图像读取装置的制作方法

文档序号:6870104阅读:213来源:国知局
专利名称:图像读取装置的制作方法
技术领域
本发明是有关图像读取装置,尤其是在将多个光电传感器排列成矩阵状的光电传感器阵列上,使其接触被检测体,读取其图像纹路。
背景技术
过去,作为读取印刷品和照片、或者指纹等细微的凹凸形状的2维图像读取装置,有下述的结构,即检测面设置在将光电转换元件点阵排列而构成的光电传感器阵列上,而将被检测体放置在检测面上,并与其接触,来读取2维图像。
因此,在具有这种被检测体直接接触检测面结构的2维图像读取装置中,被检测体和光电转换元件之间的距离是较短的,通过被检测体所带的静电等,为驱动光电转换元件的驱动电路,通过光电转换元件的布线而会引起误动或损坏,及会引起光电转换元件本身的误动和损坏。
但是,在上述这种以往的2维图像读取装置中,由于没有确定能对被检测体所带的静电进行充分和确实放电的装置的具体的耐压设计,因此,静电耐压是不够的,就有以下问题,即不能确实防止2维图像读取装置的读取误动和损坏。
因此,都在谋求确定具体的结构和形成条件,以便适当地给被检测体所带的静电进行放电,很好地防止2维图像读取装置的读取误动和损坏等。
发明的内容本发明鉴于上述问题,其目的在于提供一种2维图像读取装置,对放置在光电传感器装置上的被检测体所带的静电进行适当放电,可以大幅抑制读取误动和设备损坏。
为达到上述目的本发明采取以下技术方案图像读取装置,用于读取被检测体图像的,其特征在于包括排列在衬底一侧的多个传感器;设置成覆盖上述多个传感器的绝缘膜;及为给上述被检测体进行放电,设置在上述绝缘膜上的片电阻为50Ω/以下的导电层。
所述的图像读取装置,其特征在于,上述导电层由具有光透射性的导电材料组成。
所述的图像读取装置,其特征在于,上述导电层具有将氧化铟·锡做为主体的材料。
所述的图像读取装置,其特征在于,上述导电层,通过布线而被接地。
所述的图像读取装置,其特征在于,上述布线,设定为30Ω以下的布线电阻。
所述的图像读取装置,其特征在于,上述传感器为光电传感器。
所述的图像读取装置,其特征在于,上述光电传感器具有半导体层,其有激励光入射的有效入射区域;分别设置在上述半导体层两端的源极,漏极电极;设置在上述半导体层下方的第1栅极绝缘膜;设置在上述第1栅极绝缘膜下方的第1栅电极;设置在上述半导体层上方的第2栅极绝缘膜;设置在上述第2栅极绝缘膜上方的第2栅电极。
所述的图像读取装置,其特征在于,具有检测电路,当上述被检测体接触上述导电层时,检测电路检测直流电压的变化和交流信号电压的变化。
所述的图像读取装置,其特征在于,上述导电层分割为多个。
所述的图像读取装置,其特征在于,上述被分割为多个的导电层,至少是局部接地的。
图像读取装置,用于读取被检测体图像的,其特征在于包括(a)排列在衬底一侧的多个光电传感器,其具有有激励光入射的有效区域的半导体层;分别设置在上述半导体层两端的源极、漏极;设置在上述半导体层下方的第1栅极绝缘膜;设置在上述第1栅极绝缘膜下方的第1栅电极;设置在上述半导体层上方的第2栅极绝缘膜;及设置在上述第2栅极绝缘膜上方的第2栅极;(b)设置成覆盖上述多个传感器的绝缘膜;(c)用于对上述被检测体的带电电压进行放电,而被设置在上述绝缘膜上的片电阻为50Ω/以下的导电层;(d)被连接在上述多个光电传感器的漏电极的漏极驱动器;(e)被连接在上述多个光电传感器的第1栅电极的第1栅极驱动器;及(f)被连接在上述多个光电传感器的第2栅电极的第2栅极驱动器。
图像读取装置,用于读取被检测体图像的,其特征在于包括排列在衬底一侧的多个传感器;设置成覆盖上述多个传感器的绝缘膜;用于给上述被检测体的带电电压进行放电,设置在上述绝缘膜上的片电阻为50Ω/以下的导电层;及设置在上述导电层上的缓冲层。
所述的图像读取装置,其特征在于,上述导电层由具有光透射性的导电材料组成。
所述的图像读取装置,其特征在于,上述导电层通过布线被接地。
所述的图像读取装置,其特征在于,上述布线设定为布线电阻在30Ω以下。
所述的图像读取装置,其特征在于,上述导电层分割为多个。
所述的图像读取装置,其特征在于,上述传感器具有半导体层,其有激励光入射的有效区域;分别设置在上述半导体层两端的源极、漏极电极;设置在上述半导体层下方的第1栅极绝缘膜;设置在上述第1栅极绝缘膜下方的第1栅电极;设置在上述半导体层上方的第2栅极绝缘膜;及设置在上述第2栅极绝缘膜上方的第2栅电极。
所述的图像读取装置,其特征在于还具有检测电路,用于检测当被检测体接触上述导电层时的直流电压的变化或交流信号电压的变化。
所述的图像读取装置,其特征在于,上述缓冲层,具有由真性非晶质硅、含有不纯物质的非晶质硅、氮化硅、氧化硅、金刚石、绝缘高分子或者导电高分子选择的材料。
本发明中的读取被检测体图像的图像读取装置,具有,在衬底的一侧排列的多个传感器、设计成覆盖上述多个传感器的绝缘膜、为了给上述被检测体所带的静电进行放电而设置在上述绝缘膜上的片电阻在50Ω/以下的导电层。为此,当被检测体带有静电的情况下,被检测体接触导电层时,由于静电从片电阻低的导电层释放,因此可以防止图像读取装置的静电损坏。
当这些多个传感器是光电传感器时,理想的导电层是能透射光的导电材料,尤其是氧化铟·锡为主体的材料,即所谓的ITO是有效的。这些ITO,由于层内吸收光、发生散射,引起衰减,如果做得极厚,会恶化被检测体图像纹路的读取灵敏度,或者成膜很耗时间,生产率下降,因此,使用电阻率为2×10-3Ω·cm以下、折射率在2.0~2.2左右的ITO材料,将ITO的厚度控制在50~200nm左右,片电阻设定在15~50Ω/比较稳妥,如果优先考虑生产率,则将ITO材料的厚度控制在50~100nm左右,片电阻设定在30~50Ω/比较理想,如果优先考虑片电阻的放电特性,则将ITO材料的厚度控制在150~200nm左右,片电阻设定在15~20Ω/比较理想。
依据本发明的其他读取被检测体图像的图像读取装置,具有激励光入射拥有入射有效区域的半导体层;在上述半导体层的两端分别设置的源极、漏极;设置在上述半导体层下方的第1栅极绝缘膜;设置在上述第1栅极绝缘膜下方的第1栅极;设置在上述半导体层上方的第2栅极绝缘膜;设置在上述第2栅极绝缘膜上方的第2栅极;排列在衬底一侧的多个传感器;设置成覆盖上述多个传感器的绝缘膜;为了给上述被检测体所带的静电放电,设置在上述绝缘膜上的电阻在50Ω/以下的导电层;连接在上述多个光电传感器的漏极上的漏极驱动器;连接在上述多个光电传感器的第1栅极上的第1栅极驱动器;连接在上述多个光电传感器的第2栅极上的第2栅极驱动器。
第1栅极防止从下方照射的背景光直接照射在半导体层上,因此使用对激励光具有不透明性或者具有反射性的金属,另外第2栅极,允许背景光入射到被检测体以及允许被检测体的反射光透过,因此使用ITO这样透明的氧化导体。一般,金属与ITO这种透明氧化导体相比,电阻率低,导电性能好,因此容易移走静电,与第2栅极驱动器相比,第1栅极驱动器静电集中,易受损坏,但由于设置成片电阻低的导电层,可以抑制向驱动器方向的静电转移,提高耐压特性。
依据本发明的其他读取被检测体图像的图像读取装置,具有排列在衬底一侧的多个传感器;设置成覆盖上述多个传感器的绝缘膜;为了给上述被检测体所带的静电放电,设置在上述绝缘膜上的电阻在50Ω/以下的导电层;设置在上述导电层上的缓冲层。
缓冲层,由于使用了比放电用导电层片电阻还要高的半导体和绝缘体等,因此,图像读取装置可以实现耐高压的同时,由于被检测体是带电人体的一部分,因此可以缓和人在放电时的不舒服感觉。
附图的简单说明

图1是表示双极栅型光电传感器的基本结构的概略断面图;图2是表示双极栅型光电传感器的电路图;图3是表示将双极栅型光电传感器排列成2维而构成的光电传感器阵列的光电传感器系统;图4是表示光电传感器系统的驱动控制方法的一个例子的时序图;图5是表示双极栅型光电传感器的复位动作的概念图;图6是表示双极栅型光电传感器光载流子的积累动作的概念图;图7是表示对漏极线的预充电动作的概念图;图8是表示在光线充足环境下的选择方式下的动作概念图;图9是表示在光线不足环境下的选择方式下的动作概念图;图10是表示在光线充足环境下的非选择方式下的动作概念图;图11是表示在光线不足环境下的非选择方式下的动作概念图;图12是表示光电传感器系统的选择方式下的输出电压的光应答特性示意图;图13是表示光电传感器系统的非选择方式下的输出电压的光应答特性示意图;图14是表示在具有双极栅型光电传感器的光电传感器系统中,光入射状态对应手指的凹凸而识别图像的示意图;图15是表示在具有双极栅型光电传感器的光电传感器系统的电阻分布示意图;图16是表示当带有静电的手指在放电时的光电传感器系统的主要剖面图;图17是表示本实施例中的使用于静电保护导电层的ITO层的片电阻和实际耐压电压之间关系的实验结果;图18是表示静电保护用导电层的特性、各电阻值以及实际耐压电压的表;图19是表示在静电保护用导电层中,对应从静电枪放出的静电位置的实际耐压电压的表;图20是表示本实施例中,引线的布线电阻和实际耐压电压之间关系的实验结果;图21是表示本实施例中,对接地电位放电时的接地电阻和实际耐压电压之间关系的实验结果;图22是本实施例中,静电保护用导电层使用的ITO层的片电阻和引出布线的布线电阻之间关系的实验结果;图23是表示本发明2维图像读取装置中其他实施例的概略图;图24是表示本发明2维图像读取装置中其他不同实施例的概略图;图25是表示静电保护用导电层上设有缓冲层的,双极栅型光电传感器的基本结构的示意图。
发明的具体实施例以下,对本发明有关的2维图像读取装置的实施例,进行详细说明。
首先,对本发明有关的2维图像读取装置使用的良好的光电传感器结构进行说明。
作为本发明有关的2维图像读取装置中使用的光电传感器,可以使用电荷耦合器件CCD(Charge Coupled Device)等固体摄像装置。
CCD如众所周知,将光电二极管和薄膜晶体管(TFTThin FilmTransistor)等光电传感器排列成点阵的结构中,根据水平扫描与垂直扫描,检测出对应各个光电传感器的受光部照射的光量而产生的电子-空穴对的量(电荷量),并检测出照射光的辉度。
但是,在具有这种CCD的光电传感器系统中,将扫描的光电传感器作为选择状态的选择晶体管要分别设置,因此有这样一个问题,即随着检测像素数的增大,系统本身会产大型化。
于是,近几年,作为解决这种问题的结构,光电传感器本身具有图像读取功能和选择晶体管功能,所谓开发的具有双极栅型结构的薄膜晶体管(以下,简称[双极栅型晶体管]),尝试了系统的小型化以及像素的高密度化。为此,在本发明的2维图像读取装置中,也可以很好地使用双极栅型晶体管。
然后,参照图示,详细说明本发明有关的2维图像读取装置使用的依据双极栅型晶体管的光电传感器(以下简称[双极栅型光电传感器])。
图1是表示双极栅型光电传感器的基本结构的概略剖面图。
如图1所示,双极栅型光电传感器10,具有当有一定量的激励光(在这里是可视光)入射时,产生电子空穴对的非晶质硅等半导体层(沟道层)11;分别设置在半导体层11两端的由n+-Si组成的不纯物层17、18;形成在不纯物层17、18上的铬、铬合金、铝、铝合金等,对由它们选择的可视光具有不透明的漏极12以及源极13;在半导体11的上方,由氮化硅组成的方块绝缘膜14;设置在方块绝缘膜14的上面,由氮化硅组成的顶部栅极绝缘膜15;在其上形成的ITO等透明导电膜组成的,对可视光具有通过性的顶部栅极电极21;在半导体11的下方(图示下方),由氮化硅组成的底部栅极绝缘膜16;在栅极绝缘膜16下方的铬、铬合金、铝、铝合金等,对由它们选择的可视光具有不透明的底部栅极电极22。
然后,双极栅型光电传感器10的顶部栅极电极21的上方,设有由氮化硅组成的保护绝缘膜20,设在保护绝缘膜20的上方,由ITO等透明导电层组成的静电保护用导电层23。
静电保护用导电层23,其厚度设定成,电阻率在2×10-3Ω·cm,折射率在2.0~2.2,片电阻在50Ω/以下。
这里,图1中,顶部绝缘膜15、块状绝缘膜14、底部绝缘膜16、保护绝缘膜20的静电保护用导电层23中的任一个,都由对可视光透过率高的材料组成,例如由二氧化硅、ITO等组成,并检测从附图上方入射的光。
双极栅型光电传感器10由传感器部和MOS场效应管一体化组成,形成在玻璃衬底等透明的绝缘性衬底19上。传感器由半导体层11、顶部绝缘膜15、顶部栅极21组成,该半导体层11是光入射时产生载流子的区域,该顶部栅极21提供捕捉电压,捕捉指定极性的载流子如空穴,MOS场效应管由半导体层11、漏极12、源极13及底部栅极22组成,场效应管是根据分别加在漏极12、源极13、底部栅极22的电压和上述传感器捕捉的载流子量,流过漏极电流的晶体管。
而且,这种双极栅型光电传感器10一般表示为如图2所示的等效电路。这里,TG是栅极端子,BG是底部栅极端子,S是源极端子,D是漏极端子。
下面参照图示,简单说明光电传感器系统,光电传感器系统备有光电传感器阵(光电传感装置),光电传感器阵由上述2维排列的双极栅型光电传感器组成。
图3是光电传感器系统的概略图,此光电传感器系统具有光电传感器阵列,此光电传感器阵列是将双极栅型光电传感器排列成2维而构成的。
如图3所示,光电传感器系统的结构,具有将多个双极栅型传感器排列成n行×m列矩阵的光电传感器阵列;将顶部栅极端子TG相互连接的顶部栅极线101及将底部栅极端子BG相互连接的底部栅极线102,顶部栅极线101在行方向上,将多个双极栅型光电传感器10的顶部栅极端子TG(顶部栅极电极21)进行连接,底部栅极线102在行方向上,将多个双极栅型光电传感器10的底部栅极端子BG(底部栅极电极22)进行连接;在列方向上将各个双极栅型光电传感器10的漏极端子D(漏极电极12)进行连接的漏极线103;在列方向上将各个双极栅型光电传感器10的源极端子S(源极电极13)进行连接的源极线104;向顶部栅极线101提供指定信号的顶部栅极驱动器110;向底部栅极线102提供指定信号的底部栅极驱动器120;向漏极线103输出指定电压的同时,输入转移电压的读写驱动电路132,输入的电压对应其后的光读出进行转移;预充电开关133;由放大器134构成的漏极驱动器(输出电路部)130。
在这里,顶部栅型线101,由顶部栅极电极21和ITO等透明导电膜一体形成,底部栅极线102、漏极线103及源极线104,与底部电极22、漏极电极12、源极电极13一起,由对同一激励光具有不透明性的材料一体形成。而且,源极线104连接在接地电位上。
而且,图3中,信号φtg及φbg是生成各自的复位脉冲φT1、φT2、…φTi、…φTn及读出脉冲φB1、φB2…φBi、…φBn的控制信号,φpg是控制加预充电电压Vpg时间的预充电信号。
在这样的构成中,通过顶部驱动器110到顶部栅极线101,由于对顶部栅极端子TG加上电压,可以实现图像读取功能,通过底部驱动器112到底部栅极线102,对底部栅极端子BG加上电压,通过漏极线103,将检测的信号给漏极驱动器130,作为串行数据或并行数据输出,由此可以实现选择读出功能。
下面,参照图示,说明上述光电传感器系统的驱动控制方法。
图4是表示光电传感器系统的驱动控制方法的一个例子的时序图,图4是双极栅型光电传感器饿动作概念图,图5~图11是表示光电传感器系统输出电压的光响应特性的图。在这里,适当参照上述的双极栅型光电传感器及光电传感器系统的构成(图1、图3)进行说明。
首先,在图像读取之前进行的复位动作中,如图4、图5所示,给第i行的顶部栅极线101加上脉冲电压(复位脉冲;例如Vtg=+15V的高电平)φTi(1≤i≤n),释放(复位时间T)出载流子(在这里是空穴),载流子存积于各个双极栅型光电传感器10的半导体层11及块状绝缘膜14中的半导体层11之间的界面。
在复位动作结束之后的光累积动作中,如图4、图6所示,给顶部栅极线101加上低电平(例如Vtg=-15V的低电平)的偏置电压φTi,由此,应光的入射,开始启动半导体层11内产生载流子的光累积期间Ta。也就是说,光累积期间Ta中,对应从顶部栅极侧入射的光量,产生半导体层11的入射有效区域,即在载流子生成区域产生电子空穴对,半导体层11、及块状绝缘膜14中的半导体层11之间的界面附近也就是说沟道区域附近积聚空穴。
然后,在预充电动作中,如图4、图7所示,与光积累期间Ta并行,根据预充电信号φpg,读写驱动器132对漏极线103加上指定的电压(预充电电压)Vpg,让漏极12保持电荷(预充电时间T)。
下面,在读出动作中,如图4、图8所示,经过预充电时间T,对底部栅极线102加上高电平(例如Vbg=+10V)的偏置电压(读出选择信号;以下称为读出脉冲)φBi,由此,可以使双极栅型光电传感器10处于导通状态(读出时间T)。
此时,如果在光累积时间Ta里,有足够的空穴聚集在沟道附近区域,则在读出期间T,积聚的空穴会向弱化电场影响的方向移动,而这个电场是由加在逆极性顶部栅极端子TG的电压Vtg(-15V)产生,因此,加在底部栅极端子BG的电压Vbg(+10V)会产生沟道。伴随沟道形成而流动的漏极电流,漏极线103的漏极电压VD,如图12所示显示着以下倾向,即从预充电电压Vpg开始,随着时间缓缓下降。
也就是说,在当光累积状态处于明状态时,如图8、图12所示,在沟道区域里捕捉着对应入射光量的空穴,因此,起到取消顶部栅极端子TG的负偏压的作用,只在这被取消的部分里,由底部栅极端子BG的正向偏置,双极栅型光电传感器10处于导通状态。因此,对应这个入射光量的导通电阻,漏极线103的电压VD就会降低。
另一方面,在光累积期间Ta,光累积状态处于暗状态,沟道区域没有聚积载流子(空穴)时,如图9、图12所示,对顶部栅极端子TG进行反向偏置,取消底部栅极端子BG的正向偏置电压Vbg(+10V),双极栅型光电传感器10不会形成沟道,漏极电压也就是说,漏极线103的电压VD基本上可以保持原状态。
因此,如图12所示,漏极线103的电压VD的变化倾向,与一定期间的受光量密切相关,一定期间指的是对顶部栅极端子TG加上复位脉冲φTi,结束复位动作的时点开始,到对底部栅极端子BG加上读出脉冲φBi的时间(光累积时间Ta)。且累积的载流子少时,表示降低缓慢的倾向,而且,累积的载流子多时,表示急剧降低的倾向。为此,读出期间T开始,由检测经过指定时间的漏极线电压103的电压VD,或者以指定的门限电压为基准,由检测到达这个电压为止的时间,来换算照射光的量。
将上述的一连串图像读取动作作为1个周期,对第i+1行的双极栅型光电传感器10,进行同等的处理步骤,由此,可以将双极栅型光电传感器10作为2维传感器系统,使其动作。
而且,如图4所示的时序图中,经过预充电时间T后,如图10及图11所示,如果继续对底部栅极线102加上低电平电压Vbg(0V),则无论光有无入射,双极栅型光电传感器10都维持关闭状态,如图13所示,漏极线103的电压VD,都保持预充电电压Vpg。这样,由对底部栅极线102加上电压的状态,来实现选择功能,即选择双极栅型光电传感器10的读出状态。
图14是使用了上述光电传感器系统的2维图像读取装置(指纹读取装置)的主要剖面图。而且,在这里,为了说明及图示的方便,将省去表示光电传感器系统剖面部分的剖面线。
如图14所示,在读取指纹等2维图像的图像装置中,双极栅型光电传感器10设置在玻璃衬底19(绝缘性衬底)的下方,由背景光系统30入射照射光La,这个照射光La除去双极栅型光电传感器10(详细地说,是底部栅极22、漏极12、源极13)的形成区域,透过透明的绝缘衬底19和绝缘膜15、16、20,照射在手指(被检测体)FN,手指(被检测体)FN放置在透明的静电保护用导电层23的检测体接触面2B上,荧光管、导光板及扩散板都是背景光的光源。
之后,在指纹读取装置检测指纹时,手指FN的皮肤表层SK的半透明层,接触形成在光电传感器阵列100的最上层的静电保护用导电层23,这样,静电保护用导电层23和皮肤表层SK之间的界面上就没有了折射率低的空气层。这里,皮肤表层SK的厚度比650nm厚,在手指FN的凸部CNV中,入射在内部的光La,在皮肤表层SK里一边散射、反射,一边传播。传播光Lb的一部分,透过透明的静电保护用导电层23、透明的绝缘膜20、15、14及顶部栅极21,作为激励光入射在双极栅型光电传感器10的半导体层11上。这样,配置在对应手指FN凸部CNV位置的,双极栅型光电传感器10的半导体层11上,累积由于光的入射生成的载流子(空穴),则根据上述一连的驱动控制方法,可以将手指FN的图像纹路(pattern)作为明暗信息读取。
又,在手指的凹部CNC中,被照射的光La,通过静电保护用导电层23的指纹检测面2B和空气层之间的界面,到达空气层方的手指,在皮肤表层SK里进行散射,但是由于手指FN的皮肤表层SK比空气折射率高,因此,在某种角度上,入射在界面上的皮肤表层SK里的光Lc难以被空气层除掉,可以抑制对双极栅型光电传感器10的半导体层11的入射,而双极栅型光电传感器10配置在凹部CNC对应位置。
而且,下面表述的实施例中,作为光电传感器,对适用了上述双极栅型光电传感器的情况进行了说明,本发明不限于此,当然也适用于很好地使用了光电二极管和TFT的情况。
下面,以具体的实施例说明关于本发明的2维图像读取装置。而且,在以下所述的实施例里,作为光电传感器,对适用了上述双极栅型光电传感器的情况进行说明。
图15是说明本发明的2维图像读取装置的阻抗的平面图。
如图16是表示将本发明的2维图像读取装置用于指纹读取装置时的一实施例的概要构成图。并且,有关与上述结构(图1、图14)相同结构,赋予相同的符号并简化其说明。
如图15及图16所示,本实施例有关的2维图像读取装置,其构成具有拥有上述结构的多个双极栅型光电传感器10;在玻璃衬底19上矩阵排列的光电传感器阵列(光电传感器装置)100;覆盖光电传感器阵列全部区域形成的透光性保护绝缘膜20上面形成的,静电保护层23,此光电传感器阵列至少配置了多个双极栅型光电传感器10;将上述静电保护用导电层23连接在接地电位的引线布线24;对手指(被检测体)FN照射均匀光的背景光系统30,背景光系统30配置在光电传感器阵列100的背面侧(图示下方侧),手指FN接触光电传感器阵列100上侧(静电保护用导电层23的上面)。点P是后述的静电枪释放的静电到达时的静电保护用导电层23的位置。电阻23是从点P到布线24的静电保护用导电层23的电阻,电阻24a是引线布线24的电阻。
这里,形成在保护绝缘膜20上面的静电保护用导电层23,对激励各个双极栅型光电传感器10的半导体层11的可视光透射率高,并且,例如导电材料由铟、锌的氧化物组成,其膜厚设定成片电阻在50Ω/以下。
适用于静电保护用导电层23的材料,随着膜厚逐渐加厚,激励光的透过率会逐渐降低,因此,为了达到上述片电阻范围,电阻率在2×10-3Ω·cm以下比较理想,而且和保护绝缘膜20之间的界面上,光会反射、分散,因此,希望折射率和保护绝缘膜20的氮化硅折射率(1.8~2.0)相同或在其以上,使到达手指FN的光量没有减少。
另一方面,引线布线24,将静电保护用导电层23连接在接地电位上,如后所述设定的横断面积达到如下指标,即使用能很好释放手指FN所带静电的布线材料,例如,由导线和金属组成,使布线电阻24a大概在30Ω以下,手指FN接触静电保护用导电层23。
这样,在2维图像读取装置中,在静电保护用导电层23上放置被检测体,也就是说,放置手指,一有接触,手指(人体)FN所带的静电,从拥有低电阻的片电阻的静电保护用导电层23,转移到拥有更加低的电阻的布线电阻24a,向接地电位放电。
由此,可以对手指FN所带的静电进行充分的放电,可以提高光电传感器阵列100的静电耐压电压,可以抑制由于上述静电引起的2维图像读取装置(指纹读取装置)的读取误动作和光电传感器阵列100的损坏。
而且,依据本实施例的2维图像读取装置,作为静电保护用导电层23,由于使用了ITO等透明、并在指定折射率范围的导电材料,直接照射手指FN,并反射的光,由于可以很好地入射到各个双极栅型光电传感器10的半导体层11上,此手指放在静电保护用导电层23上,因此,手指(指被检测体)FN的读取误动作中的读取灵敏度不会恶化,可以很好地读取被检测体的图像纹路(指纹)。
这里,具体说明适用于本实施例有关的2维图像读取装置的静电保护用导电层23及引线布线24。
如上所述,适用于本实施例的静电保护用导电层23的片电阻是50Ω/口以下,而布线电阻24a具有被设定在30Ω以下的结构。
对于这种组成,通过组成静电保护用导电层23的ITO层的导线,使用连接在接地电位的实验模型,验证ITO层片电阻和导线的布线电阻或者光电传感器耐压之间的关系。
图17是表示本实施例中,适用于静电保护导电层的ITO层的片电阻和实际耐压之间关系的实验结果,图18是对应指纹读取专用光电传感器阵列100的静电保护用导电层23膜厚的实际耐压实验数据,该指纹读取专用光电传感器阵列100具有由大概1根手指指尖大小面积构成的静电保护用导电层23。图19是对应指纹读取专用光电传感器阵列100的静电保护用导电层23接地电压的实际耐压实验数据,该指纹读取专用光电传感器阵列100具有由大概1根手指指尖大小面积构成的静电保护用导电层23。实际耐压,定义为在静电保护用导电层23上,在静电枪里产生强电场,如图3所示的电路的一部分或者全部不能正常工作时的电压。接地电阻由电阻23a和布线电阻24a的合成成份组成,该电阻23a是静电保护用导电层23到接地电位的电阻,该电阻24a是根据需要添加的引线24的电阻,在图18里,配合电阻23a,加上布线电阻24a,将接地电位均分为35~37左右,电阻23a根据静电保护用导电层23的厚度改变。而且,制造了图18的光电传感器阵列100及图19的光电传感器阵列100的制造装置,由于互不相同,因此,不要求光电传感器阵列100的特性完全相同。
图20是表示本实施例中,引线的布线电阻和实际耐压电压之间的关系的实验结果,图21是表示本实施例中,接地电阻和实际耐压电压之间关系的实验结果,图22是本实施例中,静电保护用导电层使用的ITO层的片电阻和引出布线的布线电阻之间关系的实验结果。图17中,静电保护用导电层23为ITO的光电传感器阵列100,如图18所示,在静电保护用导电层23的点P到接地电位之间加上接地电阻全部范围为35~37Ω的布线24。同样,图20的片电阻范围为15~30Ω的ITO层,将接地电阻全部统一为35~37Ω。而且,ITO膜的片电阻,可以根据ITO膜的厚度、氧气的存在比率的变化,进行控制。
<片电阻和耐压电压之间的关系>
作为静电保护用导电层,使用了ITO层的片电阻和实际耐压之间的关系,如图17所示测得了以下这样的关系,即片电阻越高(45~50Ω/),实际耐压电压的绝对值越低(-5~-7kV),与此相对,片电阻越低(15~30Ω/),实际耐压电压的绝对值越高(-8~-9kV)。
而且,测量装置由于无法测量比最低值-10kV低的实际耐压电压,在同样的实验条件,如果和其它材料相比,作为静电保护用导电层,如果使用了片电阻比较低的电极糊、铜带,则会下降到-10kV,但实际上,实际耐压不足-10kV,实际耐压电压的绝对值会比10kV大,因此,如果片电阻够低,则可以判断实际耐压电压的绝对值高。而且,由于接触手指而引起的放电电压的绝对值,大概是3~4kV,如果绝对值达到5kV以上,可以实现很好的功能。
适用于指纹读取专用光电传感器阵列100的静电保护用导电层23的ITO层的膜厚和片电阻之间的关系,拥有如图18所示的对应关系。因此,为了提高上述的实际耐压电压,如果要将片电阻设定在15~20Ω/左右,则,膜厚就要形成在150~200nm左右。并且,ITO层由透明的导电材料组成,为了实现低的片电阻,如果无条件加厚ITO层的膜厚,即便是ITO,由于层内光的吸收、散射,也会引起衰减,因此会恶化图像纹路的读取灵敏度,而且成膜耗时间,生产率会下降。还有,由控制ITO内的氧气存在率,可以提高单位厚度的ITO的透过率,但电阻率会增高,使用电阻率在2×10-3Ω·cm以下,折射率在2.0~2.2左右的ITO,将ITO的厚度控制在50~200nm,使片电阻设定在15~50Ω/比较妥当,如果优先考虑生产率,将厚度控制在50~100nm,使片电阻设定在30~50Ω/比较理想,如果优先考虑片电阻引起的放电特性,将厚度控制在150~200nm,使片电阻设定在15~20Ω/比较理想。
<布线电阻和实际耐压电压电压之间的关系>
另一方面,作为接地电阻的一部分添加的布线电阻24a和实际耐压电压之间的关系,如图20所示,静电保护用导电层23的片电阻在3Ω/,极为低的情况下,接地电阻在15~68Ω之间,布线电阻的影响基本上可以忽略,实际耐压电压一定,可以测量到-10kV或者不足其值和耐压电压极大的情况。而且静电保护用导电层23的片电阻在45~50Ω/和很高的情况,即使布线电阻24a是0Ω,实际耐压电压在-5~-7kV左右,很低,由此可以确认片电阻很高的情况,会对实际耐压电压产生很大的影响。因此,观察到了以下情况,即静电保护用导电层23的片电阻在15~30Ω/和大致中间值的情况,不管接地电阻是否是等值,布线电阻越低实际耐压的绝对值越高(-9kV以上),布线电阻越高,实际耐压电压的绝对值越低(-8kV)。
这种实际耐压电压电压,可以判断出以下情况,即片电阻在3Ω/左右极低的情况,布线电阻的影响可以忽略不计,片电阻在20~30Ω/和中间值左右的情况,布线电阻会施以若干的影响,片电阻的影响大,片电阻在45~50Ω/和高的情况,布线电阻基本上无影响,片电阻的影响很大。也就是说,片电阻在3~50Ω/的范围,片电阻对实际耐压电压给予的影响比布线电阻大,尤其在低的片电阻情况,其倾向更显著。
<接地电阻和实际耐压电压之间的关系>
还有,如图19所示,作为静电保护用导电层使用了片电阻在45Ω/的ITO层,电阻23a的端点到接地电位之间,不设置引线布线,将布线电阻设定为0Ω的光电传感器阵列100的接地电阻和实际耐压电压之间的关系,如图21所示,将布线电阻24a,置为0,发现即使移动接地电阻,对实际耐压电压没有大的影响。而且,这时的电极糊,任何一个片电阻都在20~30Ω/左右。
<片电阻和布线电阻之间的关系>
由以上的检验结果观察到,片电阻和布线电阻之间的关系,如图22所示,如果片电阻是3Ω/,则布线电阻在15~50Ω的范围里,实际耐压电压和布线电阻无关,经常在-10kV以下,同样,片电阻即使在20~30Ω/,只要布线电阻是0,实际耐压电压就在-10kV以下。还有,片电阻置于15~30Ω/,布线电阻置于16~27Ω,接地电阻在36Ω左右的光电传感器阵列100中,实际耐压电压为-8~-9kV。片电阻置于45~50Ω/,布线电阻置于0的光电传感器阵列100中,实际耐压电压为-5~-7kV。
也就是说,优先考虑光电传感器阵列100的生产率,片电阻设置为45~50Ω/,它是将一般人体储蓄的静电进行接地的允许范围,如果均衡考虑光电传感器阵列100的生产率和实际耐压特性,将片电阻置于15~30Ω/,布线电阻置于30Ω以下,理想的是置于15~20Ω,得到充分的耐压特性,如果忽视光电传感器阵列100的生产率,将片电阻置于3Ω/,由此除去一定值的布线电阻,即使是接地电阻,也可以得到充分的耐压电压特性。也就是说,为了实现人体实际耐压电压范围的绝对值(例如大概5kV以上),而这个耐压范围用于给一般人体存储的静电进行接地,静电保护用导电层的片电阻大概在50Ω/以下,理想情况是设定在15~30Ω/,布线电阻在30Ω以下,理想情况是设定在15~20Ω,由此可以实现比较充分的耐压特性的同时,可以提高生产率,可以进行光透过率良好,灵敏度高的图像读取。
这时,为了将静电保护用导电层的片电阻设定在30~50Ω/左右,ITO所必须的膜厚是大概在50~100nm左右(参照图18、图22)的比较薄的膜厚比较好,因此,会抑制上述ITO层里的大部分光衰减,可以以很高的灵敏度特性读取被检测体的图像纹路(指纹),总处理能力很好,可以很好地释放被检测体所带的静电,提高实际耐压,抑制对光电传感器阵列的电气影响,可以防止2维图像读取装置中的读取误动作的发生和损坏。
而且在上述实施例中,显示的是覆盖光电传感器阵列所有区域的设置了单一的静电保护用导电层23的结构,本发明有关的2维图像读取装置,不限于此,静电保护用导电层使用具有指定形状纹路的一对电极层的结构也可以。以下说明其具体实施例。
图23、图24是表示本发明有关的2维图像读取装置中其他实施例的概略剖面图。在这里,与上述的实施例相同的结构,使用同样的标号,并略去其说明或者进行简化。
图23中表示的2维图像读取装置中,形成在光电传感器阵列100上的静电保护用导电层,由相互分离的一对方形电极层23a,23b组成,方形电极层,透过小小的缝隙相互隔离,并将阵分成2个部分,例如,一方电极层23a,通过引线布线24,电气连接在接地电位上,另外,另一方的电极层23b连接在电源25上,电源25加指定的直流电压或者微小的交流信号电压。而且,另一方的电极层23b连接着检测电路26,检测电路26检测上述加上的电压变化。当手指跨越电极层23a,23b而接触时,检测电路26则检测直流电压或者微弱的交流信号电压,向运算处理电路输出开始驱动光电传感器系统的开始信号,运算处理电路则将控制信号φtg、φbg及Vpg,分别输出给顶部栅极驱动器110、底部栅极驱动器120及漏极驱动器130。这里,电极层23a、23b至少有一方,和如上所述的实施例表示的结构相同,例如,由ITO等透明的导电材料,将膜厚设定成片电阻在50Ω以下,另外,电极层23a、23b的布线电阻都设定在30Ω以下。
又,图24所示的2维图像读取装置中,形成在光电传感器阵列100上的静电保护用导电层,由电极层23c、23d组成,具有图示左右方向的梳齿形状,透过很小的缝隙,梳齿交互嵌入配置在一对电极层23c、23d上,例如,一方电极层23c通过引线布线24,电气连接在接地电位上,另一方的电极层23d,连接在电源25,电源25加上指定的直流电压。而且,另一方的电极层23d连接着检测电路26,检测电路26检测加在其上的电压变化。
这里,电极层23c、23d,与上述的实施例表示的结构相同,例如由于使用ITO等透明的导电材料,可以把膜厚设定成片电阻在50Ω以下,同时电极层23c、23d的布线电阻设定成30Ω以下也可以。又由于电极层23c、23d配置成不与双极栅型光电传感器10重合,如果背景光系统30的光能从去掉电极层23c、23d的地方入射到手指,则电极层23c、23d使用电阻率低不透明的导电层也可以。
又,如果跨越一对电极层23a、23b,或者23c、23d,放置手指FN等被检测体,则手指(人体)FN所带的电荷被释放的同时,检测电路26可以检测出电极层23a、23b,或者23c、23d之间短路引起的电压变化,判断光电传感器阵列100上有无放置手指FN,由运算处理电路输出控制图3所示的顶部栅极驱动器110、底部栅极驱动器120、漏极驱动器130动作的控制信号,同时,具有对手指照射如图14所示的背景光系统30发出的光La的开关功能。
在具有这种结构的2维图像读取装置中,将被检测体(例如手指)放置成可以接触组成静电保护用导电层的一对电极层23a、23b或者接触23c、23d,被检测体所带的静电,通过低电阻的一方电极层23a、23b,及低电阻的引线布线24,放电给接地电位,由检测电路26检测被检测体的接触状态,根据图4所示的一连的驱动控制方法,自动控制被检测体的图像纹路(指纹)的读取动作。
因此,和上述实施例一样,将手指(人体)FN所带的静电进行良好放电,控制发生2维图像读取装置的读取误动作和光电传感器装置100的损坏,可以提高静电耐压电压的同时,提供一种2维图像读取装置,此2维图像读取装置,由放置被检测体来自动实行图像读取动作。
而且,上述各个实施例的光电传感器装置100,由于其结构是手指等被检测体直接接触静电保护用导电层23,如图25所示,设置在静电保护用导电层23的上方,但也可以使用以下结构,即半导体或者绝缘体等电气传导率低的透明材料组成的缓冲层27。
缓冲层27具有由非晶质硅等组成的单层或者多层,当带静电的手指接触上述光电传感器时,缓和手指放电时的冲击。为此,可以提高双极栅型光电传感器10及光电传感器装置100的对静电的实际耐压电压,同时,缓和人放电时的不舒服感。
组成缓冲层27的非晶质硅,电阻率大概是106~108Ω·cm,形成在由众所周知的等离子成膜方法做成的静电保护用导电层23上,如果考虑透过率和电阻,膜厚最好控制在25~100nm。缓冲层27及静电保护用导电层23,希望多个11的激励光的透过率在75%以上。而且,缓冲层27不限于真性非晶质硅,使用含有不纯物质的非晶质硅、氮化硅、氧化硅、金刚石、绝缘高分子或者由导电高分子选择的材料也可以。
权利要求
1.图像读取装置,用于读取被检测体图像的,其特征在于包括排列在衬底一侧的多个传感器;设置成覆盖上述多个传感器的绝缘膜;及为给上述被检测体进行放电,设置在上述绝缘膜上的片电阻为50Ω/以下的导电层。
2.如权利要求1所述的图像读取装置,其特征在于,上述导电层由具有光透射性的导电材料组成。
3.如权利要求1所述的图像读取装置,其特征在于,上述导电层具有将氧化铟·锡做为主体的材料。
4.如权利要求1所述的图像读取装置,其特征在于,上述导电层,通过布线而被接地。
5.如权利要求4所述的图像读取装置,其特征在于,上述布线,设定为30Ω以下的布线电阻。
6.如权利要求1所述的图像读取装置,其特征在于,上述传感器为光电传感器。
7.如权利要求6所述的图像读取装置,其特征在于,上述光电传感器具有半导体层,其有激励光入射的有效入射区域;分别设置在上述半导体层两端的源极,漏极电极;设置在上述半导体层下方的第1栅极绝缘膜;设置在上述第1栅极绝缘膜下方的第1栅电极;设置在上述半导体层上方的第2栅极绝缘膜;设置在上述第2栅极绝缘膜上方的第2栅电极。
8.如权利要求1所述的图像读取装置,其特征在于,具有检测电路,当上述被检测体接触上述导电层时,检测电路检测直流电压的变化和交流信号电压的变化。
9.如权利要求1所述的图像读取装置,其特征在于,上述导电层分割为多个。
10.如权利要求9所述的图像读取装置,其特征在于,上述被分割为多个的导电层,至少是局部接地的。
11.图像读取装置,用于读取被检测体图像的,其特征在于包括(a)排列在衬底一侧的多个光电传感器,其具有有激励光入射的有效区域的半导体层;分别设置在上述半导体层两端的源极、漏极;设置在上述半导体层下方的第1栅极绝缘膜;设置在上述第1栅极绝缘膜下方的第1栅电极;设置在上述半导体层上方的第2栅极绝缘膜;及设置在上述第2栅极绝缘膜上方的第2栅极;(b)设置成覆盖上述多个传感器的绝缘膜;(c)用于对上述被检测体的带电电压进行放电,而被设置在上述绝缘膜上的片电阻为50Ω/以下的导电层;(d)被连接在上述多个光电传感器的漏电极的漏极驱动器;(e)被连接在上述多个光电传感器的第1栅电极的第1栅极驱动器;及(f)被连接在上述多个光电传感器的第2栅电极的第2栅极驱动器。
12.图像读取装置,用于读取被检测体图像的,其特征在于包括排列在衬底一侧的多个传感器;设置成覆盖上述多个传感器的绝缘膜;用于给上述被检测体的带电电压进行放电,设置在上述绝缘膜上的片电阻为50Ω/以下的导电层;及设置在上述导电层上的缓冲层。
13.如权利要求12所述的图像读取装置,其特征在于,上述导电层由具有光透射性的导电材料组成。
14.如权利要求12所述的图像读取装置,其特征在于,上述导电层通过布线被接地。
15.如权利要求14所述的图像读取装置,其特征在于,上述布线设定为布线电阻在30Ω以下。
16.如权利要求12所述的图像读取装置,其特征在于,上述导电层分割为多个。
17.如权利要求12所述的图像读取装置,其特征在于,上述传感器具有半导体层,其有激励光入射的有效区域;分别设置在上述半导体层两端的源极、漏极电极;设置在上述半导体层下方的第1栅极绝缘膜;设置在上述第1栅极绝缘膜下方的第1栅电极;设置在上述半导体层上方的第2栅极绝缘膜;及设置在上述第2栅极绝缘膜上方的第2栅电极。
18.如权利要求12所述的图像读取装置,其特征在于还具有检测电路,用于检测当被检测体接触上述导电层时的直流电压的变化或交流信号电压的变化。
19.如权利要求12所述的图像读取装置,其特征在于,上述缓冲层,具有由真性非晶质硅、含有不纯物质的非晶质硅、氮化硅、氧化硅、金刚石、绝缘高分子或者导电高分子选择的材料。
全文摘要
本发明提供一种2维图像读取装置,其可以将放置在光电传感器装置上的被检测体所带的静电进行放电,由此大幅控制读取误动作和设备的损坏。其用于读取被检测体图像的,其包括:排列在衬底一侧的多个传感器;设置成覆盖上述多个传感器的绝缘膜;及为给上述被检测体进行放电,设置在上述绝缘膜上的片电阻为50Ω/以下的导电层。
文档编号H01L27/146GK1337746SQ0112506
公开日2002年2月27日 申请日期2001年8月3日 优先权日2000年8月3日
发明者饭浜智美 申请人:卡西欧计算机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1