具有高弛豫和低堆垛层错缺陷密度的薄sgoi晶片的制作方法

文档序号:6846483阅读:207来源:国知局
专利名称:具有高弛豫和低堆垛层错缺陷密度的薄sgoi晶片的制作方法
技术领域
本发明一般涉及到绝缘体上硅锗(Si1-xGex,为简单起见而称为SiGe)(SGOI)结构,更确切地说是涉及到具有薄而高弛豫SiGe层以及低堆垛层错缺陷密度的SGOI结构的改进了的制作方法。
背景技术
在应变硅互补金属氧化物半导体(CMOS)应用中,淀积在弛豫的硅锗上的硅被张应变,并被用作N型场效应晶体管(NFET)和P型场效应晶体管(PFET)的沟道材料。在0.6%的应变下,这些NFET具有显著的迁移率提高;但为了得到PFET迁移率的显著提高,则需要1.2%以上的应变。同时,相似于绝缘体上硅(SOI)上的CMOS的发展,埋置氧化物(BOX)上的薄Si/SiGe膜对于高性能器件是非常有用的。此外,硅和硅锗材料中的堆垛层错缺陷能够引起源到漏短路,需要尽可能减少。
作为此技术当前状态的例子,美国专利申请2002/0185686描述了一种制作SGOI层的工艺,此工艺借助于在SOI的顶部生长赝外延硅锗层、将轻元素离子注入在此层下方、然后执行弛豫退火工艺,来制作SGOI层。美国专利申请2002/0168802描述了一种制作SiGe/SOI组合结构的工艺,其中,SOI的顶层被转换成SiGe,然后被退火。
制作SGOI晶片的最有前景的方法之一是热混合。在热混合中,赝硅锗膜被淀积在SOI晶片上,且高温氧化(1200-1300℃)使硅锗与下方的硅相互混合,使硅锗弛豫,同时使硅锗减薄。在此热混合过程中,锗在高温下被排挤出氧化物,故硅锗层中的锗量基本上守恒。例如,倘若初始SOI厚度大于400埃,则SOI上600埃的17%的硅锗能够被混合成400埃的25%的SGOI或1000埃的10%的SGOI。
但SGOI膜在热混合之后通常不是100%被弛豫。在上述例子中,400埃的25%的SGOI仅仅被弛豫60%,这为淀积在此衬底上的硅提供了大约0.6%的应变。为了具有1.2%的应变,若仅仅达到60%的SGOI弛豫,则要求50%的硅锗膜。与低浓度材料相比,这种高浓度的硅锗膜有许多额外的材料问题以及CMOS工艺集成问题,因而是不可取的。于是,需要一种浓度比较低但弛豫高的硅锗。

发明内容
本发明借助于提供一种具有薄而高弛豫硅锗层以及低堆垛层错缺陷密度的SGOI结构的改进了的制作方法,来论述这些问题。根据本发明,制作SGOI结构的方法以在SOI晶片上淀积硅锗层而开始。接着,本发明执行热混合工艺,使硅锗层与下方的硅层相互混合,并部分地弛豫硅锗层内的应变。通常在氧化环境下进行此热混合工艺,且氧化量可以被用来控制热混合之后的硅锗厚度。本发明然后将硅锗层减薄到所希望的最终厚度。此减薄工艺保持锗的浓度、弛豫量、以及堆垛层错缺陷密度不被改变。这样,本发明就能够得到具有高弛豫和低堆垛层错缺陷密度的薄SGOI膜。在减薄之后,进行表面整平工艺。最后,本发明在薄的SGOI晶片上淀积硅。
硅锗层的热混合工艺包含在氧化环境下将硅锗层加热到大约1200-1300℃。在这种高温氧化工艺中,锗原子从氧化物被排挤出来并聚集在氧化物下方的硅锗层中。减薄工艺非选择性地减薄硅锗层,使硅锗层中的硅和锗根据它们现有的克分子浓度而被清除。更具体地说,此减薄工艺可以是低于700℃温度下进行的高压氧化(HIPOX)工艺、低于700℃温度下进行的蒸汽氧化工艺、氯化氢腐蚀工艺、或化学机械抛光(CMP)工艺。若采用氧化减薄工艺,则利用在减薄工艺之后的整平工艺,硅锗层被基本上整平,且硅锗层具有小于15埃,优选小于10埃的表面粗糙度。
当结合下列描述和附图进行考虑时,将更好地理解本发明的这些和其它的情况和目的。但应该理解的是,下列的描述虽然指出了本发明的各种优选实施方案及其大量具体的细节,但仅仅是说明性的而非对本发明的限制。可以在本发明的范围内作出许多改变和修正而不偏离本发明的构思,本发明因而包括了所有这些修正。


参照附图,从下列详细描述中,将更好地理解本发明,在这些附图中图1示出了热混合之后SGOI中的剩余应变与硅锗厚度的关系;图2示出了SGOI弛豫百分比对锗浓度和硅锗厚度的依赖关系;图3示出了SGOI中的堆垛层错缺陷密度与硅锗厚度的关系;图4-9是示意剖面图,示出了用于本发明的各个基本加工步骤;图10是流程图,示出了本发明的一个优选方法。
具体实施例方式
参照附图所示非限制性实施方案以及下列描述中的细节,来更充分地解释本发明及其各个特征和有利细节。应该指出的是,附图所示的各个特征无须按比例绘制。众所周知的组成部分和加工技术被加以省略,以便不无谓地妨碍对本发明的理解。此处所用的例子仅仅是为了便于理解本技术领域熟练人员能够实施本发明的各种方法。因此,这些例子不应该被认为是对本发明范围的限制。
图1示出了热混合之后SGOI中的剩余应变与硅锗厚度的关系。虚线示出了实验数据,而实线示出了理论数据。图1表明位错的形成降低了硅锗膜中的应变,且此膜弛豫,直至应变能低于形成新位错所需的水平。直至硅锗厚度为500埃,理论和实验数据都拟合得很好。低于500埃时,实验数据显示出更多的剩余应变,于是弛豫小于理论所预期的。图2示出了理论预期的SGOI弛豫百分比对锗浓度和硅锗厚度的依赖关系。如先前指出的那样,当硅锗膜的厚度小于500埃时,实验数据表明比理论预期更少的弛豫。这些数据表明,对于给定的锗浓度,当硅锗膜厚度增大时,弛豫百分比增大。例如,对于20%的硅锗,理论预期200埃的硅锗膜弛豫30%,而1000埃的硅锗膜弛豫80%.
图3示出了本发明人发现的SGOI中的堆垛层错缺陷密度(与结晶结构原子错序相关的平面型缺陷)与硅锗厚度的关系。当硅锗膜厚度增大150埃时,堆垛层错缺陷密度被降低一个数量级。例如,利用本发明,SGOI的堆垛层错缺陷少于每平方厘米1×104(优选少于每平方厘米1×102)。
于是,为了得到具有高弛豫和低堆垛层错缺陷密度的SGOI,希望在热混合之后具有厚的SGOI。但如先前所述,高性能的器件要求用常规热混合难以得到的硅锗高度弛豫的薄的最终硅/硅锗膜。本发明借助于对厚的热混合硅锗层进行减薄而克服了有关SGOI结构的热混合限制。
更具体地说,如图4所示,本发明首先在SOI 102和100上淀积硅锗层104,其中102是硅层,而100是埋置氧化物(BOX)。硅锗层104可以具有均匀的锗浓度,或沿膜厚度具有锗浓度变化,例如包括硅缓冲层或帽层。
接着,如图5所示,本发明在1200-1300℃的温度范围内,于氧化环境中执行硅锗层和硅层的热混合,这使硅锗和硅相互混合,同时氧化并减薄相互混合的硅锗层,且同时部分地弛豫硅锗层内的应变。由于此热混合,部分地弛豫的硅锗层106就被直接形成在BOX的顶部上,且氧化物层108被形成在硅锗层的顶部上。在热混合过程中,可能发生某种内部氧化;结果,在热混合之后,BOX 100的厚度就可能增大。在此高温氧化工艺中,锗从氧化物被排挤出来,故硅锗层106中的锗量基本上相同于图4中的硅锗层104。
然后,如图6所示,本发明利用氢氟酸腐蚀来清除氧化物层108。此工艺的一个腐蚀剂例子是HF∶H2O=10∶1的溶液。接着,如图7所示,本发明将硅锗层106非选择性地减薄到所希望的最终厚度;此减薄的硅锗层在图7中被示为层110。这一非选择性减薄保持锗浓度、弛豫量、以及堆垛层错缺陷密度不被改变。换言之,此减薄工艺非选择性地减薄硅锗层,致使弛豫硅锗层内的硅和锗被按比例清除。于是,本发明能够得到具有高弛豫和低堆垛层错缺陷密度的薄SGOI膜。虽然本公开讨论了4种非选择性地减薄硅锗层的不同工艺,但本技术领域的一般熟练人员可以理解的是,也可以采用其它的方法。
在第一方法中,550-700℃温度范围内的HIPOX工艺被用来非选择性地氧化硅锗层106。工艺压力典型地为1-50大气压,优选为5-20大气压。蒸汽被典型地引入,以便提高氧化速率。在氧化之后,用HF腐蚀来清除氧化物。在第二方法中,550-700℃温度范围内的大气压或减压蒸汽氧化工艺被用来非选择性地氧化硅锗层106。在氧化之后,用HF腐蚀来清除氧化物。在第三方法中,外延工作室中的原位氯化氢腐蚀被用来减薄硅锗层106。在典型的外延预清洗之后和淀积应变硅之前,来完成此腐蚀。此腐蚀工艺在1-760乇的压力下,于700-900℃的温度以及50sccm-10slm的氯化氢流量下被执行。在第四方法中,化学机械抛光(CMP)被用来减薄硅锗层106。
用第一和第二方法所述的氧化方法减薄的硅锗层110典型地非常粗糙。AFM测得的RMS典型地显示出20-50埃的表面粗糙度。如图8所示,整平工艺被用来将硅锗层110的表面粗糙度降低到15埃以下,优选为10埃以下。如本技术领域熟练人员所知,除了其它的方法之外,还可以采用下列3种整平方法。
在第一方法中,修整CMP被用来将表面粗糙度降低到10埃以下。修整CMP中清除的硅锗层典型地小于200埃,优选小于100埃。
在第二方法中,应变硅淀积之前的原位氢烘焙和硅锗缓冲层被用来将硅锗表面粗糙度降低到15埃以下,优选为10埃以下。氢烘焙工艺典型地在700-900℃,优选为750-850℃的温度范围内,在1-300乇,优选为5-80乇的压力下执行30-300秒钟,优选为60-120秒钟。在550-700℃的温度下,用硅烷和锗烷作为源气体,或在700-850℃的温度下,用DCS和锗烷作为源气体,硅锗缓冲层被生长为20-500埃,优选为50-200埃。
在第三方法中,借助于在700-900℃的温度下用氯化氢、DCS、以及锗烷的混合物在氢环境中对晶片进行加热,而采用原位整平工艺。此工艺借助于执行硅锗腐蚀和淀积工艺来整平硅锗表面。
最后,如图9所示,本发明在减薄的SGOI晶片上淀积应变硅112。硅层的典型厚度为50-300埃。
图10以流程图的形式示出了本发明。更具体地说,本发明首先在SOI晶片上淀积硅锗层(300)。接着,本发明执行硅锗层和硅层的热混合(302),以便在绝缘体上形成部分地弛豫的硅锗。如上所述,对硅锗层和硅层进行热混合的工艺包含在氧化环境中将硅锗层加热到大约1200-1300℃。然后,本发明用HF腐蚀来清除SGOI上的氧化物(304)。然后进行非选择性硅锗减薄工艺,以便将硅锗厚度一直减小到所希望的厚度(306)。这保持锗浓度和弛豫量不被改变而不管硅锗层的厚度如何。在减薄工艺之后,硅锗表面被整平(308)。以这种方式,本发明能够得到具有高弛豫和低堆垛层错缺陷密度的薄的SGOI膜。最后,本发明在薄的SGOI晶片上淀积硅(310)。
工业应用可能性本发明可以被用来制造包括SGOI膜的高性能半导体器件。就利用热混合方法来形成厚SGOI以及对厚SGOI进行减薄以便得到具有高弛豫和低堆垛层错缺陷密度的薄SGOI的完整工艺而言,已经描述了本发明。但如本技术领域一般熟练人员可以理解的那样,本发明所述的硅锗减薄和整平技术能够被应用于诸如用薄膜转移技术形成的SGOI晶片之类的预形成SGOI晶片。在这种薄膜转移技术中,部分地或完全地弛豫的硅锗层被首先形成在第一晶片上,然后,利用晶片键合方法,被转移到载体晶片,且绝缘层被形成在硅锗层与载体晶片之间。
虽然就优选实施方案而言已经描述了本发明,但本技术领域的熟练人员可以理解的是,能够以所附权利要求的构思与范围内的修正来实施本发明。
权利要求
1.一种在具有低堆垛层错缺陷密度的绝缘体上硅锗(SGOI)结构上形成应变硅层的方法,此方法包括下列步骤在绝缘体(100)上提供具有非应变硅层(102)的绝缘体上硅(SOI)衬底;在所述硅层上淀积(300)第一硅锗层(104);对所述第一硅锗层与所述硅层进行热混合(302),以便将所述第一硅锗层和所述硅层转变成弛豫的硅锗层(106);对所述弛豫的硅锗层进行减薄(304,306);以及在所述弛豫的硅锗层上,淀积(310)应变的硅层(112)。
2.权利要求1的方法,其中,对所述第一硅锗层与所述硅层进行热混合的所述工艺,包括在氧化环境中将所述第一硅锗层与所述硅层加热到大约1200-1300℃。
3.权利要求1的方法,其中,所述减薄工艺非选择性地减薄所述弛豫的硅锗层(160),致使所述弛豫的硅锗层内的硅和锗按比例地被清除。
4.权利要求1的方法,其中,所述减薄工艺包括550-700℃的温度范围,1-50大气压,优选为5-20大气压的压力范围下的HIPOX氧化。
5.权利要求1的方法,其中,所述减薄工艺包括550-700℃的温度范围下的蒸汽氧化。
6.权利要求1的方法,其中,所述减薄工艺包括在外延工作室中执行的原位氯化氢腐蚀工艺。
7.权利要求1的方法,其中,所述减薄工艺包括CMP工艺。
8.权利要求1的方法,其特征在于,所述第二厚度小于1000埃。
9.权利要求1的方法,其特征在于,所述SGOI弛豫60%以上。
10.权利要求1的方法,其特征在于,所述SGOI的堆垛层错缺陷少于每平方厘米1×104。
11.权利要求1的方法,其特征在于,所述第二厚度小于500埃。
12.权利要求1的方法,其特征在于,所述SGOI弛豫80%以上。
13.权利要求1的方法,其特征在于,所述SGOI的堆垛层错缺陷少于每平方厘米1×102。
14.权利要求1的方法,其中,所述减薄工艺包括氧化工艺,且所述方法还包括对所述弛豫的硅锗层进行整平(308),以便降低所述硅锗(110)的表面粗糙度。
15.权利要求14的方法,其中,所述整平包括下列之一修整CMP;淀积所述应变硅层之前的原位氢烘焙和硅锗缓冲层生长;以及在700-900℃的温度下,利用氯化氢、DCS、以及锗烷的气体混合物,在氢环境中,对所述弛豫的硅锗层进行加热。
全文摘要
一种形成绝缘体上硅锗(SGOI)结构的方法。硅锗层(104)被淀积(300)在SOI晶片(102,100)上。执行硅锗层和硅层的热混合(302),以便形成具有高弛豫和低堆垛层错缺陷密度的厚SGOI(106)。然后将硅锗层(110)减薄(306)到所希望的最终厚度。锗浓度、弛豫量、以及堆垛层错缺陷密度不被此减薄工艺改变。从而得到具有高弛豫和低堆垛层错缺陷密度的薄的SGOI膜。然后,硅层(112)被淀积在此薄的SGOI晶片上。减薄的方法包括低温(550-700℃)HIPOX或蒸汽氧化、外延工作室中的原位氯化氢腐蚀、或CMP。用修整CMP、原位氢烘焙、以及应变硅淀积过程中的硅锗缓冲层、或利用氯化氢、DCS、以及锗烷的气体混合物在氢环境中对晶片进行加热,来整平HIPOX或蒸汽氧化减薄所引起的粗糙硅锗表面。
文档编号H01L21/762GK1906742SQ200480040518
公开日2007年1月31日 申请日期2004年1月16日 优先权日2004年1月16日
发明者陈华杰, 斯蒂芬·W.·贝戴尔, 德温得拉·K.·萨达纳, 丹·M.·莫库塔 申请人:国际商业机器公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1