测量电路170将这些各个系列的定时域对(也被称作“时钟域对”)用作测量各个基准标记(无论是主要的或次要的自写定时域[408或410],还是以前被写到(图5中的)可旋转磁盘表面106的主要的或次要的自写伺服域[418或420]以及在时间、相位和频率上与以前所写的基准标记一致的将要被写到(图5中的)可旋转磁盘表面106的基准标记)之间的相位误差的基础。一般而言,关于奇数伺服扇区,通过促使(图7中的)相位测量电路170继续进行用于计算相位误差的测量,相位测量门404响应于跟随第二个自写伺服域420的第一个主要的自写定时域408。每次测量的持续时间基本上等同于相位测量门404对于(图1中的)所选数据磁道120(正为其进行相位测量计算)的连续地址符号之间所有主要的自写定时域408而言很高的时间的总和。关于在主题伺服扇区406内发生最后的主要自写定时域的(图1中的)所选磁道120的每个奇数伺服扇区406,自写程序的相位测量部分结束。
当自写程序的相位测量部分结束时,开始通过(图3中的)自我伺服控制和定序电路180将测量传递到(图2中的)伺服引擎148和控制处理器144。在将测量传递到(图2中的)伺服引擎148和控制处理器144之后,清除(图3中的)自写电路164的(图6或图7中的)相位测量电路170,以便为(图1中的)所选数据磁道120的所有剩余的伺服扇区随后的连续相位测量做准备。应该注意,从每个伺服扇区的主要和次要的自写定时域(408和410)的重复对中聚集为计算相位误差而收集的相位测量数据。由于对自写定时域的各个重复对进行相位误差测量,因此,对于成功地执行这里所揭示的自写程序而言,写入与以前所写的自写定时域一致的附加的自写定时域是一个重要的因素。
图9表现了(图3中的)自写电路164所用的定时序列图600,该自写电路用于将基准标记写到(图1中的)一个所选数据磁道120,这些基准标记的相位和频率与以前被写到(图1中的)数据磁道120的基准标记一致。定时序列图600的上部示出当(图3中的)自写电路164的(图5、6或7中的)伺服写时钟发生器锁相环电路168与(图8或图9中的)主要的自写定时域408同步并被锁定到那里的时候,主要的伺服域418基准标记和次要的自写定时域420基准标记都被写到(图1中的)所选数据磁道120。
定时序列图600的下部示出当(图3中的)自写电路164的伺服写时钟发生器锁相环电路168与(图8中的)次要的自写定时域410同步并被锁定到那里的时候,(图8中的)次要的伺服域420基准标记和主要的自写定时域408都被写到(图1中的)所选磁道120。
换言之,同时参照图8和图9,信息被写到(图1中的)所选数据磁道120的所选部分,而(图3中的)自写电路164的(图5、6和7中的)伺服写时钟发生器锁相环电路168被锁定。在写操作之后,(图3中的)自写电路164的(图5中的)伺服写时钟发生器锁相环电路168仍然被锁定,(图6中的)相位测量电路170被用来识别(图3中的)自写电路164的(图5中的)伺服写时钟发生器锁相环电路168与以前刚刚被写到可旋转磁盘表面106的基准标记之间的相位偏移量。然后,将一个合适的补偿偏移编程到(图6或图7中的)可编程延迟172中,再使用该补偿偏移在下一项写操作上除去(图5中的)读通道188与(图3中的)码型发生器176之间的相位差。
图10示出了自写程序800,即一种方法始于工序802,将信息域(例如408、410、418或420)写到可旋转磁盘表面(例如106),时间上与被写到磁盘驱动器(例如100)的可旋转磁盘表面的以前所写的信息域(例如408、410、418或420)配合,相位和频率上与其一致。从工序802起,自写程序在工序804中继续进行——测量磁盘驱动器的读/写磁头(例如118)的读元件半径和写元件半径相对于可旋转磁盘的中心的差D。然后,这个差的最近的整数部分被保存为值n。自写程序在工序806中继续进行——选择一个数据磁道(例如120)(定时传播将在那里开始)的一个磁道数,并将该数存储为磁道值k。同样在工序806处,对应于磁道k的一个初始相位纠正信号矢量Yk被设置为零(Yk=0),对应于从k到k+n的磁道的从Yk+1、Yk+2到Yk+n的附加的相位纠正信号矢量都被设置为零。自写程序在步骤808中继续进行,其中,读元件被定位到所选磁道k,通过读取磁道k上的以前所写的信息(时钟域或伺服域)来获得伺服写时钟发生器锁相环电路(例如168)的锁相,并且,根据以前所写的信息来确定相位纠正信号矢量Yk。
在步骤810中,自写程序通过在磁道k+D上写相应的一套次要时标而继续进行,同时,伺服写时钟发生器锁相环电路保持被锁定到磁道k的主要时标,并且,相位纠正信号矢量Yk被应用于一个可编程延迟(例如172)。这时,值得记住的是正在步骤810中被写入的磁道k+D从所选磁道k偏移读元件到写元件的径向偏距D。通过步骤810中的程序,包括次要时标410和主要伺服标记418的信息域的写入在时间上与包括以前被写到可旋转磁盘表面的主要时标408和410的以前所写的信息域配合,并在相位和频率上与其一致。
现在,自写程序继续进行到步骤812,在那里,可以从所选磁道k的次要时标中获得伺服写时钟发生器锁相环电路。
在步骤814中,自写程序通过在磁道k+D上写主要时标而再次继续进行,同时,伺服写时钟发生器锁相环电路保持被锁定到磁道k的次要时标,并且,相位纠正信号矢量Yk被应用于可编程延迟。又值得记住的是正在步骤814中被写入的磁道k+D从所选磁道k(图1中的120)偏移读元件到写元件的径向偏距D。通过步骤814中的程序,包括主要时标408和次要的伺服标记420的信息域的写入在时间上与包括以前被写到可旋转磁盘表面的次要时标410的信息域配合,并在相位和频率上与其一致。同样在自写步骤814的写程序期间,PLL相位误差的一个AC成分由一个相位测量电路(例如170)进行测量,并被临时存储在矢量W中。对于保持以后将要被写入的数据与以前被写入的数据在时间上配合、一致而言,PLL相位误差的这个AC成分的测量很重要。
现在,自写程序进行到步骤816,在那里,计算相位纠正信号矢量Yk+n,然后存储起来,用于以后的定时传播纠正,以保持将要被写入的数据在时间上与以前被写入的数据配合,并在频率和相位上与其一致。利用被存储在矢量W中并在前一个步骤中被收集的PLL相位误差的AC成分以及信号矢量Yk的前面的值,来计算这个信号矢量Yk+n。以后,随着传播程序的继续,当读磁头最终被置于所选磁道k+n上时,将这个所存储的相位纠正信号矢量用作被应用于可编程延迟的一个纠正矢量。接下来,在步骤818中,确定是否将写入任何更多的磁道。如果将写入更多磁道,则自写程序进行到工序820,在那里,将1加入磁道值k(k=k+1),该程序返回到工序808并继续循环通过该程序,直到没有将要被写入的磁道为止,这时,自写程序在工序220处结束该程序。
在一个较佳实施例中,磁盘驱动器(例如100)具有一个可旋转磁盘表面(例如106)和一个定位机制,该定位机制包括一个磁头组组合件(例如110)和一个音圈马达(例如122),对可定位的读/写磁头(例如118)相对于可旋转磁盘表面的位置进行控制。该磁盘驱动器包括读/写通道电子设备电路(例如186)的写通道部分,用于将数据写到可旋转磁盘表面;具有伺服写时钟发生器锁相环电路(例如168)的自写电路(例如164),用于控制将基准标记(例如408、410、412或420)写到可旋转磁盘表面的定时;一个脉冲检测器电路(例如176),用于利用以前被写到可旋转磁盘表面的信息(例如408、410、412或420)来创建逻辑电平信号;码型发生器(例如176),用于通过逻辑电平信号来生成基准标记写信号,这些基准标记写信号用于将基准标记写到可旋转磁盘表面;以及多路复用器(例如178),用于在写通道的写信号与来自码型发生器的基准标记写信号之间进行切换,这些信号用于分别将数据和基准标记写到磁盘驱动器的可旋转磁盘表面。
读者将会明白,本发明很适合达到所述的目的和优点及其固有的目的和优点。上文中,已经针对发明目的描述了当前的较佳实施例,但是,本领域中的普通技术人员可以进行许多更改,例如,包括(图6中的)脉冲检测器电路174、(图3中的)相位测量电路170、(图3中的)伺服写时钟发生器锁相环电路168、(图3中的)可编程延迟电路172、(图5中的)码型发生器电路176、(图3中的)多路复用器电路178和(图1中的)磁盘驱动器100的读/写通道电子设备186内的(图3中的)缓冲存储器182,或者包括(图1中的)磁盘驱动器100的(图4中的)控制定序器183内的(图3中的)相位测量电路170和(图5中的)码型发生器电路176,它们被包含在所揭示的发明的精神中并在所附权利要求书中被加以定义。虽然这里已详细描绘并讲述了较佳实施例,但是,在不脱离本发明的精神的前提下,本领域中的普通技术人员可以进行修改、增加、替换和类似的处理,所以,它们被认为在如所附权利要求书中所定义的本发明的范围内。关于用装置加功能的格式表达的权利要求,该说明书中所引述的原先技术作为等同的技术被排除在外。
权利要求
1.一种具有可旋转磁盘表面和定位机构的磁盘驱动器,所述定位机制对可定位的读/写磁头相对于可旋转磁盘表面的位置进行控制,其特征在于,所述磁盘驱动器包含写通道,用于生成将数据写到可旋转磁盘表面的写信号;被写在可旋转磁盘表面上的一个基准标记,它为定位机构提供控制信息;控制写入基准标记的定时的一个伺服写时钟发生器锁相环电路;脉冲检测器电路,用于利用基准标记来创建逻辑电平信号;码型(pattern)发生器,用于从所述逻辑电平信号来生成基准标记写信号,这些基准标记信号用于将基准标记写到可旋转磁盘表面上;以及多路复用器,用于在来自写通道的写信号与来自码型发生器的基准标记写信号之间进行切换,这些写信号用于分别将数据和基准标记写到磁盘驱动器的可旋转磁盘表面上。
2.如权利要求1所述的磁盘驱动器,其特征在于,它还包括存储缓冲器,用于存储径向位置纠正表格和值,这些径向位置纠正表格和值用于将基准标记写到可旋转磁盘表面上;以及自我伺服控制和定序电路,用于使将基准标记写到可旋转磁盘表面的定时信号同步化。
3.如权利要求1所述的磁盘驱动器,其特征在于,它还包括以前被写到可旋转磁盘表面的信息部分;以及相位测量电路,用于从以前被写到可旋转磁盘表面上的信息部分产生逻辑电平信号,用于确定以前被写到可旋转磁盘表面的信息部分的基本上准确的圆周位置。
4.如权利要求1所述的磁盘驱动器,其特征在于,它还包括一个附加的基准标记和以前被写到可旋转磁盘表面上的信息部分,其中,该基准标记包括一个时钟域,磁盘驱动器使用该时钟域来使写入附加基准标记的定时同步化,同时,在写入可旋转磁盘表面的附加基准标记时,使写入附加基准标记的时序在时间、时钟域以及以前被写到可旋转磁盘表面上的信息部分三方面,基本对准并和一致。
5.如权利要求1所述的磁盘驱动器,其特征在于,还包括附加的基准标记、以前被写到可旋转磁盘表面上的信息部分以及用于控制定位机制以便使读/写磁头相对于可旋转磁盘表面对齐的伺服控制回路,其中,该基准标记包括一个伺服域,磁盘驱动器使用该伺服域来使将附加基准标记写到可旋转磁盘表面上时的写入定时在时间、频率以及相位三方面与伺服域以及以前被写到可旋转磁盘表面的信息部分基本对准和一致。
6.如权利要求1所述的磁盘驱动器,其特征在于,它还包括一个以前被写到可旋转磁盘表面的信息部分,伺服写时钟发生器锁相环电路生成一个用于将基准标记写到可旋转磁盘表面时使用的时钟信号;还包括提供延迟信号的可编程延迟器,该延迟信号用于延迟时钟信号,以便在以前被写到可旋转磁盘表面的信息部分与被写到可旋转磁盘的基准标记之间达到在时间上基本对准、在频率和相位上一致。
7.一种采用磁盘驱动器的读/写磁头用于按在时间上与可旋转磁盘表面的以前所写入的信息域对准、在相位和频率上与其一致的方式将信息域写到该可旋转磁盘表面上的方法,其特征在于,它包括(a)测量用于将信息域写到可旋转磁盘表面的读/写磁头的读元件与写元件之间相对于可旋转磁盘表面的中心径向位置的差别;(b)选择可旋转磁盘表面的数据磁道,用于读取被写到所选数据磁道的以前所写的信息域,并将对应于所选数据磁道的一个初始相位纠正值设置为零,以便为将信息域写到所选数据磁道做准备;(c)将读元件定位在所选数据磁道附近,同时,使用以前所写的信息域来获得伺服写时钟发生器锁相环电路的一个锁相,用于在时间上、相位和频率上与以前所写的信息域基本对准和一致的方式将信息域写到所选数据磁道;以及(d)在时间上与所选数据磁道的以前所写的信息域基本对准、在相位和频率上与其一致的方式将信息域写到可旋转磁盘表面的第二个数据磁道上,同时,将伺服写时钟发生器锁相环电路的锁相保持为以前所写的信息域。
8.如权利要求7所述的方法,以前所写的信息域是多个以前所写的信息域,所述信息域是多个信息域,所述数据磁道是多个数据磁道;其特征在于,所述方法还包括(e)将读元件的位置保持在所选数据磁道的附近,同时,使用在时间上接在邻近以前所写的信息域并从多个以前所写的信息域中选择的以后的第二个以前所写的信息域,来获得伺服写时钟发生器锁相环电路的一个锁相,用于在时间上接在信息域以后写入第二个信息域;(f)在时间上接在信息域后面写入第二个信息域,同时,将伺服写时钟发生器锁相环电路的锁相保持到第二个以前所写的信息域,所述第二个信息域和信息域都是多个信息域中的信息域,第二个信息域在时间上与所选数据磁道的第二个以前所写的信息域基本对准并在相位和频率上与其一致;(g)将读元件的位置保持在所选数据磁道的附近,同时,使用多个以前所写的信息域中的每个以前所写的信息域来顺序获得伺服写时钟发生器锁相环电路的一个锁相,其中,所使用的多个以前所写的信息域中的每个信息域都在时间上接在邻近多个以前所写的信息域中的一个原先使用的、以前所写的信息域,它被用作写入被写到所选数据磁道的多个信息域中的一个原先的信息域的基础;(h)在时间上接在每一先前写入的信息域以后,写入多个信息域中的每一顺序的信息域,同时,时间上接在多个以前所写的信息域中的每个写入的信息域后面,保持伺服写时钟发生器锁相环电路的锁相,每个顺序的信息域在时间上与所选数据磁道的多个以前所写的信息域中在时间上顺序写入的每个以前所写的信息域互相基本对准并在相位和频率上与其一致;(i)将读/写磁头推进到邻近所选数据磁道的第二个数据磁道上,所述第二个数据磁道和所选数据磁道都是多个数据磁道中的数据磁道;(j)对于第二个数据磁道重复处理步骤(a)至(h);以及(k)在第二个所选数据磁道之后,对于磁盘驱动器的可旋转磁盘表面的多个数据磁道中的每个数据磁道,重复处理步骤(a)至(h)。
9.如权利要求8所述的方法,其特征在于,所述第二个数据磁道位于从可旋转磁盘表面的旋转中心的一个径向位置上,所选数据的半径大体上是从可旋转磁盘表面的旋转中心的半径小于读/写磁头的读元件与写元件之间的径向差。
10.如权利要求8所述的方法,其特征在于,第二个数据磁道位于从可旋转磁盘表面的旋转中心的一个径向位置上,所选数据的半径大体上是从可旋转磁盘表面的旋转中心的半径加上读/写磁头的读元件与写元件之间的径向差。
全文摘要
一种磁盘驱动器(100)具有以前被写在一个可旋转磁盘表面(106)上的一个信息部分;控制定时的一个伺服写时钟发生器锁相环电路(168),该定时用于在时间上与以前被写到可旋转磁盘表面(106)的信息部分基本对准并在相位和频率上与其一致的方式将一个基准标记写到可旋转磁盘表面(106);控制用于写入该基准标记的定时的一个伺服写时钟发生器锁相环电路(168);用于利用基准标记来创建逻辑电平信号的一个脉冲检测器电路(174);用于通过逻辑电平信号来生成基准标记写信号的一个码型发生器(176);用于存储径向位置纠正表格和值的一个存储缓冲器(182),这些径向位置纠正表格和值用于写入基准标记;以及使定时信号同步的一个自我伺服控制和定序电路(180),这些定时信号用于将基准标记写到磁盘驱动器(100)的可旋转磁盘表面(106)。
文档编号G11B21/10GK1748258SQ01817865
公开日2006年3月15日 申请日期2001年7月26日 优先权日2000年10月24日
发明者L·M·布赖恩特, G·西塔, A·A·芬纳玛, K·A·贝尔瑟, R·D·墨菲 申请人:西加特技术有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1