硅基肖特基垫垒红外光检测器的制作方法

文档序号:6845876阅读:181来源:国知局
专利名称:硅基肖特基垫垒红外光检测器的制作方法
技术领域
本发明涉及一种硅基肖特基势垒红外(IR)光检测器,更具体地,涉及一种平面的、基于波导的IR光检测器,其具有足够低的暗电流以能有效地在室温下工作。
背景技术
采用金属-半导体势垒(称为肖特基势垒)代替p-n结的半导体器件已经被开发以将入射光转换成电能。在肖特基势垒光检测器中,硅经常被用作半导体材料,其中所述光检测器工作在电磁能量谱的IR部分。在其最传统的方式中,一个硅基肖特基势垒光电二极管包括一薄的金属膜(比如硅化物膜),其设置在一硅层上。入射光垂直地(即,″呈直角″)施加至此结构,过相对较薄的金属膜,其中膜仅吸收一小部分光,因此导致极低的外量子效率级。因此,传统的″垂直入射″的光检测器需要一个相对较大的活动检测面积,以便收集足够数量的光能以适当地发挥作用。然而,当检测区增加时,暗电流(不需要的噪声信号)也增加。此外,虽然结构相对简单,但是这样的垂直入射检测器通常要求进行冷却,其又与比较高的暗电流值相关联。
多年来,硅基肖特基势垒光检测器在光的吸收和量子效率方面的改善已经成为许多研究的对象。在一个例子中,如1197年11月11日授权给K.Saito等人的美国专利5,685,919中所公开的,通过在所述金属-半导体的分界面上一表面等离子激元模,可以对光的吸收予以改进。在此结构中,一个半圆柱形的透镜设置在金属层上,并用于将垂直入射的入射光重新定向成与形成表面等离子体激元层相关的一个角度。于1989年8月15日授权给A.C.Yang等人的美国专利4,857,973公开一个可选的肖特基势垒光检测器装置,其中光检测器单晶硅肋形波导单片集成,并定位以当光信号沿着肋形波导在硅化物层的下方通过时,吸收光信号的″尾″。尽管采用Yang等人的结构可以获得吸收效率的改善,但主要的损失依然存在,由于所述肋是通过部分地去除相对较厚的硅层部分而形成,沿着肋形波导结构的侧壁存在散射损失。此外,控制这样的肋形波导结构的尺寸(特别是高度)仍然存在困难,控制其平滑度也是如此。实际上,这样的″肋″结构(特别是具有亚微米级尺寸)的实现对于基于CMOS的常规工艺技术来说存在很大的困难。此外,Yang等人提出的非平面几何结构从制造的观点来说不被认为是优选的理想结构,特别是对于设计结构的可靠性和稳定性来说更是如此。
基于硅基肖特基势垒光检测器的潜在优势,可以非常有利地提供一种相对简单的设备,其具有高的量子效率,并且反应迅速,其制造可以采用与CMOS兼容的平面处理工艺和材料,无需大量的资金或技术投资。
发明概述本发明致力于现有技术中存在的需要,其涉及一种硅基肖特基势垒红外(IR)光检测器,更具体地,涉及一种平面的、基于波导的IR光检测器,其具有足够低的暗电流以致于能有效地在室温下工作。
根据本发明,一硅化物层(或其他适当的金属层)设置在一平面硅波导层上,所述平面硅波导层形成为硅绝缘体(si1icon-on-insu1ator,SOI)结构的亚微米厚的表层(此亚微米表面波导层在现有技术中通常被称为″SOI层″)。欧姆接点被应用于所述SOI结构的平面SOI层和硅化物层。沿着平面SOI层内的光波导横向传播的光信号将因此通过硅化物层下方,其中光能的″尾″将与硅化物相交,并被转变为电能。由于本发明的结构基于在平面硅表面上应用一硅化物检测器,并不要求有单晶硅肋形波导的形成,因此可以显著的改善Yang等人的结构的效率,本发明的结构也可很好地与传统的平面CMOS工艺技术兼容。
在本发明的多个实施例中,平面SOI层可被掺杂以改善光生载流子的有效收集效率,同样可改善检测器的速度和响应性。此外,保护环结构可与检测器结合在一起,用以最小化暗电流的形成。可以对波导结构进行改进,以形成多种优选的几何结构,比如(但不限于),Y型分路器、环形谐振器、耦合波导结构、分接头等以在所述光学系统内来优化检测器的总体性能。重叠的硅化物条可以形成为包括一个楔形输入区域,以减少光信号的反射。
通过参照附图并阅读以下的论述,本发明的其它及进一步的实施方式和特点将变得显而易见。
附图简述现在参照附图,

图1是涉及现有技术的垂直入射肖特基势垒光检测器工作原理的能带图;图2为根据本发明形成的示例性的基于SOI硅光电检测器的剖面侧视图;图3为图2的示例性光检测器的等轴测图;图4为本发明一个可选的基于SOI的硅光电检测器的俯视图,其利用一楔形硅化物条减少光信号反射;图5为图4的楔形硅化物光检测器的等轴测图;图6为本发明的一个示例性的基于SOI的肖特基势垒光检测器的剖面侧视图,其包括一个保护环结构以减少在所述装置中存在的暗电流;图7为本发明的一个示例性的基于SOI的肖特基势垒光检测器的剖面侧视图,其示出了同时至SOI层和硅化物条的电触点的一个示例性的布置;图8为本发明的一个示例性的光检测器的俯视图,其包括一个Y型分路器波导,其具有沿着所述″Y″字的一支臂形成的光检测器,作为一个分接头;图9为本发明的一个可选的分接结构的俯视图,其采用一个基于波导的环形谐振器,光检测器形成在所述分接波导的终端。
图10为本发明的另一个可选的分接结构的俯视图,其形成为一个定向波导耦合器结构,包括用于测量传输信号功率的第一检测器和用于测量反射信号功能的第二检测器;图11包含本发明的一个″聚焦输入″的基于SOI的光检测器的俯视图,其采用一抛物面形反射结构,所述反射结构形成在SOI层内,以将输入光信号重新定向并聚焦进入表面积相对较小的硅化物条光检测器,并减少暗电流;图12是根据本发明形成的一个示例性行波肖特基势垒光检测器的俯视图;图13为图12的行波光检测器的等轴测图;图14为本发明的一个示例性的多通光检测器的俯视图,其采用一个环形波导结构将解耦的光再次引回至各通道上的检测器;图15为本发明的一个可选的多通光检测器的俯视图,其采用一个超出光检测器的输出端的反射元件,以将解耦的光再次引回至光检测器;图16示出了一个示例性的″集成″SOI结构,其中本发明的光检测器与另外一个光电元件形成为单片结构;图17包含一个简化的电路原理图,其示出了与本发明的光检测器相关联的一个″虚拟″光检测器(即,没有光输入信号的光检测器)的使用情况,以此消除暗电流;图18是图17电路的示例性实施例的等轴测图,其示出了集成虚拟光检测器和相关电器以及本发明的基于SOI的光检测器的能力;图19包含一种可选结构的一个简化的电路原理图,所述结构采用″虚拟″光检测器,与本发明的光检测器一样,其可以被集成在相同的SOI结构内,为一个差动放大器结构提供一参考″暗电流″;和图20包含另外一种结构的简化的电路原理图,其采用一个使用了单个差动放大器的″虚拟″光检测器。
详细描述如上所述,本发明涉及一种单片集成的、平面的肖特基势垒红外波导检测器,其能够在低于、等于或高于室温的温度下工作。有利地,本发明的检测器的制造工艺和材料与传统的与半导体工业相关联的平面CMOS工艺兼容。
根据本发明,一种肖特基势垒结形成在一种SOI结构的亚微米厚的、平面的硅波导表层(″SOI层″)上。此肖特基势垒结的形成方式使得当沿着平面SOI层内的一波导横向传播(在平行于所述结的方向上运动)的光信号从重叠的硅化物层下方通过时,被持续吸收进入所述层内。由于具有此几何结构,即使相对较薄的硅化物层(例如,几个单分子层的厚度)将在几微米的距离上吸收所述信号的大部分。因此,吸收硅化物层的厚度可被优化以结获得穿过肖特基势垒的非常高的内部光电发射效率。特别地,吸收硅化物层的厚度可以通过调整检测器的长度和硅化物层附近的光强来进行优化。另外,硅化物层应位于远离任何尖锐的角/边的位置,也应远离表面粗糙的蚀刻硅区域。其位置被优选以减少暗电流的产生。通过将检测器设计成在尽可能小的面积内吸收所需的光信号,可以进一步减少检测器的的暗电流。大多数情况下,肖特基势垒光检测器工作于反偏模式,从而产生有用的电信号输出。工作在雪崩模式也是可行的。
首先描述传统的、现有技术中的″垂直入射″肖特基势红外光电检测器的基本工作情况,以便形成用于辨别本发明主题的基础。参照图1,其示出了一能带图,用于描述这样的一种传统的肖特基势垒光检测器的工作方式。进入的红外辐射以垂直入射的方式入射在硅化物层10上,并通过内部的光电发射进入一个底层的硅层12,导致通过所述肖特基势垒(定义为具有势垒高度Φms)的一个光电流的激励。在图1的结构中,假定硅层12包括p型硅材料。由于硅本身对于具有的光子能量小于硅的能带隙(1.12电子伏特)的IR辅射来说是可透过的,硅层12并不通过吸收红外光子形成光电流(通过形成电子空穴对)。特别地,通过将其能量和动量转换成自由载流子,红外光子被吸收进入硅化物层10。实际上,所述”热”空穴(当采用n型层时为″热″电子)具有足够的能量,同样还具有所需的方向性,它们将越过肖特基势垒,并被注入硅层12,在硅化物电极上留下纯负的(正的)电荷。
对于传统的、现有技术的垂直入射肖特基势垒光检测器来说,可以通过在增益和吸收品质之间进行平衡来对检测器的响应性进行优化,其中增益和吸收取决于光检测器工作的波长。增益表示”热”空穴越过肖特基势垒的逸出(发射)概率。当具有的能量大于肖特基势垒高度的光子,通过自由载流子吸收过程被吸收进入硅化物层内时,空穴获得能量,并变成″热″状态。术语″热″空穴表示具有越过肖特基势垒的发射的有限概率的空穴。″热″空穴的初始能量与吸收的光子成正比。由于自硅化物边界的半弹性散射和反射,所述”热”空穴释放能量,并改变行进方向。当”热”空穴的能量、位置和行进方向满足越过所述肖特基势垒的发射条件时,空穴被发射越过势垒,并形成一与之成比例的光电流。如果在″热″空穴变成″冷″空穴(即,由于半弹性碰撞和反射,空穴行进的概率为零)的过程中,发射条件不满足,那么″热″空穴将不会被发射越过势垒,并且没有光电流产生。
光检测器的吸收被定义为被吸收进入硅化物层的入射光子的百分比。由于″热″空穴在硅化物-电介质分界面(或硅化物晶界)上的散射(反射)而形成的注入效率的增加被称为″内量子效率增益″。为了简化起见,此量此后将简单地称之为″增益″。
对于现有技术中的传统的垂直入射光检测器来说,因为各材料具有不同的光学性质,整个入射光子通量中的一小部分在结构的不同材料之间的边界处被反射。此外,到达硅化物层的大部分光子通量可穿过硅化物层被直接地传输,如果硅化物层相对较薄,则不存在吸收。因此,对于垂直入射检测器来说,在硅化物层内的吸收量与厚度(或在吸收硅化物层内的行进距离)呈指数增加。
相反,通过减少硅化物层的厚度,可以增加光检测器的增益。增益作为波长的函数的一个近似公式可以表示如下Gain(λ)=sL/t,其中L为在垂直于硅化物表面的方向上投射的空穴的平均自由行程,t为硅化物层的厚度,s为与波长(λ)有关的常数。所以,相对于平均自由行程长度L来说,通过减少硅化物层的厚度t,可以显著地增加增益因子,这是因为由于来自硅化物边界处的散射和多次反射,越过势垒″热″空穴注入的概率被增加了。
所以,在传统的垂直入射光检测器中,当决定硅化物层的厚度时,一般要在光电发射增益和总的吸收之间进行平衡。在传统的垂直入射光检测器中采用相对较薄的硅化物层,导致产生高的光电发射增益。然而,薄硅化物层将仅吸收入射的红外光信号的一小部分。因此,在常规检测器中独立地对增益和吸收进行优化是不可能的,且硅化物层因此要求具有一定的最小厚度,以便吸收足够数量的输入信号,以形成一可用的光检测器。
另外,传统的垂直入射肖特基势垒检测器的暗电流密度是势垒高度和工作温度这两者的非常强的函数。对于这样的光检测器,可以假定一最大容许噪声当量暗电流密度10-7A/cm2来计算工作温度,表格I(如下所示)为当对于各种不同的硅化物材料计算时,此暗电流密度下肖特基势垒光谱反应/工作温度的平衡的图表。

为了改善肖特基势垒IR检测器的性能,以检测光通信中感兴趣的1.10-1.65um波段的辐射,本发明利用横向入射光检测器代替传统的垂直入射光检测器装置,本发明的横向入射光检测器形成为SOI结构的一集成部分,其中所述SOI结构包括一亚微米表层波导。至少一种现有技术的横向入射结构已经被公开(参见上述的Yang等人的专利文献),但是Yang等人的工作在于采用一精细蚀刻的肋形波导结构,因此限制了光检测器的最终性能(至少部分地是由于不能精确地蚀刻微米级的结构,而且从所述肋结构的侧面还存在有散射损失)。实际上,如上所述,Yang等人的结构被认为与传统的平面CMOS工艺技术不兼容。
图2包含了根据本发明形成的示例性肖特基势垒IR光检测器装置20的侧视图,其等轴测图显示在图3中。光检测器20包括传统的″硅绝缘体″(SOI)结构22,其包括硅衬底24、绝缘体层26(通常为二氧化硅)和平面的硅表层28,其中平面的硅表层28优选地形成为厚度小于一微米,并用于支持光模沿着其传播,如图2所示。将SOI结构的平面波导硅表层称为″SOI层″已经成为此领域普遍接受的惯例。因此,对于此处的所有讨论,平面的硅表层28将被一般地称为平面的SOI层28。应当理解,此表面硅层可以包括一个平面单晶硅或一个平面晶体硅(或硅-锗Si-Ge)层,其被加工成处于″应变″的晶格状态(通过减少平均自由行程长度L,应变的硅层具有较高的载流子迁移率)。
为了形成肖特基势垒所需的金属-半导体分界面,硅化物条30被布置成沿着平面SOI层28的一部分顶面32。实际上,对需要被检测的波长形成适当的肖特基势垒的任意一个硅化物可被用于形成此结构,因为在平面CMOS加工工业中,在硅表面上形成硅化物的能力众所周知。在一个典型的硅化物形成工艺中,薄的金属层沉积在预先清洁的硅表面上,随后在受控环境条件下在一个特定的温度(或多个温度)与硅产生反应,以形成具有特定电学特性(例如,电阻)和物理性能(例如,晶体结构,晶粒度)的硅化物。然后,采用蚀刻工艺将未反应的金属层去除,在硅表面上仅剩下硅化物条。根据本发明,基于钴,镍,钼,钽,钨和钛的硅化物是对于远程通信应用(并与CMOS工艺兼容的)来说最需要的硅化物层。本发明的硅化物条30典型的厚度为例如5-30数量级。硅化物条30可形成为单晶体(其可能具有一些硅化物),或者为多晶材料。对于多晶硅化物条,来自晶粒边界的散射在决定检测器的″增益″因子时起到一定的作用(与条的厚度相关)。在此情况下,工艺条件可以得到控制,使用公知的装置,以优化硅化物内的晶粒形成。
第一电触点34被制造在硅化物条30上以形成光检测器20的第一电极。第二电触点36被直接地制造在平面SOI层28上,沿着其顶面32,其中第一和第二触点34,36都在图2和3中被示出。因此,当光束沿着平面SOI层28传播时,从硅化物条30注入的″热″载流子将导致在第一电触点34和第二电触点36之间产生光电流,其中对此光电流的测量可以被用于传播的光波信号的光功率的指示。本发明一个重要的方面在于,需要保持硅化物条30与平面SOI层28的边缘32-L和32-R相距一定距离,通过参照图3可以最好地理解这一点。通过避免硅化物条30与SOI层28的尖锐的角和边缘的重叠,暗电流被显著地减少。实际上,已经发现,本发明的结构可将暗电流减小到一个这样的级别,即,使得光检测器可以在室温下工作-这对于现有技术来说是显著的进步。
再次参照图3,与传统的CMOS触点构造一样,触点34和36都被示出为包括相对较厚的硅化物层。在本发明的一个优选实施例,触点34和36被定位成远离高光场区域,以最小化进入触点结构的光信号的吸收。图3的结构包括触点34和36,它们位于检测器结构的后部(因此被定位于光信号被吸收进入硅化物的区域之外),其中这种结构仅仅是一个示例,其他的能在触点区最小化光吸收的触点方案也认为是可行的,且处于本发明的范围内。另外,借助于采用平面SOI层,触点34和36高出平面SOI层28的顶面32的高度基本上相同。
当传播的光模遇到肖特基势垒(即叠加的硅化物条)时,为了减少反射信号的产生,硅化物条可形成为包括一楔形的输入结构,如图4和5所示,其中图4是为一示例性肖特基势垒IR光检测器装置40的俯视图,其包括一楔形的硅化物条42,图5是相同的IR光检测器装置40的等轴测图。由于包括了位于硅化物条42上的楔形的输入部分44,被沿着平面SOI层46传播的光信号“看见”的有效的折射率将逐渐地增加(而不是像图2和3所示的结构那样突然地增加)。因此,利用楔形允许在平面SOI层46和检测器区域之间耦合的光模中获得更好的过渡,而且减少了两种材料之间的势垒上反射的光信号量。各种型式的楔形(例如,凹、凸等等)可用来提供所需的有效折射率逐渐变化。
由于采用本发明的基于波导的结构用于IR光检测器,光检测器可在接近室温(乃至室温以上)的温度下工作。特别地,已经发现,本发明的光检测器装置可改善至少四个影响光检测器装置的工作温度的主要参数(1)输入光通量;(2)增益和吸收;(3)响应性;和(4)暗电流,其中至少两个上述的因素已经在前面讨论过。
对于输入光通量,众所周知,对于传统的垂直入射检测器来说,输入光通量的典型信号源是室温红外景像。与之相比,在本发明的基于波导的检测器内的光源可以包括激光或LED,其允许比较高的输入通量。此新型的波导几何结构可以限制进入所述波导的较小横截面的光。因此,每单位面积的输入能量的数量级比现有结构要大,输入信号与暗电流的比率显著增加,使得可以在高温下进行检测。例如,在具有0.5um×0.15um的横截面积的波导内功率为1uW的光子通量,比检测典型的红外景象的垂直入射检测装置上光子通量高大约六到七个数量级。
正如以上的讨论,在本发明的基于波导的检测器中,红外光平行于硅化物层行进。因此,光模能量相对较大的部分进入硅波导层的″尾″区域外侧。因此,传播的光恒定地影响叠加的硅化物层,并且因此以与沿硅化物条长度的距离约呈指数规律地被吸收。另外,由于在所关心的红外区内各种硅化物材料的大吸收系数,在几微米的传播路径上,即使相对较薄的硅化物层(例如小于30)也可吸收大量光(即,大量的光子)。所以,内部的光电发射增益(其要求硅化物层尽可能薄)可以独立于硅化物层内总的吸收被优化。对于本发明的基于波导的光检测器来说,与传统的垂直入射光检测器相比,此优化将导致显著地提高总的量子效率。
与响应性为0.80A/W的普通InGaAsp-i-n检测器相比,传统的垂直入射肖特基势垒光检测器的响应性通常极低。正如以上的讨论,所具有的能量大于肖特基势垒高度的光子给予能量和动量至一自由空穴,将它变成″热″空穴。所述″热″空穴然后通过半弹性碰撞失去能量,并且最终成为″冷″空穴,″冷″空穴穿过势垒的概率为零。″热″空穴在变″冷″之前所行进的平均距离(或长度)公知为入射光子能量的强函数。所以,在肖特基势垒光检测器中,随着波长的减少,响应性增加,这是因为入射光子能量和肖特基势垒高度之间的差异变大(允许″热″空穴在失去能量变成″冷″空穴之前行进更长的距离)。
正如以上的讨论,本发明的基于波导的IR光检测器能够采用极薄的硅化物层。所以,在本发明的基于″薄硅化物″波导的检测器中,具有特定能量的″热″空穴越过势垒发射的概率将比现有技术的垂直入射检测器大的多(由于对于较薄的硅化物层来说,在相同的行进距离上散射和边缘反射的概率更高)。其结果是明显提高了响应性。
如前所述,暗电流(以及与维持所需的动态范围而所需要的暗电流相关的散射噪声)限制了检测器在某一特定温度的性能。实际上,暗电流与检测器的面积成比例,并且也是温度的强函数(如表格1所示)。所以,为了在″高″温(例如,室温)下操作检测器,检测器的总面积需要显著地减少。另外,应当尽可能地避免与暗电流产生相关的相对较高的电场。除了避免硅化物条和硅波导的转角/边缘之间的重叠以外,应尽可能地减少沿着硅化物条的尖角。通过形成空间均匀的硅化物层(因为硅化物的多相性可以导致随机散布的具有较低肖特基势垒高度的区域),检测器内的暗电流可以进一步减少。由于本发明的基于波导的检测设备允许传播的光″看″到实际上更大的硅化物厚度(由于其沿硅化物长度的横向传播),硅化物材料本身的物理面积可以较小。因此,在尺寸上的这种减少允许在室温下操作本发明的光检测器。在一个实验中,本发明的肖特基势垒光检测器装置包括一钴硅化物条,其厚度为500,有效面积大约为20um2,在室温下对于约500uw的光功率能产生660pA的信号电流(暗电流仅约200pA)。
在本发明一个特定的实施例中,通过环绕检测器的周边形成一个保护环结构(除采用相对较薄的硅化物条外),暗电流可以进一步被减小。图6为一个这样的结构50的剖面侧视图,其中一个N+型保护环52沿着硅化物层54的边缘54-L和54-R布置。在此例中,平面SOI层56为p型,并且支持光信号传播进入所述页面的平面。沿着硅化物层54的边缘54-L和54-R布置有保护环52,减少了与硅化物的尖角相关的电场,在硅化物的边缘和SOI层56的波导区域之间起到势垒的作用。应当注意,当SOI层是n型时,保护环应为p型。根据本发明的教导,可以对保护环结构的设计和杂质分布进行优化,以提供所要求的光损耗度、速度、暗电流和工作电压范围。此外,平面SOI层的掺杂本身可以沿着其深度予以″分级″,使得结果电场改善被注入的越过肖特基势垒并进入平面SOI层56的载流子的收集和传输。
应当理解,用于提供建立肖特基势垒所需的金属-半导体分界面的硅化物条明显比传统的硅化物层薄,其中所述硅化物层在传统的CMOS结构中被用作触点区(其中传统的触点区的名义厚度可以为10微米量级)。然而,可以改进CMOS工艺步骤,以便仅仅相对较薄的硅化物层被沉积以形成所述条,其采用传统的硅化物形成步骤,所述步骤涉及在典型的CMOS制造设施中通可用的基础设备/装备。此外,用于检测器形成的金属层可以采用与形成传统的、相对厚的硅化物触点区的材料不同的材料。
参照图7,其示出了一种用于提供至平面SOI层和硅化物条两者的所述电触点的示例性构造。在此情况下,基于波导的IR光检测器60包括p型平面硅晶体硅SOI层62,其具有设置在平面SOI层62上的薄硅化物条64。电介质区域66被形成为围绕光检测器60。一种提供至硅化物条64的触点的途径是硅化物条64和金属层触点之间直接接触,在触点区没有任何附加的衬底掺杂。通过允许条64与传统的硅化物层重叠,可形成至硅化物条64的触点,其中所述硅化物层通常被用来作为触点。
可选地,且如图7所示,具体形式为N+掺杂区域的电触点区68可形成在(p型)平面SOI层62内部,从而位于硅化物条64的下面。P+触点区70形成在平面SOI层62相对的区域,以为平面SOI层62形成电触点区域。第一金属导体72被示出为接触至硅化物条64,第二金属导体74为接触至P+触点区70。如图7所示,第一和第二金属导体72和74都是通过电介质围绕物66内的接触开口而形成的。
已经发现,使用N+触点区68进一步减少了暗电流,因为触点区68不会形成基于热电放射的暗电流。取而代之的是,p-n结(形成在p型平面SOI层62和N+触点区68之间)将与形成在硅化物条64和SOI层68之间的肖特基结并联。明显地,如果采用n型平面SOI层,那么应当使用P+触点区。
本发明的基于波导的IR光检测器也可沿着″终端的″SOI波导层形成,或许,终端的层被形成为来自传播波导结构的″分接头″。图8是一种这样的结构80的俯视图,其中平面SOI层82已经被制造成具有Y型分路器几何结构。Y型分路器SOI层82的第一臂84被显示为终端的波导,其具有一个设置在终端中央部的硅化物条86。当传播的光信号通过SOI衬底时,第二臂88用于支持所述传播的光信号。在一个优选实施例种,大多数的光能将被耦合进入第二臂88,以便在光信号中保持足够的功率量。有利地,因为本发明的光检测器将沿着硅化物条86的长度l吸收第一臂84内几乎所有的光子,具有相对较小功率的光信号要求被耦合进入第一臂84。
图9和10示出了可选的″分接头″光检测器装置,其可根据本发明而形成(应当理解,这些结构被认为仅仅是示例性,并且许多其他的平面的、基于波导的结构可被有利地设计以采用硅化物条光检测器装置)。参照图9,光检测器装置90包括环形谐振器结构,所述环形谐振器结构包括输入波导92、环波导94和″分接″波导96。根据本发明形成的检测器98沿着分接波导96的一部分布置。根据公知的环形谐振器结构的原理,当具有预定波长的光信号沿着输入波导92传播时,其最终被耦合进入环波导94。具有特定波长的光信号沿着分接波导96在一个反向传播方向上移动(如图9箭头中所示),并且随后被耦合进入光检测器98。有利地,多种平面型波导和本发明的光检测器可以在同一SOI结构内全部形成为一个整体的结构,因此显著地减少了元件之间的信号损失和反射。在图9的结构的一个扩展中,多个这样的″环″可沿着输入波导92和分接波导96之间的空间布置,各环被″调整″成向外耦合不同的波导。相似的本发明的多个光检测器可能沿着分接波导96布置,并且因此形成一个多波长的光检测器。应当注意,上述的多波长实施例只是示例,并且可以形成各种其他的多波长光检测器阵列结构。例如,基于中阶梯光栅的多波长光检测器结构或线性波导格状构造(和基于波导的罗兰环绕)可采用本发明的硅化物条光检测器装置形成。
图10包含本发明的耦合波导光检测器装置100的示意图,所述结构包括一对耦合波导102和104,第一光检测器106沿着波导104布置以测量光信号的传输功率,第二光检测器108沿着波导104(在相反的方向上)布置,以测量光信号的反射功率。如图所示,基于波导的耦合区域110形成在波导102和104之间,以致瞬时地将传播的输入信号的一部分耦合进入波导104,其中一部份光信号将保留在波导102内,并且其后作为光输出信号从波导102输出。耦合进入波导104的部分光能可以通过波导制造工艺进行控制,使得允许所需要的功率量级保留在光输出信号中。
本发明的基于波导的检测器的另一个优点的是能够在一个十分小的区域内集中光信号。例如,波导检测器结构可以被制造在光缆或其他集成的光学元件(比如波导反射镜或透镜)上,其可用于将光聚焦进入一个十分小的区域,从而减少波导检测器的有效面积(因此也减少暗电流)。图11包含了显示了此优点的一个示例性结构的等轴测图。如图所示,校准输入光束I沿着条形波导120传播,所述条形波导120形成在SOI结构124的平面SOI层122内。传播的光束然后照射抛物面反射镜结构123,所述结构123通过将平面SOI层122所选择出的一部分蚀刻掉而形成。其后,电介质材料126设置在蚀刻区域内以再次平整所述结构,并建立具有抛物面镜结构123的光学边界。如图11所示,来自抛物面镜结构123的反射光束然后被聚焦进入本发明的光检测器的相对较小的硅化物条128。有利地,输入光信号的聚焦显著地增加了硅化物条128单位面积吸收的能量,同样减少了检测器的面积,并因此减少了暗电流。检测器可以被设计成吸收所有的光信号。可选地,检测器可以被设计在一个行波结构内。
在本发明的检测器结构的一个行波结构内,硅化物条设置在一波导上,所述波导被特别地设计成只吸收光的一小部分,而允许输入光的剩余部分继续传播穿过波导。沿着薄硅化物条长度的光的吸收近乎为一指数函数,因此一极小的长度可用来吸收穿过波导的总的光信号的一小部分。因此,本发明的光检测器的行波波导的实现,允许采用一极小的检测器面积,显著地减少暗电流的产生。实际上,图11的基于聚焦反射镜的检测器结构还可以用于一个行波结构中,其中所述未被吸收的光信号将随后继续沿着光波导129(在此情况下示出的为光缆129)传播。
本发明的另外一个示例性行波波导检测器构造130的显示在俯视12中,其中图13为检测器130的等轴测图。如图所示,光信号被耦合进入平面条状波导SOI层132。相对较薄的硅化物条134设置在条状波导132的预先确定的部分。第一触点区136形成至硅化物条134,其中如图12和13所示,平面SOI层132被形成为包括第一延伸区域138,第一触点区136设置在第一延伸区域138上,以最小化在所述触点区内光信号的吸收。同样地,平面SOI层132被形成为包括第二延伸区域140(优选地,相对于条状波导层132来说,其位于与第一延伸区域138相对的位置),以支持第二触点区142,第二触点区142用于提供至SOI层132本身的接触。应当理解,此特定的如图12和13所示的实施例只是示例,多种其他的延伸区域结构可以最小化辐射和反射损耗。任何在设计上的这样的变化都被认为属于本发明实质和范围内。
为了最小化本发明的检测器的硅化物条的表面积(希望减少不需要的暗电流),检测器可以形成在一个″多次通过的″结构中,其中检测器的长度(沿着所述长度行进的光被吸收)被最小化,一部分未被吸收的光(即,透过检测器的未受影响的光)被再次送进入检测器区域。图14示出了形成本发明的多次通过的基于波导的红外检测器的一个示例性结构。在此结构里,平面SOI波导层140形成为包括环形部分142,本发明的硅化物条光检测器144如图所示地布置在环形部分142内。在此结构里,从检测器144的输出端146出来的未被吸收的光将沿着环形部分142传播,并在输入端148被再次送进入检测器144。
图15示出了一个可选的多次通过的结构,其中沿着平面SOI层波导150传播的光信号在其输入端154被引入硅化物条光检测器152。所述光信号未被吸收的部分将随后在输出端156离开光检测器152。其后,未被吸收的光信号将照射反射边界158(例如,格状构造),其随后将再引导光信号沿着波导150返回,并进入输出端156,使得第二次穿过光检测器152,从而允许所述光信号的额外的一部分被吸收进入硅化物条光检测器152,并产生一相关的光电流。在一个可选的实施例中,本发明的光检测器可被设置在基于波导的法布里-珀罗谐振腔的中心。可以采用多种其他的多次通过的结构,其中任何这些变化都被认为属于本发明实质和范围内。
有利地,本发明的基于波导的IR光检测器可与在SOI平台上开发的多种其他光电子器件组合。图16示出了一个示例性结构,其中光学装置160包括平面SOI波导层162和多晶硅层164,多晶硅层164布置成在光模被支承的区域内与平面SOI层162的一部分重叠。相对较薄的栅极电介质区域166被形成为这两个层的重叠区之间的分界面。如图所示,硅化物条168形成在SOI层162的暴露部分上,足够接近重叠区以便(如前所述)光模的″尾″部分与硅化物相交,并且产生光电流(在此特定的实施例中,必要的电触点没有示出)。功能与图16相似的多种其他结构可形成为还包括本发明的基于波导的光检测器,其中许多这些其他的结构已公开于申请人于2004年3月8日提交的序列号为10/795,748的待审申请和于2004年3月23日提交的序列号为10/806,738的待审申请中。一般而言,本发明的光检测器的硅化物条可设置在几乎任何多载的波导结构的SOI层上,以便形成单体的光学结构。
图17示出了另一个示例性的光电结构170,在此情况下,其合并了本发明的基于SOI的硅化物条光检测器和一个放大器结构,所述放大器结构可同时形成在SOI结构内。图18是为示例性放大器结构170的等轴测图。如图所示,结构170包括根据本发明形成的硅化物条光检测器172,所述光检测器172包括设置在SOI结构178(其特别地显示在图18中)的SOI层176的一部分上的硅化物条174。从光检测器172输出的光电流随后被用作至互阻抗放大器180的输入,所述互阻抗放大器180的功能是将输入电流转换为输出电压。放大器180还包括反馈偏置182,以调整放大器180的″增益″因子。由于制造互阻抗放大器是相对简单的CMOS工艺,使得放大器可容易地与本发明的光检测器172集成。有利地,″虚拟″光检测器184也可与光检测器172集成,如图所示,以用于通过平衡施加至互阻抗放大器180的光电流输入,减少与暗电流相关的输入噪声。参照图18,第二硅化物条186被显示为平行于第一硅化物条174布置,其中没有输入光信号被耦合进入与第二条186相关联的SOI层176的区域。所以,由第二硅化物条186检测到的任何光电流将是″噪音″(暗电流)信号,在施加作为放大器180输入的光电流之前,可以从光检测器172的光电流输出中将其减去。附加的二极管184使得光检测器172的暗电流被从总的信号电流中减去。这样,对于实际信号电流与暗电流的比值相对较低的情况,增加了所述结构的低电流敏感性。需要特别小心以减少检测器172和184之间的不匹配情况,其中检测器184(参见元件185)应对于可以形成不希望的光电流的″杂散″光屏蔽。通过将其设置在环绕并位于所述虚拟检测器的上方的高吸收性区域(比如金属线、硅化物区域和/或高掺杂区域),可以实现所述屏蔽。通过检测器172和184的电压也应基本上相等,以便去除与暗电流相关的偏压。
图19包含另一个结构的示意图,其采用了集成有本发明的硅化物条光检测器的″虚拟″检测器,在此情况下,来自本发明的硅化物条光检测器190的光电流输出作为输入施加至第一集成的互阻抗放大器192,并且来自″虚拟″光检测器194的″光电流″(噪音)输出被作为输入施加至第二集成的互阻抗放大器196。因此,来自放大器192和196的″差分″电压输出将从输出信号中去除任何与暗电流相关的电压。图20示出了又一个采用″虚拟″光检测器的结构,在此情况下,其具有差动放大器200,本发明的硅化物条光检测器210被耦合至放大器200的第一输入端212,″虚拟″光检测器214被耦合至放大器200的第二输入端216。另一方面,由放大器200产生的输出电压将与暗电流值无关。
应当注意,所有上述的放大器所采用的输入偏置电流消除技术为本领域的公知技术。此外,反馈元件可被调整以消除放大器的偏置。多个″虚拟″检测器也可用于对暗电流值进行平均。
以上描述的多种检测器结构可以工作在连续检测模式、信号积分模式或同步检测模式。由于检测器结构可以采用CMOS制造工艺制造,采用单片(on-chip)时钟数据恢复(clock-data-recovery(CDR))电路,可以实现非常高速数据信号的同步检测(超过10Gb/s)。
应当理解,本发明的上述实施例被认为仅仅是示例,且应当认为本发明范围的界定或限定应如所附权利要求所界定的。
权利要求
1.一种单体结构,其包括一集成在硅绝缘体(SOI)平台上的肖特基势垒硅基红外光电检测器,所述平台具有一光波导,所述单体结构包括一具有平面SOI表层的SOI结构,所述平面SOI表层的厚度小于一微米,并形成所述光波导的至少一部分,以支持光信号的传输;一金属条,沿着所述光波导内部的传播方向设置在所述平面SOI层的一部分上,所述金属条形成一个具有所述光波导的肖特基势垒;一第一欧姆触点,其设置在所述平面SOI层上;和一第二欧姆触点,其设置在所述金属条上,其中在所述第一和第二欧姆接点之间施加的偏压产生来自所述硅化物的光电流输出,当所述光信号沿着所述光波导传播时作为所述光信号中照射在所述金属条上的那部分的函数。
2.如权利要求1所述的单体结构,其中所述平面SOI层包括单晶硅。
3.如权利要求1所述的单体结构,其中所述平面SOI层包括应变晶格晶体硅。
4.如权利要求1所述的单体结构,其中所述平面SOI层包括硅-锗。
5.如权利要求1所述的单体结构,其中所述平面SOI层是掺杂的。
6.如权利要求5所述的单体结构,其中所述平面SOI层是p-掺杂。
7.如权利要求5所述的单体结构,其中所述平面SOI层是n-掺杂。
8.如权利要求5所述的单体结构,其中所述平面SOI层内的掺杂被分级,使得结果电场改善越过所述肖特基势垒注入所述平面SOI层的载流子的收集和输送。
9.如权利要求1所述的单体结构,其中所述第一和第二欧姆触点被设置成高出所述平面SOI层的顶面基本上相同的距离。
10.如权利要求1所述的单体结构,其中所述金属条包括一硅化物条。
11.如权利要求10所述的单体结构,其中所述硅化物条采用从如下金属中选取的一种形成铂、钴、钛、钽、钨、镍、钼。
12.如权利要求11所述的单体结构,其中所述硅化物条包括钴硅化物。
13.如权利要求10所述的单体结构,其中所述硅化物条包括单晶硅化物。
14.如权利要求10所述的单体结构,其中所述硅化物条包括多晶硅化物。
15.如权利要求1所述的单体结构,其中所述金属条包括楔形输入区,以便当所述传播的光信号进入所述光波导位于所述金属条下方的部分时,逐渐地改变所述传播信号所经受的有效折射率,所述楔形输入区减少沿着其发生的光反射。
16.如权利要求1所述的单体结构,其中所述金属条不与所述SOI层的任何转角或边缘重叠,该不相重叠的布置结构用于减少相关的暗电流,并提供其在室温下工作的能力。
17.如权利要求1所述的单体结构,其中所述金属条被形成为具有倒圆的角和边缘,以便减少相关的暗电流,并提供在室温下工作的能力。
18.如权利要求1所述的单体结构,其中所述SOI层内的所述光波导包括一光学分接头结构,所述金属条设置在所述光学分接头结构的分接波导部分。
19.如权利要求18所述的单体结构,其中所述光学分接头结构包括一Y型分路器波导结构,所述金属条设置在所述Y型分路器波导的第一分支上。
20.如权利要求18所述的单体结构,其中所述光学分接头结构包括一环形谐振器波导装置,所述装置包括一对平行的波导,至少一个环形的波长选择性波导布置在两者之间,所述金属条设置在平行的波导中的一个的一部分上,以便作为输入接受由所述至少一个环形波导向外耦合的光信号。
21.如权利要求20所述的单体结构,其中所述光学分接头环形谐振器结构被配置用于多波长工作,并且其包括多个环形波长选择性波导,各所述波导调整成向外耦合不同的波长。
22.如权利要求18所述的单体结构,其中所述光学分接头结构包括一光波导耦合器,所述光波导耦合器包括设置成捕获发射的光信号的第一金属条和设置成捕获反射的光信号的第二金属条。
23.如权利要求1所述的单体结构,其中所述第一和第二欧姆触点相对于所述光波导被设置成允许所述传播的光信号的一部分保持不被所述光检测器吸收,以形成一个行波光检测器。
24.如权利要求23所述的单体结构,其中所述SOI层被形成为包括位于所述光波导的相对侧上的第一和第二延伸区域,所述第一欧姆触点位于所述第一延伸区域,所述第二欧姆触点位于所述第二延伸区域。
25.如权利要求24所述的单体结构,其中所述第一和第二延伸区域被形成具有能最小化光反射和辐射损失的几何结构。
26.如权利要求1所述的单体结构,其中所述结构进一步包括一个形成在所述SOI层内部的保护环结构,所述保护环结构被设置成直接地位于所述重叠金属条的边缘部分的下方,所述SOI层具有第一导电类型,所述保护环结构具有第二、相反的导电类型。
27.如权利要求1所述的单体结构,其中所述结构进一步包括第一触点区,其形成在所述SOI层内的离开所述重叠金属条的区域,所述第一触点区具有与所述SOI层相同的导电类型;第一金属导体,其被布置成物理上接触第一触点区;第二触点区,其形成在所述SOI层内,位于所述重叠的硅化物层的下面,所述第二触点区的导电类型与所述SOI层的导电类型相反;和第二金属导体,其被布置成排物理上接触所述金属条的边缘,重叠第二触点区。
28.如权利要求27所述的单体结构,其中所述第一和第二触点区被形成在所述SOI层内部,以便最小化在所述触点区内光信号的吸收。
29.如权利要求1所述的单体结构,其中所述光波导被形成为允许所述传播的光信号在所述金属条的下方通过一次以上,形成一个多次通过的光检测器。
30.如权利要求29所述的单体结构,其中所述光波导包括一设置在所述金属条上方的反射元件,用于反射所述未被吸收的光信号的至少一部分,并且沿着所述波导往回再次引导所述未被吸收的光信号,使得所述光信号在所述金属条的下方通过第二次。
31.如权利要求29所述的单体结构,其中所述光波导被形成为包括圆形部分,所述金属条设置在所述圆形部分的一部分上,使得所述未被吸收的光信号绕着所述环形波导部分传播多数次,从而在所述金属条的下方通过多数次。
32.如权利要求1所述的单体结构,其中所述SOI结构被形成为包括辅助光学部件,以改变沿着所述光波导传播的所述光信号的性质。
33.如权利要求32所述的单体结构,其中所述SOI结构进一步包括一沿着所述光信号路径形成的聚焦反射器,以将传播的光束再次引导和聚焦成一个较小的光点尺寸,其中所述金属条被设置在所述聚焦反射器的焦点上。
34.如权利要求33所述的单体结构,其中所述金属条和相关的触点的尺寸被设置成仅仅能吸收所述传播的光信号的一部分,允许剩余的、未被吸收的信号随后沿着光信号路径传播。
35.如权利要求32所述的单体结构,其中所述SOI结构进一步包括一多载光学元件,其被布置成接近所述金属条,使得传播的信号的所述光模的至少一部分将被所述金属条吸收。
36.如权利要求32所述的单体结构,其中所述SOI结构进一步包括至少一个辅助的金属条,其形成为实质上与所述光检测器金属条相同,从而起到位于所述单体结构内的至少一个″虚拟″检测器的作用。
37.如权利要求36所述的单体结构,其中所述至少一个辅助的金属条保持屏蔽于所述光输入信号,所述相关联的虚拟检测器因此提供相关的暗电流值。
38.如权利要求1所述的单体结构,其中所述第一和第二欧姆触点都包括硅化物材料。
39.如权利要求38所述的单体结构,其中所述第一和第二硅化物欧姆触点包括与所述金属条的材料相同的硅化物材料。
40.如权利要求38所述的单体结构,其中所述第一和第二硅化物欧姆触点包括不同的的硅化物材料,该材料用于形成所述金属条。
41.如权利要求1所述的单体结构,其中所述第一欧姆触点被定位成最小化在所述触点区内的所述光信号的吸收。
42.如权利要求1所述的单体结构,其中所述第二欧姆触点被定位成最小化在所述触点区内的所述光信号的吸收。
全文摘要
通过在一光波导的一部分上设置一含金属的条(优选地,为硅化物),一种硅基红外(IR)光检测器被形成在硅绝缘体(silicon-on-insulator,SOI)结构内,其中所述光波导形成在所述SOI结构的一个平面硅表层(即,“平面SOI层”)内,所述平面SOI层的厚度小于一微米。由于所述基于SOI的结构具有相对较低的暗电流,并且能够采用相对较小的表面硅化物条收集光电流,所述光检测器可以在室温下工作。根据需要,所述平面SOI层可以掺杂,并且所述硅化物条的几何结构可以进行改进,以获得相对于现有技术的硅基光检测器改进的结果。
文档编号H01L31/0392GK1883050SQ200480033897
公开日2006年12月20日 申请日期2004年11月17日 优先权日2003年11月20日
发明者威普库马·帕特尔, 马格利特·吉龙, 普拉卡什·约托斯卡, 罗伯特·凯斯·蒙特哥莫里, 索哈姆·帕塔克, 大卫·佩德, 卡尔潘都·夏斯特里, 凯瑟琳·A·亚努舍弗斯奇 申请人:斯欧普迪克尔股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1