电光装置、电子设备和电光装置的制造方法

文档序号:6996938阅读:199来源:国知局
专利名称:电光装置、电子设备和电光装置的制造方法
技术领域
本发明涉及在保持电光物质的基板上形成有多个电气元件的电光装置、电子设备和电光装置的制造方法。更详细地说,涉及用来检查在基板上形成的电气元件的电特性的技术。
背景技术
在液晶装置或有机电致发光装置等这类电光装置中,在保持电光物质的基板上,形成有多个开关元件。
在这样的电光装置中,例如,在作为像素开关元件使用薄膜晶体管(以下,叫做TFT)的有源矩阵型的液晶装置中,在制造它时,如图20所示,在对大型基板10e形成多块的TFT阵列基板10的构成要素后,沿着预定切断线10f切断大型基板10e,得到在各个液晶装置中使用的TFT阵列基板10。
在这里,对于被各个预定切断线10f夹在中间的区域来说,以往,一般如图21所示,被作为用来检查在TFT阵列基板10的像素区域10a上矩阵状地形成的多个像素开关用的TFT30、构成驱动电路101、104的多个驱动电路用TFT(未画出来)等的检查区域10g来利用。
即,在TFT阵列基板10上,矩阵状地配置的多个像素的每一个像素内都形成有像素开关用TFT30,而且,在驱动电路内置型的TFT阵列基板10的情况下,驱动电路101、104虽然用TFT(未画出来)构成,但是,以前,不加变动地利用形成这些TFT的工序,在检查区域10g上,形成作为检查图案的检查用TFT30g’、电连到该检查用TFT30g’的漏极区域上的第1检查焊盘31g’、电连到检查用TFT30g’的源极区域上的第2检查焊盘32g’、和电连到检查用TFT30g’的栅极电极上的第3检查焊盘33g’。这样的工序,可在图20所示的大型基板10e的状态下进行,而且,对于1块TFT阵列基板10可以一对一的关系在其附近的检查区域10g上形成检查用TFT30g’。
因此,在大型基板10e的状态下,使检查端子触碰到检查焊盘31g’、32g’、33g’上检查检查用TFT30g的电特性,如果在其结果中检查用TFT30g’的电特性是良好的,就将在与之对应的TFT阵列基板10上形成的像素开关用的TFT30等也看作是良好的,将该TFT阵列基板10应用于液晶装置的组装中去。另一方面,如果在检查用TFT30g’中存在着不合格,则就看作是在与之对应的TFT阵列基板10上形成的像素开关用的TFT 30等中也存在着不合格,就废弃该TFT阵列基板10。因此,可以实质地提高液晶装置的成品率。此外,由于可以掌握究竟在大型基板10e的哪一个位置上易于发生不合格,故可以容易地将其结果反馈给制造工序。
但是,以前,在大型基板10e中,即便是说在作为TFT阵列基板10被切出来的区域的附近形成检查用TFT30g’,但只要在切出TFT阵列基板10的区域之外形成检查用TFT30g’,形成像素开关用的TFT30或驱动电路用TFT的区域和形成检查用TFT30g’的区域就会分离开来。
因此,在利用半导体工艺制造TFT时,归因于基板上的位置导致的TFT的特性不均一的影响,有时候用检查用TFT30g’进行检查的检查结果,和像素开关用TFT30或驱动电路用TFT的品质不一致。此外,在形成像素开关用的TFT30或驱动电路用TFT的区域和形成检查用TFT30g的区域中,由于图案密度显著地不同,故在利用半导体工艺形成TFT时,图案密度对曝光等所造成的影响,在形成像素开关用的TFT30或驱动电路用TFT的区域,和形成检查用TFT30g’的区域中是不同的。同样是归因于这样的理由,以前,用检查用TFT30g’进行的检查结果和像素开关用的TFT30或驱动电路用TFT的品质有时候也会不一致。

发明内容
鉴于以上的那些问题,本发明的目的在于提供可以确实地检查在保持电光物质的基板上形成的多个薄膜开关元件的电特性的电光装置、电子设备和电光装置的制造方法。
为了解决上述课题,在本发明中,在保持电光物质的基板上已形成了具备多个薄膜开关元件的电气元件形成区域的电光装置中,其特征在于在上述电气元件形成区内,形成有用来检查上述薄膜开关元件的特性的检查图案,和与该检查图案进行电连的检查焊盘。
此外,在本发明中,在保持电光物质的基板上已形成了具备多个薄膜开关元件的电气元件形成区域的电光装置的制造方法中,其特征在于,在上述基板的上述电气元件形成区域内形成上述薄膜开关元件时,在该电气元件形成区域内,预先形成用来检查上述薄膜开关元件的电特性的检查图案和与该检查图案电连接的检查焊盘,使检查用端子触碰到上述检查焊盘上来检查上述检查图案的电特性,使用该检查结果被判断为良好的上述基板,制造上述电光装置。
在本发明中,由于要在电气元件形成区域中形成用来检查在电气元件形成区域内形成的薄膜开关元件的检查图案,故作为检查对象的薄膜开关元件和在实际的测试中使用的检查图案处于近的位置。因此,在利用半导体工艺在基板上形成TFT等的薄膜开关元件时,即便是归因于在基板上的位置而使得TFT的特性不均一的情况下,倘采用本发明,作为检查对象的薄膜开关元件的电学方面的特性和实际上已进行了测试的检查图案的电学方面的特性之间的对应关系就具有高的可靠性。此外,在电气元件形成区域内也形成有在实际的测试中使用的检查图案,故在形成作为检查对象的薄膜开关元件的区域和形成检查图案的区域中,图案密度等的条件也相等。因此,由于图案密度给曝光造成的影响等,在形成作为检查对象的薄膜开关元件的区域和形成检查图案的区域之间也相等,故倘采用本发明,作为检查对象的薄膜开关元件的电特性和实际上已进行了测试的检查图案的电特性之间的对应关系就具有高的可靠性。因此,可以确实地检查在保持电光物质的基板的电光元件形成区域中形成的薄膜开关元件的电特性。
在本发明中,上述电气元件形成区,例如,是将具备用来驱动上述电光物质的像素电极,和作为用来驱动该像素电极的上述薄膜开关元件形成的像素开关用的有源元件的像素配置成矩阵状的像素区域。在该情况下,一般来说,由于在上述像素区域内,形成有矩阵状地具备用来显示图像的多个有效像素的有效像素区域,和具备在该有效像素区域的外周一侧用遮光部件覆盖起来对图像显示无直接贡献的多个虚设像素的虚设像素区域,故在本发明中,优选在上述虚设像素区域内形成上述检查图案和上述检查焊盘。
即,在电光装置的制造方法中,在作为上述电气元件形成区域已形成了具备用来驱动上述电光物质的像素电极,和作为用来驱动该像素电极的上述薄膜开关元件形成的像素开关用的有源元件的像素配置成矩阵状的像素区域的情况下,优选在上述像素区域的外周区域上形成上述检查图案和上述检查焊盘。在该情况下,在用上述基板组装上述电光装置时,优选将上述像素区域的中央区域作为用来显示图像的多个有效像素配置成矩阵状的有效像素区域,将在上述像素区域内位于上述像素区域的外周一侧区域作为配置有对图像显示无直接贡献的多个虚设像素的虚设像素区域用遮光部件覆盖起来。
如果象这样地构成,则作为本身为检查对象的薄膜开关元件的像素开关用TFT和实际的测试中使用的检查图案在近,而且,图案密度等相等的位置上形成。因此,由于本身为检查对象的像素开关用TFT的电特性和已进行了实际的测试的检查图案的电特性之间的对应的关系具有高的可靠性,故可以确实地检查在保持电光物质的基板的像素区域上形成的像素开关用TFT的电特性。此外,由于要在像素区域内的虚设像素区域内配置检查图案或检查焊盘,故显示图像的有效像素数不会减少。
在本发明中,有时候在每一个上述有效像素区域和上述虚设像素区域中,作为上述像素开关用有源元件,形成有具备与数据线电连接的源极区域、与上述像素电极电连接的漏极区域、和隔着绝缘膜与栅极电极对峙的沟道区域的像素开关用TFT。在该情况下,优选在上述多个虚设像素的至少一个虚设像素中,作为上述检查图案形成有结构和尺寸与上述像素开关用薄膜晶体管相同的检查用薄膜晶体管,同时,在上述虚设像素区域中,在已形成了上述检查用TFT的第1检查像素内形成有与该检查用TFT的漏极区域电连接的第1检查焊盘,在与上述第1检查像素相邻的第2检查像素内形成有与上述检查用TFT的源极区域电连接的第2检查焊盘,在与上述第1检查像素相邻的第3检查像素内形成有与上述检查用TFT的栅极电极电连接的第3检查焊盘。如果象这样地构成,就可以以充分宽的面积形成检查薄膜开关元件所需要的3个检查焊盘。
在本发明中,优选上述第1检查焊盘通过层间绝缘膜的接触孔,电连接到与上述检查用TFT的漏极区域连接的漏极电极,上述第2检查焊盘,通过层间绝缘膜的接触孔,电连接到从上述数据线延伸到上述第2检查像素的延伸部分,上述第3检查焊盘,通过层间绝缘膜的接触孔,电连接到从上述栅极电极延伸到上述第3检查像素的延伸部分。若象这样地构成,则可以不加变动地利用在像素区域上形成像素开关用TFT的工序,进行检查焊盘和检查用薄膜TFT之间的电连接。
在本发明中,在驱动电路内置型的TFT阵列基板的情况下,在上述基板上,形成有将具备用来驱动上述电光物质的像素电极,和用来驱动该像素电极的像素开关用TFT的像素配置成矩阵状的像素区域,而且,在该像素区域的外侧区域,作为上述电气元件形成区域,形成有驱动电路,该驱动电路具备多个作为上述薄膜开关元件的用来向上述像素开关用TFT供给信号的驱动电路用TFT。对于这样的TFT阵列基板,在检查驱动电路用TFT的情况下,在形成有上述驱动电路的区域内形成上述检查图案和上述检查焊盘的同时,将上述检查图案配置在已形成有上述驱动电路的区域内的未形成上述驱动电路用TFT的空白区域内。若象这样地构成,则作为本身为检查对象的薄膜开关元件的驱动电路用TFT,和在实际的测试中使用的检查图案就可以在近而且图案密度等相等的位置上形成。因此,由于本身为检查对象的驱动电路用TFT的电特性和已进行了实际的测试的检查图案的电特性之间的对应关系具有高的可靠性,故可以确实地检查在保持电光物质的基板的驱动电路区域上形成的驱动电路用TFT的电特性。此外,由于在驱动电路区域内的空白区域内形成检查图案,故没有必要扩张驱动电路。
在本发明中,作为用来检查驱动电路用TFT的电特性的检查图案,优选使用结构和尺寸与上述驱动电路用TFT相同的检查用TFT。
在本发明中,上述电光物质,例如,是被保持在上述基板,和间隔规定的间隙相对于该基板相向配置的对向基板之间的液晶。
应用本发明的电光装置,可以用做便携计算机或移动电话机等的电子设备的显示部分等。
如上所述,在本发明中,由于在电气元件形成区域内形成用来检查在电气元件形成区域内形成的薄膜开关元件的检查图案,因此本身为检查对象的薄膜开关元件和在实际的测试中使用的检查图案处于近的位置。因此,在利用半导体工艺在基板上形成TFT等的薄膜开关元件时,就可以避免由于基板上的位置或图案密度的不同等的原因,而在本身为检查对象的薄膜开关元件的电特性和实际上进行测试的检查图案的电特性之间的对应关系上发生大的误差这样的事态。因此,可以确实地检查在保持电光物质的基板上形成的薄膜开关元件的电特性。


图1(A)、(B)分别是从对向基板一侧看液晶装置和在其上形成的各个构成要素的平面图,和图1(A)的H-H’剖面图。
图2是模式性地显示在图1所示的液晶装置中使用的TFT阵列基板的构成的框图。
图3是在图2的像素区域中矩阵状地形成的多个像素中的各种元件、布线等的等效电路图。
图4是图3所示的像素的平面图。
图5是在相当于图4的A-A’线的位置处剖开时的剖面图。
图6是图1所示的驱动电路的平面图。
图7是在相当于图6的B-B’线的位置处剖开时的剖面图。
图8是显示用来检查在图2的像素区域形成的像素开关用TFT的检查用TFT和检查焊盘的构成的平面图。
图9是在相当于图8的A1-A1’线、A2-A2’线、A3-A3’线的位置处剖开时的剖面图。
图10是显示用来检查在图6和图7所示的驱动电路中使用的驱动电路用TFT的检查用TFT和检查焊盘的构成的平面图。
图11是在相当于图10的B1-B1’线的位置处剖开时的剖面图。
图12(A)到(E)是显示使用了本发明的TFT阵列基板的制造方法的工序剖面图。
图13(F)到(I)是显示使用了本发明的TFT阵列基板的制造方法的工序剖面图。
图14(J)到(N)是显示使用了本发明的TFT阵列基板的制造方法的工序剖面图。
图15(O)到(Q)是显示使用了本发明的TFT阵列基板的制造方法的工序剖面图。
图16是显示在使用本发明的另一个液晶装置中,用来检查像素开关用TFT的检查用TFT和检查焊盘的构成的平面图。
图17是在相当于图16的A1-A1’线、A2-A2’线、A3-A3’线的位置处剖开时的剖面图。
图18是显示将本发明的液晶装置用做显示装置的电子设备的电路构成的框图。
图19(A)、(B)分别是显示使用本发明的液晶装置的便携式个人计算机和移动电话机的说明图。
图20是显示用大型基板制造在现有的液晶装置中使用的TFT阵列基板的情况的说明图。
图21是显示在现有的液晶装置中,用来检查像素开关用TFT的检查用TFT和检查焊盘的构成的说明图。符号说明1a、160 半导体膜;3a 扫描线;3b 电容线;3g 扫描线的延长部分;4、5 层间绝缘膜;6a 数据线;6b 漏极电极;6g 数据线的延长部分;6h 中继电极;6i 漏极电极的延长部分;9a 像素电极;10 TFT阵列基板;10a 像素区域;10b 透明基板;10c 有效像素区域;10d 虚设像素区域;20 对向基板;21 对向电极;30 像素开关用的TFT(薄膜开关元件);30g、180g、190g 检查用TFT(检查图案);31g~37g 检查焊盘;100 液晶装置(电光装置);100a 像素;100c 有效像素;100d 虚设像素;100x 第1检查像素;100y 第2检查像素;100z 第3检查像素;180、190 驱动电路用TFT(薄膜开关元件)。
具体实施例方式
参看附图,对作为代表性的电光装置的液晶装置,说明作为形成有多个TFT的像素区域和驱动电路形成区域作为电气元件形成区域应用本发明的例子。另外,在各个图中,为了将各层或各个部件都作成为可以在图面上进行识别的大小,各层中的每一层或各个部件中的每一个部件都进行了不同的缩尺。
(液晶装置的全体构成)图1(A)、(B)分别是从对向基板一侧看液晶装置和在其上形成的各个构成要素的平面图,和包括对向基板地示出了图1(A)的H-H’剖面图。
在图1(A)中,在液晶装置100(电光装置)中,TFT阵列基板10和对向基板20用沿着对向基板20的边缘设置的密封剂107粘贴起来。在TFT阵列基板10的外侧,在基板边111一侧从对向基板20伸出来的伸出区域10c上形成有数据线驱动电路101和多个端子102,在基板边113、114一侧,形成有扫描线驱动电路104。进一步,在TFT阵列基板10中,在与基板边111相向的基板边112上,形成有用来将在像素区域10a的两侧设置的扫描线驱动电路104间连接起来的多条布线105。此外,在对向基板20的4个角部上,形成有用来使TFT阵列基板10与对向基板20之间形成电导通的上下导通材料106,该上下导通材料106,是在环氧树脂系的粘合剂成分中配合进银粉或金电镀的纤维等导电粒子的材料。
另外,当然,如果向扫描线供给的扫描信号的延迟不成问题,则扫描线驱动电路104也可以只在一侧。反之,则也可以将数据线驱动电路101沿着像素区域10a的边排列在两侧。
如图1(B)所示,TFT阵列基板10和对向基板20通过密封剂107隔着规定的间隔地粘贴起来,在它们的间隙内保持有液晶50。密封剂107是用来使TFT阵列基板10和对向基板20的周边粘贴的光固化树脂或热固化树脂构成的粘合剂,配合有用来使两基板间的距离达到规定值的玻璃纤维或玻璃微珠等的间隙材料。
详细情况将在后边说明,但在TFT阵列基板10上,矩阵状地形成有像素电极9a。相对于此,在对向基板20上,在密封剂107的内侧区域上,则形成有由遮光性材料构成的看清周边用的遮光膜108。进一步,在对向基板20中,在与TFT阵列基板10上形成的像素电极9a的纵横的边界区域相向的区域上,形成被叫做黑色矩阵或黑色条带等的遮光膜23,在其上层一侧则形成有由ITO膜构成的对向电极21。
对于象这样地构成的液晶装置100来说,例如,在投影式显示装置(液晶投影仪)中使用的情况下,可以把3块液晶装置100分别作为RGB用的光阀使用。在该情况下,由于结果变成为作为投影光向每一个液晶装置100分别入射通过RGB色分解用的分色镜分解后的各色的光,故在液晶装置100中未形成滤色片。但是,如后所述,在用做便携计算机、移动电话机、液晶电视等这样的电子设备的彩色显示装置的情况下,图示虽然省略了,但是在对向基板20中,在与各个像素电极9a相向的区域上要与其保护层一起形成RGB的滤色片。
(TFT阵列基板10的构成)图2是模式性地显示在液晶装置100中使用的驱动电路内置型的TFT阵列基板的构成的框图。
如图2所示,在驱动电路内置式的TFT阵列基板10中,在像素区域10a中,与彼此交叉的多条数据线6a和多条扫描线3a之间的交叉部分对应地矩阵状地构成有多个像素100a。此外,在数据线驱动电路101内,构成有X一侧移位寄存器电路、具备根据从X一侧移位寄存器电路输出的信号进行动作的作为模拟开关的TFT的取样保持电路、与已被展开为6相的各个像素信号VID1到VID6对应的6条图像信号线等。数据线驱动电路101,例如,用4相构成上述X一侧移位寄存器电路,通过端子102,从外部向X一侧移位寄存器电路供给开始信号DX、时钟信号CLX1~CLX4,及其反转时钟信号CLX1B~CLX4B,用这些信号驱动数据线驱动电路101。因此,取样保持电路,可以根据从上述的X一侧移位寄存器电路输出的信号使各TFT进行动作,以规定的定时,把通过图像信号线供给的图像信号VID1到VID6取入到数据线6a上,并供给各个像素。另一方面,在扫描线驱动电路104中,通过端子102从外部供给开始信号DY、时钟信号CLY及其反转时钟信号CLYB,用这些信号驱动扫描线驱动电路104。
在TFT阵列基板10中,在基板边111上,构成有输入恒定电源VDDX、VSSX、VDDY、VSSY、调制图像信号(图像信号VID1到VID6)、和各种驱动信号等的由铝膜等的金属膜、金属硅化物膜或ITO膜等的导电膜构成的多个端子102,从这些端子102分别引绕出用来驱动扫描线驱动电路104和数据线驱动电路101的由铝膜等的低电阻的金属膜或金属硅化物膜构成的多条信号布线109。
(第1电气元件形成区域)图3是在液晶装置100的像素区域10a中矩阵状地形成的多个像素中的各种元件等的等效电路图。图4是在TFT阵列基板中相邻的像素100a的平面图。图5是显示在相当于图4的A-A’线的位置处剖开时的剖面,和向TFT阵列基板与对向基板之间封入了液晶后的状态的剖面的说明图。
如图3所示,在液晶装置100的像素区域10a中,在矩阵状地形成的多个像素100a中的每一个像素上都形成有像素电极9a和用来控制像素电极9a的像素开关用的TFT30,像素区域10a,可以看作是形成有多个TFT的第1电气元件形成区域。
在这里,在TFT30的源极上,电连接有供给像素信号的数据线6a。要写入到数据线6a上的像素信号S1、S2、…、Sn,按照该顺序供给。此外,要构成为使得扫描线3a电连到TFT30的栅极上,并以规定的定时,按照扫描信号G1、G2、…、Gm的顺序,给扫描线3a脉冲式地加上扫描信号。像素电极9a已电连到TFT30的漏极上,通过使作为开关元件的TFT30仅仅在恒定的期间内才变成为ON状态,以规定的定时,将从数据线6a供给的像素信号S1、S2、…、Sn写入到各个像素内。象这样地通过像素电极9a写入到液晶内的规定电平的像素信号S1、S2、…、Sn,在与参看图1(B)说明的对向基板20的对向电极21之间,可以保持恒定期间。
此外,在TFT阵列基板10上,出于防止所保持的像素信号进行漏泄的目的,有时候要与在像素电极9a和对向电极21之间形成的液晶电容并联地附加上存储电容70(电容器)。借助于该存储电容70,像素电极9a的电压,例如,可以保持的时间比加上源极电压的时间长1000倍。借助于此,就可以改善电荷的保持特性,可以实现可以进行对比度高的显示的液晶装置100。另外,作为形成存储电容70的方法,可以在与作为用来形成电容的布线的电容线3b之间形成,也可以在与前级的扫描线3a之间形成。
再次返回到图2,在图2中,在像素区域10a内虽然矩阵状地配置有多个参看图3说明的像素100a,但是,在这些像素100a之内,在中央的有效像素区域10c内矩阵状地配置的像素100a,是实际上在显示图像中使用的有效像素100c。相对于此,在像素区域10a中,在有效像素区域10c的外周一侧形成的像素100a,则会因取向紊乱等的影响而使图像的品位下降。为此,在液晶装置100中,在像素区域10a中,将有效像素区域10c的外周一侧作成为在组装液晶装置100时用框等遮光部件覆盖起来的虚设像素区域10d,在这里形成的像素100a被称为对显示无直接贡献的虚设像素100d。
在这样地构成的液晶装置100中,虚设像素100d,除去后述的检查用中使用的一部分的像素之外,由于也具有与有效像素100c同样的构成,故在参看图4和图5进行的以下的说明中,不区别有效像素100c和虚设像素100d进行说明。
在图4中,在TFT阵列基板10上,矩阵状地形成有多个由透明的ITO(氧化铟锡)膜构成的像素电极9a,像素开关用的TFT30分别连接到这些像素电极9a上。此外,沿着像素电极9a的纵横的边界形成有数据线6a、扫描线3a和电容线3b,TFT30连接到数据线6a和扫描线3a上。也就是说,数据线6a通过接触孔41电连接到TFT30的高浓度源极区域1d上,扫描线3a,其突出部分构成TFT30的栅极电极。存储电容70则成为以用来形成像素开关用的TFT30的半导体膜1a的延长部分1f导电化的部分为下电极,以电容线3b为上电极重叠到该下电极41上的结构。
如图5所示,在TFT阵列基板10中,作为其基体可以使用透明基板10b。在透明基板10b的表面上,形成有由厚度为300nm~500nm的硅氧化膜(绝缘膜)构成的基底保护膜11,在该基底保护膜11的表面上,形成有厚度为30nm~100nm的岛状的半导体膜1a。在半导体膜1a的表面上,形成有厚度约为50~150nm的由硅氧化膜构成的栅极绝缘膜2,在该栅极绝缘膜2的表面上形成有厚度为300nm~800nm的扫描线3a。在半导体膜1a中,通过栅极绝缘膜2与扫描线3a对峙的区域成为沟道区1a’。相对于该沟道区1a’,在一侧形成有具备低浓度源极区域1b和高浓度源极区域1d的源极区域,在另一侧形成有具备低浓度漏极区域1c和高浓度漏极区域1e的漏极区域。
在像素开关用的TFT30的表面一侧,形成有厚度为300nm~800nm的由硅氧化膜构成的层间绝缘膜4,在该层间绝缘膜4的表面上,形成有厚度为300nm~800nm的硅氮化膜构成的层间绝缘膜5。在层间绝缘膜4的表面上,形成有厚度为300nm~800nm的数据线6a,该数据线6a通过在层间绝缘膜4上形成的接触孔41与高浓度源极区域电连接。在层间绝缘膜4的表面上形成有与数据线6a同时形成的漏极电极6b,该漏极电极6b通过在层间绝缘膜4上形成的接触孔42与高浓度漏极区域1e电连接。此外,在层间绝缘膜5的表面上,形成有像素电极9a,该像素电极9a通过在层间绝缘膜5上形成的接触孔51与漏极电极6b电连接。
在像素电极9a的表面一侧形成有由聚酰亚胺膜构成的取向膜12。该取向膜12是对聚酰亚胺膜施行了摩擦处理的膜。
对于从高浓度漏极区域1e延长出来的延长部分1f(下电极),通过与栅极绝缘膜2a同时形成的绝缘膜(电介质膜)对向设置的电容线3b作为上电极,构成存储电容70。
另外,TFT30虽然优选具有如上所述的LDD结构,但是也可以是具有在相当于低浓度源极区域1b和低浓度漏极区域1c的区域上不进行杂质离子的注入的偏移(offset)结构。此外,TFT30,也可以是将栅极电极(扫描线3a的一部分)作为掩模,以高浓度注入杂质离子,自我匹配地形成了高浓度的源极区域和漏极区域的自动对准型的TFT。
此外,在本方案中,虽然作成为在源极区域-漏极区域间只配置1个TFT30的栅极电极(扫描线3a)的单栅极结构,但也可以在它们之间配置2个或以上的栅极电极。这时,要作成为对每一个栅极电极都加上同一信号。如果采用这样地用双栅极(两个栅极)或三栅极或以上来构成TFT30,则可以防止在沟道与源-漏区域的接合部的漏电流,因而可以降低OFF时的电流。如果把这些栅极电极中的至少一个作成为LDD结构或偏移结构,则可以进一步减小OFF电流,可以得到稳定的开关元件。
(对向基板20的构成)在对向基板20中,在与在TFT阵列基板10上形成的像素电极9a的纵横的边界区域相向的区域上,形成有被叫做黑色矩阵或黑色条带等的遮光膜23,在其上层一侧形成有由ITO膜构成的对向电极21。另外,在对向电极21的上层一侧,形成有由聚酰亚胺膜构成的取向膜22,该取向膜22是已对聚酰亚胺膜施行了摩擦处理的膜。
(第2电气元件形成区域)再次在图1(A)中,在本方案的液晶装置100中,在TFT阵列基板10的表面一侧中,利用像素区域10a的外围区域形成有数据线驱动电路101和扫描线驱动电路104等的外围电路。
数据线驱动电路101和扫描线驱动电路104,基本上由图6和图7所示的N沟道型的TFT的P沟道型的TFT构成,在形成有数据线驱动电路101和扫描线驱动电路104的区域,可以看作是第2电气元件形成区域。
图6是显示构成扫描线驱动电路104和数据线驱动电路101等的外围电路的TFT的构成的平面图。图7是在相当于图6的B-B’线处剖开构成该外围电路的TFT时的剖面图。
在图6和图7中,构成外围电路的TFT,作为由P沟道型的TFT180和N沟道型的TFT190构成的的互补型TFT构成。构成这些驱动电路用的TFT180、190的半导体膜160(在图6中,用虚线示出了轮廓),在透明基板10b的基底保护膜11的表面上被形成为岛状。
在TFT180、190上,通过接触孔163、164,分别将高电位线171和低电位线172与半导体膜160的源极区域电连接。此外,输入布线166,则分别连接到共通的栅极电极165上,输出布线167,通过接触孔168、169,分别与半导体膜160的漏极区域电连接。
这样的外围区域由于也要经过与像素区域10a同样的工艺形成,故在外围电路区域上,也形成有层间绝缘膜4、5和栅极绝缘膜2。此外,驱动电路用的TFT180、190,也与像素开关用的TFT 30同样,具有LDD结构,在沟道形成区域181、191的两侧,具备由高浓度源极区域182、192和低浓度源极区域183、193构成的源极区域,和由高浓度漏极区域184、194和低浓度漏极区域185、195构成的漏极区域。另外,P沟型的TFT也可以是没有低浓度源极区域和低浓度漏极区域的结构。
(检查图案和检查焊盘的构成)在这样构成的液晶装置100中,由于要在TFT阵列基板10上形成多个TFT,故在组装到液晶装置100上之前的阶段,即在TFT阵列基板10的阶段中,要检查在TFT中是否具有缺欠。以进行这样的检查为目的,在本形方案中,如参看图8到图11进行说明的那样,在像素区域10a(第1电气元件形成区域)和驱动电路形成区域(第2电气元件形成区域)中,形成有作为检查图案的检查用TFT和在进行检查时使之触碰检查端子的检查焊盘。
图8是显示用来检查在图2的像素区域形成的像素开关用TFT的检查用TFT和检查焊盘的构成的平面图。图9是在相当于图8的A1-A1’线、A2-A2’线、A3-A3’线的位置处剖开时的剖面图。图10是显示用来检查在图6所示的驱动电路中使用的驱动电路TFT的检查用TFT和检查焊盘的构成的平面图。图11是在相当于图10的B1-B1’线的位置处剖开时的剖面图。
首先,如图8和图9所示,在作为第1电气元件形成区域的像素区域10a中,在参看图2说明的虚设像素区域10d中,多个虚设像素100d中的一个虚设像素,作为第1检查像素100x,形成有结构和尺寸与有效像素100c相同的检查用TFT30g。
在第1检查像素100x中,检查用TFT30g,与在有效像素区域10c中形成的像素开关用TFT30同时形成,而且,结构和尺寸与像素开关用TFT30是相同的。因此,虽然省略了检查用TFT30g的各个构成要素的说明,但是,像素电极9a可以用做与检查用TFT30g的漏极区域1e电连接的第1检查焊盘31g。在这里,第1检查焊盘31g,通过层间绝缘膜5的接触孔51与漏极电极6b电连接,漏极电极6b则通过层间绝缘膜4的接触孔42与检查用TFT30g的漏极区域1e电连接。
此外,在虚设像素100d中,在与第1检查像素100x相邻的第2检查像素100y上,相对于从数据线6a延长到第2检查像素100y的延伸部分6g,通过层间绝缘膜5的接触孔52电连接有像素电极9a构成的第2检查焊盘32g。
进一步,在虚设像素100d中,在与第1检查像素100x相邻的第3检查像素100z上,相对于从扫描线3a(栅极电极)延长到第3检查像素100z的延伸部分3g,通过层间绝缘膜4的接触孔43,数据线6a与同层的中继电极6h电连接,而且,相对于中继电极6h,通过层间绝缘膜5的接触孔53电连接有由像素电极9a构成的第3检查焊盘33g。
此外,如图10和图11所示,在作为第2电气元件形成区域的驱动电路区域中,利用驱动电路用的TFT180、190的空白区域,形成有检查用的P沟道型的TFT180g和检查用的N沟道型的TFT190g构成的互补型TFT。在这里,检查用的TFT180g、190g,与驱动电路用TFT180、190同时形成,而且,结构和尺寸与驱动电路用的TFT180、190是相同的。因此,虽然省略对检查用的TFT180g、190g的各个构成要素的说明,但是相对于高电位线171,通过层间绝缘膜5的接触孔54电连接有由与像素电极9a同层的ITO膜构成的第4检查焊盘34g。同样,对于输出布线167、低电位线172和输入布线166,也通过层间绝缘膜5的接触孔55、56、57分别电连接有由与像素电极9a同层的ITO膜构成的第5检查焊盘35g、第6检查焊盘36g和第7检查焊盘37g。
因此,在制造本方案的液晶装置100时,在已在TFT阵列基板10上形成了TFT30、180、190等的时刻,使检查端子触碰到检查焊盘31g~37g上检查检查用TFT30g、180g、190g的电特性,如果仅仅用在这里被判断为合格品的TFT阵列基板10组装液晶装置100,则可以提高液晶装置100的成品率。
而且,用来检查像素开关用TFT30的检查用TFT30g、和检查焊盘31g、32g、33g,可以在同一像素区域10a内形成。因此,本身为检查对象的像素开关用TFT30和在实际的测试中使用的检查用TFT30g处于近的位置上。因此,在利用半导体工艺形成像素开关用的TFT30时,即便是由于基板上的位置导致TFT的特性不均一的情况下,倘采用本发明,本身为检查对象的像素开关用TFT30的电学方面的特性和实际上已进行了测试的检查用TFT30g的电学方面的特性之间的对应关系就具有高的可靠性。此外,由于在实际的测试中使用的检查用的TFT30g也在像素区域10a内形成,故形成本身为检查对象的像素开关用TFT30的区域和在实际的测试中使用的检查用TFT30g的区域位于近的位置上,所以,图案密度等的条件也相等。因此,图案密度对曝光所造成的影响等,在形成本身为检查对象的像素开关用的TFT30的区域和形成在实际的测试中使用的检查用TFT30g的区域之间也相等,所以,本身为检查对象的像素开关用TFT30的电学方面的特性和实际上已进行了测试的检查用TFT30g的电学方面的特性之间的对应关系就具有高的可靠性。为此,倘采用本方案,就可以确实地检查像素开关用的TFT30的电特性。
在这里,即便是说要在像素区域10a上形成检查用TFT30g、和检查焊盘31g~33g,但实际是在原本不直接参与显示的虚设像素区域10d内形成。为此,实际上也不会产生显示图像的有效像素区域10c变窄等的问题。
此外,用来检查驱动电路用TFT180、190的检查用的TFT180g、190g和检查焊盘34g、35g、36g、37g,与驱动电路用TFT180、190同样,在驱动电路区域内形成。因此,本身为检查对象的驱动电路用TFT180、190和在实际的测试中使用的检查用的TFT180g、190g位于近的位置。因此,也可以确实地对驱动电路用的TFT180、190的电特性进行检查。
另外,在如第2检查像素100y或第3检查像素100z那样,在作成为使像素区域10a的一部分与其它的像素100a不同的构成的情况下,虽然会在像素区域10a内产生高低差,但是作为检查像素使用的是在虚设像素100d的极小的一部分。故即便是在像素区域10a内配置第2检查像素100y或第3检查像素100z也不必担心存在单元间隙不均一的可能。
(TFT阵列基板的制造方法)图12到图15的任何一个图,都是显示本方案的TFT阵列基板10的制造方法的工序剖面图,任何一个图都相当于与图9对应的部分的剖面。另外,由于TFT30、30g、180、190、180g、190g,和检查焊盘31g~37g,在对应的层间可以用同一工序形成,故在以下在说明中,以形成检查用的TFT30g和检查焊盘31g、32g、33g的工序为中心进行说明。
首先,如图12(A)所示,在准备好用超声波清洗等清洗后的玻璃制等透明基板10b之后,在基板温度为150℃~450℃的温度条件下,借助于等离子体CVD法,在透明基板10b的整个面上,形成厚度300nm~500nm的由硅氧化膜构成的基底保护膜11。作为这时的原料气体,例如,可以使用甲硅烷与笑气的混合气体或TESO与氧气或乙硅烷与氨的混合气体。
其次,如图12(B)所示,在基板温度为150℃~450℃的温度条件下,在基底保护膜11的表面上,用等离子体CVD法形成了由无定形的硅膜构成的30nm~100nm厚度的半导体膜1之后,对半导体膜1照射激光施行激光退火,在使无定形的半导体膜暂时熔融后,经由冷却固化过程使之结晶。在这时,由于激光对各个区域的照射时间非常短,而且,照射区域对于整个基板也是局部的,故基板整体不会同时地被加热到高温。因此,作为透明基板10b即便是使用玻璃基板等,也不会因热而产生变形或裂痕。另外,作为形成半导体膜1时的原料气体,例如,可以使用乙硅烷或甲硅烷。
其次,如图12(C)所示,采用在半导体膜1的表面上,用光刻技术形成抗蚀剂掩模402,用通过该抗蚀剂掩模402刻蚀半导体膜1的办法,如图12(D)所示,形成用来形成像素开关用和检查用的TFT30、30g的岛状的半导体膜1a等。此外,虽然图示省略了,但是,也形成用来形成驱动电路用和检查用的TFT180、190、180g、190g的岛状的半导体膜160。
其次,如图12(E)所示,在350℃或以下的温度条件下,在透明基板10b的整个面上形成厚度50nm~150nm的由硅氧化膜构成的栅极绝缘膜2。这时的原料气体,例如,可以使用TEOS和氧气的混合气体。在这里形成的栅极绝缘膜2,也可以用硅氮化膜代替硅氧化膜。
其次,图示虽然省略了,但是隔着规定的抗蚀剂掩模地向半导体膜1a的延伸部分1f中注入杂质离子,在与电容线3b之间形成用来构成存储电容70的下电极。
其次,如图13(F)所示,在用溅射法等在基板10b的整个面上形成了厚度为300nm~800nm的铝膜、钛膜、钼膜或以这些金属中的任何一者为主要成分的合金膜构成的导电膜3之后,用光刻技术形成抗蚀剂掩模403,隔着抗蚀剂掩模403将导电膜3干法刻蚀。其结果是,如图13(G)所示,形成扫描线3a、其延长部分3g、和电容线3b等。
其次,如图13(H)所示,在已用抗蚀剂掩模将用来形成P沟道型的TFT180、180g的半导体膜160(未画出来)被覆起来的状态下,对用来形成像素开关用和检查用的TFT30、30g的半导体膜1a,和用来形成驱动电路用和检查用的N沟道型的TFT190、190g的半导体膜160,以扫描线3a或栅极电极165为掩模,以大约0.1×1013/cm2~大约10×1013/cm2的剂量注入低浓度N型的杂质离子(磷离子),对扫描线3a和栅极电极165,自我匹配地形成低浓度源极区域1b、193和低浓度的漏极区域1c、195。在这里,由于位于扫描线3a或栅极电极165的正下边,故那些未导入杂质离子的部分就变成为保持半导体膜1a、160的原状的沟道区域1a’、191。
其次,如图13(I)所示,形成比扫描线3a、栅极电极165的宽度还宽,而且,将用来形成P沟道型的TFT180、180g的半导体膜160被覆起来的抗蚀剂掩模412,在该状态下,以大约0.1×1015/cm2~大约10×1015/cm2的剂量注入高浓度N型的杂质离子(磷离子),形成高浓度源极区域1d、192和高浓度漏极区域1e、194。
其次,如图14(J)所示,在已用抗蚀剂掩模413将用来形成N沟道型的TFT30、30g、190、190g的半导体膜1a、160被覆起来的状态下,在对于用来形成P沟道型的TFT180、180g的半导体膜160,以栅极电极165为掩模,以大约0.1×1013/cm2到大约10×1013/cm2的剂量注入低浓度P型的杂质离子(硼离子),如图7和图10所示,在对于栅极电极165,自我匹配地形成低浓度源极区域183和低浓度的漏极区域185。在这里,由于位于栅极电极165的正下边,故那些未导入杂质离子的部分就变成为保持半导体膜160的原状的沟道区181。
其次,如图14(K)所示,形成比栅极电极165的宽度还宽,而且,将用来形成N沟道型的TFT30、30g、190、190g的半导体膜1a、160被覆起来的抗蚀剂掩模414,在该状态下,对用来形成P沟道型的TFT180、180g的半导体膜160,以大约0.1×1015/cm2到大约10×1015/cm2的剂量注入高浓度P型的杂质离子(硼离子),如图7和图10所示,形成高浓度源极区域182和漏极区域184。
也可以代替这些杂质导入工序,不进行低浓度的杂质注入,而是在形成了宽度比栅极电极的宽度还宽的抗蚀剂掩模的状态下注入高浓度的杂质,形成偏移结构的源极区域和漏极区域。此外,当然也可以以扫描线3a和栅极电极为掩模进行高浓度的杂质注入,形成自动对准结构的源极区域和漏极区域。此外,也可以形成具备自动对准结构的源极区域和漏极区域的P沟型的TFT,和具备低浓度源极区域和低浓度漏极区域和高浓度源极区域和漏极区域的N沟道型的TFT。
其次,如图14(L)所示,在透明基板10b的整个表面上,形成由硅氧化膜等构成的层间绝缘膜4之后,用光刻技术在层间绝缘膜4的表面上形成抗蚀剂掩模,从该抗蚀剂掩模的开口部分刻蚀层间绝缘膜4,在分别形成接触孔41、42、43等之后,除去抗蚀剂掩模。
其次,如图14(M)所示,在用溅射法等形成厚度为300nm~800nm的铝膜、钽膜、钼膜等的导电膜6之后,用光刻技术形成抗蚀剂掩模405,如图14(N)所示,在层间绝缘膜4的表面一侧形成数据线6a、延长部分6g、漏极电极6b、中继电极6h等。
其次,如图15(O)所示,在透明基板10b的整个表面上,形成了由硅氧化膜等构成的层间绝缘膜5之后,用光刻技术在层间绝缘膜5的表面上形成抗蚀剂掩模,从该抗蚀剂掩模的开口部分刻蚀层间绝缘膜5,在分别形成了接触孔51、52、53等之后,除去抗蚀剂掩模。
其次,如图15(P)所示,在用溅射法等在层间绝缘膜5的表面上,形成厚度为40nm~200nm的ITO膜9之后,用光刻技术形成抗蚀剂掩模416,通过该抗蚀剂掩模416,对ITO膜9进行刻蚀,如图15(Q)所示,形成像素电极9a(检查焊盘31g、32g、33g)。
然后,通过检查焊盘31g、32g、33g检查检查用TFT30g的电特性。此外,还通过图11所示的检查焊盘34g、35g、36g、37g检查检查用的TFT180g、190g的电特性。然后,检查各个TFT阵列基板10的良否,对被判断为合格品的TFT阵列基板10进行后面的工序。
在实际的工序中,在大型基板的状态下,形成多块TFT阵列基板10的TFT等并在大型基板的状态下进行了检查之后,由于要从大型基板切出多块TFT阵列基板10,故在该情况下,要确认在任一个位置上形成的TFT阵列基板10是合格品还是不合格品,然后,如图5和图9所示,在透光性电极9a的表面一侧形成聚酰亚胺膜(取向膜12)。为此,将5~10重量%的聚酰亚胺或聚酰胺酸溶解于丁基溶纤剂或N-甲基吡咯烷酮等的溶剂中的聚酰亚胺清漆进行苯胺印刷后,进行加热固化(烧结)。然后,用由人造丝系纤维构成的尖角布在恒定方向上擦已形成了聚酰亚胺膜的基板,使聚酰亚胺分子在表面附近排列在恒定方向上。其结果是,借助于之后填充进来的液晶分子与聚酰亚胺分子之间的相互作用,液晶分子就会在恒定方向上排列起来。
借助于此,由于已完成了TFT阵列基板10,故借助于密封剂107使之与对向基板20互相粘贴。
其它的实施方案在上述实施方案中,在第1检查像素100x中,虽然与有效像素100c同样,用接触孔51将漏极电极6b和像素电极9a(第1检查焊盘31g)电连起来,但是,如图16和图17所示,也可以采用这样的构成使漏极电极6b向第1检查像素100x延长得多一点,对该延长部分6i,通过层间绝缘膜5的接触孔59电连接像素电极9a(第1检查焊盘31g)。若象这样地构成,则在可以用由像素电极9a构成的检查焊盘31g、32g、33g检查检查用TFT30g的电特性的同时,还可以在形成像素电极9a等之前,以漏极电极6b的延长部分6i、来自数据线6a的延长部分6g、和中继电极6h为检查焊盘,检查TFT30g的电特性。
此外,在上述实施方案中,虽然以将TFT用做像素开关用的有源元件的液晶装置为例进行了说明,但是,也可以将本发明应用于把TFD用做像素开关元件的液晶装置。
再有,也可以把本发明应用于使用液晶以外的电光物质的电光装置,例如,有机电致发光装置。
液晶装置向电子设备的应用这样地构成的液晶装置100,可以用做各种电子设备的显示部分,参照图18和图19(A)、(B)说明其一个例子。
图18是显示将本发明的液晶装置用做显示装置的电子设备的电路构成的框图。
在图18中,电子设备具备显示信息输出源1000、显示信息处理电路1002、电源电路1010、定时发生电路1008、以及液晶装置。此外,液晶装置,具有液晶显示面板100和驱动电路1004。作为液晶装置,可以使用上面所说的液晶装置100。
显示信息输出源1000具备ROM(只读存储器)、RAM(随机存储器)等存储器、各种盘等的存储单元,和同步输出数字图像信号的同步电路等,根据由定时发生电路1008产生的各种的时钟信号,向显示信息处理电路1002供给规定格式的图像信号等。
显示信息处理电路1002,具备例如串并行转换电路或放大、反转电路、转换电路(rotation circuit)、图像灰度校正电路或箝位电路等众所周知的各种处理电路,执行对输入进来的显示信息的处理,将其图像信号与时钟信号CLK一起向驱动电路1004输出。电源电路1010,向上述各个电路供给规定的电压。
图19(A)示出了本身为本发明的电子设备的一个实施方案的便携式个人计算机。这里所示的个人计算机80,具有具备键盘81的主体部分82,和液晶显示单元83。液晶显示单元83的构成为含有上述的液晶装置100。
图19(B)示出了本身为本发明的另一个实施方案的移动电话机。这里所示的移动电话机90,具有多个操作按键91,和由上述的液晶装置100构成的显示部分。
权利要求
1.一种电光装置,该装置是一种在保持电光物质的基板上,形成有具备多个薄膜开关元件的电气元件形成区域的电光装置,其特征在于在上述电气元件形成区域内,形成有用来检查上述薄膜开关元件的特性的检查图案,和与该检查图案电连接的检查焊盘。
2.根据权利要求1所述的电光装置,其特征在于上述电气元件形成区域,是将具备用来驱动上述电光物质的像素电极,和为了驱动该像素电极作为上述薄膜开关元件被形成的像素开关用有源元件的像素配置成矩阵状的像素区域,在上述像素区域内,形成有矩阵状地具备用来显示图像的多个有效像素的有效像素区域,和具备在该有效像素区域的外周一侧用遮光部件覆盖起来对图像的显示无直接贡献的多个虚设像素的虚设像素区域,上述检查图案和上述检查焊盘形成于上述虚设像素区域内。
3.根据权利要求2所述的电光装置,其特征在于在每一个上述有效像素区域和上述虚设像素区域中,作为上述像素开关用有源元件,形成有具备与数据线电连接的源极区域、与上述像素电极电连接的漏极区域、和隔着绝缘膜与栅极电极对峙的沟道区域的像素开关用薄膜晶体管,在上述多个虚设像素的至少一个虚设像素中,作为上述检查图案形成有结构和尺寸与上述像素开关用薄膜晶体管相同的检查用薄膜晶体管的同时,在上述虚设像素区域中,在已形成了上述检查用薄膜晶体管的第1检查像素内形成有与该检查用薄膜晶体管的漏极区域电连接的第1检查焊盘,在与上述第1检查像素相邻的第2检查像素内形成有与上述检查用薄膜晶体管的源极区域电连接的第2检查焊盘,在与上述第1检查像素相邻的第3检查像素内形成有与上述检查用薄膜晶体管的栅极电极电连接的第3检查焊盘。
4.根据权利要求3所述的电光装置,其特征在于上述第1检查焊盘,通过层间绝缘膜的接触孔,电连接到与上述检查用薄膜晶体管的漏极区域连接的漏极电极,上述第2检查焊盘,通过层间绝缘膜的接触孔,电连接到从上述数据线延伸到上述第2检查像素的延伸部分,上述第3检查焊盘,通过层间绝缘膜的接触孔,电连接到从上述栅极电极延伸到上述第3检查像素的延伸部分。
5.根据权利要求1所述的电光装置,其特征在于在上述基板上,形成有将具有用来驱动上述电光物质的像素电极,和用来驱动该像素电极的像素开关用薄膜晶体管的像素配置成矩阵状的像素区域,并且,在该像素区域的外侧区域,作为上述电气元件形成区域形成有驱动电路,该驱动电路具备多个作为上述薄膜开关元件的用来向上述像素开关用薄膜晶体管供给信号的驱动电路用薄膜晶体管,上述检查图案和上述检查焊盘,形成于形成有上述驱动电路的区域内的同时,上述检查图案,配置在已形成有上述驱动电路的区域内的未形成有上述驱动电路用薄膜晶体管的空白区域内。
6.根据权利要求5所述的电光装置,其特征在于上述检查图案是结构和尺寸与上述驱动电路用薄膜晶体管相同的检查用薄膜晶体管。
7.根据权利要求1所述的电光装置,其特征在于上述电光物质是被保持在上述基板和间隔规定的间隙相对于该基板相向配置的对向基板之间的液晶。
8.一种电子设备,其特征在于使用权利要求1所述的电光装置。
9.一种电光装置的制造方法,该方法是在保持电光物质的基板上,形成有具备多个薄膜开关元件的电气元件形成区域的电光装置的制造方法,其特征在于在上述基板的上述电气元件形成区域内形成上述薄膜开关元件时,在该电气元件形成区域内,预先形成用来检查上述薄膜开关元件的电特性的检查图案和与该检查图案电连接的检查焊盘,使检查用端子触碰到上述检查焊盘上来检查上述检查图案的电特性,使用该检查结果被判断为良好的上述基板,制造上述电光装置。
10.根据权利要求9所述的电光装置的制造方法,其特征在于作为上述电气元件形成区域形成像素区域,该像素区域矩阵状地具备具有用来驱动上述电光物质的像素电极,和为了驱动该像素电极作为上述薄膜开关元件形成的像素开关用有源元件的像素,同时在上述像素区域内的周围区域上形成上述检查图案和上述检查焊盘。
11.根据权利要求10所述的电光装置的制造方法,其特征在于在用上述基板组装上述电光装置时,将上述像素区域的中央区域作为将用来显示图像的多个有效像素配置成矩阵状的有效像素区域,将上述像素区域的外周侧区域作为配置有对图像的显示无直接贡献的多个虚设像素的虚设像素区域用遮光部件覆盖起来。
12.根据权利要求10或11所述的电光装置的制造方法,其特征在于在上述像素区域的各个像素内,作为上述像素开关用有源元件,形成具备与数据线电连接的源极区域、与上述像素电极电连接的漏极区域、和隔着绝缘膜与栅极电极对峙的沟道区域的像素开关用薄膜晶体管,将上述像素区域内位于外周侧的至少一个像素,作为上述检查图案形成结构和尺寸与上述像素开关用薄膜晶体管相同的检查用薄膜晶体管的同时,形成与该检查用薄膜晶体管的漏极区域电连接的第1检查焊盘作为第1检查像素,在与上述第1检查像素相邻的第2检查像素内形成与上述检查用薄膜晶体管的源极区域电连接的第2检查焊盘,在与上述第1检查像素相邻的第3检查像素内形成与上述检查用薄膜晶体管的栅极电极电连接的第3检查焊盘。
13.根据权利要求12所述的电光装置的制造方法,其特征在于使上述第1检查焊盘,通过层间绝缘膜的接触孔,电连接到与上述检查用薄膜晶体管的漏极区域连接的漏极电极上,使上述第2检查焊盘,通过层间绝缘膜的接触孔,电连接到从上述数据线延伸到上述第2检查像素的延伸部分,使上述第3检查焊盘,通过层间绝缘膜的接触孔,电连接到从上述栅极电极延伸到上述第3检查像素的延伸部分。
14.根据权利要求9所述的电光装置的制造方法,其特征在于在上述基板上,形成将具有用来驱动上述电光物质的像素电极,和用来驱动该像素电极的像素开关用薄膜晶体管的像素配置成矩阵状的像素区域的同时,在该像素区域的外侧区域,作为上述电气元件形成区域形成驱动电路,该驱动电路具备多个作为上述薄膜开关元件的用来向上述像素开关用薄膜晶体管供给信号的驱动电路用薄膜晶体管,将上述检查图案和上述检查焊盘形成于形成有上述驱动电路的区域内的同时,将上述检查图案形成于已形成有上述驱动电路的区域内的未形成有上述驱动电路用薄膜晶体管的空白区域内。
15.根据权利要求14所述的电光装置的制造方法,其特征在于上述检查图案是结构和尺寸与上述驱动电路用薄膜晶体管相同的检查用薄膜晶体管。
全文摘要
本发明提供可以确实地检查在保持电光物质的基板上形成的多个薄膜开关元件的电特性的电光装置、电子设备和电光装置的制造方法。在液晶装置的TFT阵列基板10中,在位于像素区域10a的外周一侧的虚设像素100d的一个像素上形成检查用TFT30g的同时,以连接到其漏极区域1e上的像素电极9a为第1检查焊盘31g。在与之相邻的虚设像素中,以电连到从数据线6a延长出来的延长部分6g上的像素电极9a为第2检查焊盘32g,以在另一个相邻的虚设像素中,对于从扫描线3a延长出来的延长部分3g通过中继电极6h进行电连的像素电极9a为第3检查焊盘33g。
文档编号H01L27/13GK1438521SQ0310256
公开日2003年8月27日 申请日期2003年2月9日 优先权日2002年2月12日
发明者藤田伸 申请人:精工爱普生株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1