用于燃料电池的重整器的制作方法

文档序号:6855872阅读:88来源:国知局
专利名称:用于燃料电池的重整器的制作方法
技术领域
本发明涉及一种用于燃料电池的重整器,更具体而言涉及一种用于燃料电池的板型重整器。
背景技术
公知燃料电池是通过氧和包含在碳氢化合物材料例如甲醇、乙醇或天然气中的氢之间的电化学反应而产生电能的发电系统。
最近已经开发出了聚合物电解液膜燃料电池(下面称为PEMFC)。PEMFC具有优异的输出特性、低的工作温度和快速启动和响应特性。因此,PEMFC具有广泛应用,包括作为汽车的移动电源、作为家用和其他建筑的分布电源和作为用于电子设备的小尺寸电源。
采用PEMFC结构的燃料电池系统包括堆体、重整器、燃料箱和燃料泵。堆体构成具有多个单元电池(发电体)的发电装置,且燃料泵将存储在燃料箱中的燃料供应到重整器。然后,重整器重整燃料以产生氢气(或富氢重整化气体)并供应该氢气到堆体。
更具体地,重整器通过采用热能的化学催化反应从燃料产生氢气。即,重整器包括用于产生热能的热源部分、用于通过采用热能从燃料产生含氢的重整化气体的重整反应部分和用于减少包含在重整化气体中的一氧化碳浓度的一氧化碳减少部分。
在常规燃料电池系统的重整器中,热源部分、重整反应部分和一氧化碳减少部分形成为容器的形状并彼此单独分布并通过管道彼此连接。因此,热不能直接在各个部分之间交换,从而导致就热传递角度而言的低效率。此外,由于各个部分是单独分布的,整个燃料电池系统不能紧密地制造。

发明内容
本发明的实施例提供了用于能在其各个部分之间直接交换热并能紧密制造整个燃料电池系统的燃料电池的板型重整器。
根据本发明的实施例,提供了一种用于燃料电池的重整器,包括至少一个具有形成在其表面上的沟槽的反应板;设置在至少一个反应板表面上的盖板;形成在至少一个反应板和盖板之间以将该至少一个反应板和盖板整体固定在一起的结合部分;和形成在沟槽外部的热处理部分,该热处理部分适合于减小该至少一个反应板与盖板之间的接触面积并用于控制供应到该至少一个反应板的热能。
在重整器中,反应板可以具有限定沟槽区域的第一部分和限定第一部分之外区域的第二部分。
在重整器中,热处理部分可以具有至少一个形成在反应板相应于第二部分的区域的至少一个边缘上的凹槽。在这种情况下,该至少一个凹槽可以包括适用于保持真空状态并通过至少一个反应板与盖板之间的结合而形成的真空空间;且该真空空间可以包括适用于将供应到至少一个反应板的热绝缘的热绝缘部分。作为选择,该至少一个凹槽可以包括适用于允许冷却媒质流动且通过至少一个反应板与盖板之间的结合而形成的冷却通道;且该冷却通道可以包括适用于冷却供应到至少一个反应板的热的冷却部分。
该至少一个凹槽可以形成在至少一个反应板的边缘以包围整个第一部分。此外,可以设置多个凹槽。
热处理部分可以包括形成在至少一个反应板相应于第二部分区域的至少一个边缘上的第一孔和形成在盖板边缘上的第二孔,相应于第一孔从而与第一孔连通。
在重整器中,结合部分可以通过钎焊(brazing)在至少一个反应板与盖板之间的一接触部分而将反应板和盖板整体固定。在这种情况下,结合部分可以由熔点低于构成至少一个反应板和盖板的材料的熔点的金属制成。
在重整器中,催化剂层可以形成在反应板的沟槽中。
根据本发明的另一实施例,提供了用于燃料电池的重整器,包括多个反应部分,通过层叠多个彼此相邻反应板而形成,每个反应板包括形成在其表面上的沟槽;设置在反应板最上面一个的表面上的盖板;形成在反应板之间和最上面一个反应板与盖板之间以将反应板与盖板整体固定的结合部分;以及热处理部分,形成在至少一个反应板中,以控制供应到反应板的热能。
在用于燃料电池的重整器中,热处理部分可以具有至少一个形成在每个反应板的至少一个边缘上的凹槽。在这种情况下,该至少一个凹槽可以包括适用于保持真空状态并通过反应板与盖板的结合而形成的真空空间;且该真空空间可以包括适用于将供应到反应部分的热绝缘的热绝缘部分。作为选择,该至少一个凹槽可以包括适用于允许冷却媒质流动并通过反应板与盖板的结合而形成的冷却通道;且该冷却通道可以包括适用于冷却供应到反应部分的热的冷却部分。
结合部分可以由钎焊金属形成。
在用于燃料电池的重整器中,催化剂层可以形成在每个反应板的沟槽中。
反应部分可以包括热源部分,具有热源部分反应板,该热源部分反应板包括形成在其沟槽中的第一催化剂层,该热源部分适用于通过燃料与氧化剂的氧化反应产生热能;和重整反应部分,具有重整反应部分反应板,该重整反应部分反应板包括形成在其沟槽中的第二催化剂层,该重整反应部分适用于通过使用热源部分产生的热能的燃料的重整反应而产生重整化气体。
在用于燃料电池的重整器中,反应部分还可以包括至少一个具有一氧化碳减少部分反应板的一氧化碳减少部分,该一氧化碳减少部分反应板包括至少一个形成在其沟槽中的第三催化剂层,该至少一个一氧化碳减少部分适用于减少包含在由重整反应部分产生的重整化气体中的一氧化碳浓度。


附图与说明书一起示出本发明的示范性实施例,并与描述一起用于解释本发明的原理。
图1是示意性地示出根据本发明实施例的燃料电池系统的整个结构的方框图;图2是示出根据本发明示范性实施例的用于燃料电池的重整器结构的分解透视图;图3是示出图2示出的重整器的耦接结构的横截面图;图4A、4B、4C、4D、4E和4F是示出根据本发明实施例的热处理部分的改进范例的反应板的平面图;图5是示出根据本发明另一示范性实施例的用于燃料电池的重整器结构的横截面图;图6是示出根据本发明又一示范性实施例的用于燃料电池的重整器结构的横截面图。
具体实施例方式
在下面的详细描述中,示出并描述了本发明的某些实施例。那些本领域的技术人员应该认识到,所描述的实施例可以在不脱离本发明的精神和范畴的下以各种形式改进。因此,附图和描述本质上应该被看作是示意性的,而不是限制性的。
图1是示意性地示出根据本发明实施例的燃料电池系统的整个结构的方框图。
参照图1,根据本发明实施例的燃料电池系统100采用这样的结构,在该结构中燃料被重整以产生含氢的重整化气体,且电能通过该重整化气体的氧化和氧化剂气体的还原而产生。
用在燃料电池系统100中的燃料可以包括含氢的液体或气体燃料,例如甲醇、乙醇、汽油、液化石油气(LPG)、液化天然气(LNG)等。然而,在下面的描述中,液体燃料作为燃料的例子(或通过举例而说明)。
燃料电池系统100可以使用存储在特定存储装置中的纯氧作为氧化剂气体,或者可以使用含氧的空气作为氧化剂气体。然而,在下面的描述中,含氧空气作为氧化剂气体的例子(或通过举例而说明)。
燃料电池系统100包括用于通过氢和氧各自的氧化和还原而产生电能的堆体10、用于重整燃料以产生含氢的重整化气体并用于供应该重整化气体到堆体10的重整器30、用于供应燃料到重整器30的燃料供应单元50、和用于供应含氧空气到堆体10和重整器30的氧供应单元70。
堆体10包括在电池单元(或单元电池)中的发电体11,并连接到重整器30和氧供应单元70,并供应有来自重整器30的重整化气体和来自氧供应单元70的含氧空气,以通过氢和氧各自的氧化和还原而产生电能。
每个发电体11是燃料电池的单元电池,并包括设置在常规膜电极组件(MEA)12的两表面上的分隔件16(也称作双极板)。
因此,堆体10可以通过堆叠彼此相邻的发电体11以形成一组发电体11。图1的堆体10的结构基本上与常规聚合物电解液膜燃料电池系统相同,且将省略其详细描述。
在本实施例中,重整器30具有用于通过燃料与空气的氧化反应而产生热能的结构;用于通过采用热能的催化剂反应例如蒸汽重整反应、部分氧化、和/或自动热反应而产生含氢的重整化气体的结构;和用于通过包含在重整化气体中的一氧化碳的水煤气转换(water-gas shift,WGS)反应和/或优先CO氧化反应而减少一氧化碳浓度的结构。下面将参照图2和3详细描述重整器30的结构。
用于供应燃料到重整器30的燃料供应单元50包括用于存储燃料的燃料箱51和用于泵浦存储在燃料箱51中的燃料的燃料泵53。
氧供应单元70包括空气泵71,用于以预定泵浦功率泵浦空气并用于供应泵浦的空气到堆体10的发电体11和重整器30。在本实施例中,氧供应单元70具有用于如图1所示通过使用单一空气泵71而供应空气到堆体10和重整器30的结构。然而,本发明不限于图1所示的结构,而可以设置一对分别连接到堆体10和重整器30的空气泵。
参照图2和3详细描述了根据本发明实施例的重整器30的结构。
图2是示出根据本发明实施例的用于燃料电池的重整器30的结构的分解透视图,且图3是示出图2所示的重整器30的连接结构的截面图。
参照图2和3,根据本实施例的重整器30具有反应部分31、32、33和/或34,其能通过燃料和空气的氧化反应而产生热能、通过使用热能的重整反应而产生含氢的重整化气体、以及减少包含在重整化气体中的一氧化碳浓度。
具体地,反应部分31、32、33和34可以包括用于通过燃料和空气的氧化而产生热能的热源部分、用于通过使用热能的燃料的重整反应而产生含氢的重整化气体的重整反应部分32、通过重整化气体的水煤气转换(WGS)反应而初步减少包含在重整化气体中的一氧化碳浓度的第一一氧化碳减少部分33、和通过重整化气体的优先CO氧化(PROX)反应第二次减少包含在重整化气体中的一氧化碳浓度的第二一氧化碳减少部分34。此处,根据本实施例的重整器30可以通过堆叠彼此相邻的反应部分31、32、33和/或34而形成。
在本实施例中,每个反应部分31、32、33和34具有其表面形成有相应的沟槽31c、32c、33c或34c的相应反应板31a、32a、33a或34a。此外,盖板40设置在每个反应板31a、32a、33a和34a的表面上。
每个反应板31a、32a、33a和34a具有矩形板形状、具有预定宽度和预定长度、并由例如铝、不锈钢、铜、镍和/或铁制成。而且,每个反应板31a、32a、33a和34a具有限定相应沟槽31c、32c、33c或34c的第一部分A;和第二部分B(或第一部分A以外的部分)。
每个盖板40是用于覆盖相应反应板31a、32a、33a或34a表面的板,并由与相应反应板31a、32a、33a或34a相同的金属制成。
用于将每个反应板31a、32a、33a和34a与相应盖板40固定的结合部分60形成在每个反应板31a、32a、33a和34a与相应盖板40之间。下面将更详细地描述结合部分60。
在本实施例中,热源部分31是用于产生重整燃料所需的预定温度范围的热能的热发射反应部分,并用于通过使用催化剂的燃料与空气的氧化反应而燃烧燃料和空气。
热源部分31包括其中形成有用于燃料和空气流动的第一沟槽31c的板形第一反应板31a。用于加速燃料与空气的氧化的氧化催化剂层31e形成在第一沟槽31c的表面上。第一沟槽31c可以形成在从板体31b的上表面突出的脊31h之间的空间中以彼此分隔。通过在板体31b上以彼此之间预定间隔设置直线形的流动沟槽,或通过连接所述流动沟槽的末端使得流动沟槽限定弯曲的流动通路而形成第一沟槽31c。下面将描述的第二、第三和第四沟槽32c、33c和34c每个都可以具有与第一沟槽31c基本相同的形状。
在盖板40设置在第一反应板31a的上表面上的情况下,用于允许燃料和空气流动的第一通道31d可以由盖板40的覆盖表面和第一沟槽31c而形成。
因此,当燃料和空气供应到第一通道31d时,根据本实施例的热源部分31通过使用氧化剂层31e由燃料与空气的氧化反应而产生预定温度范围的热能。
重整反应部分32吸收从热源部分31产生的热能并通过由燃料供应单元50所供应的燃料的重整反应而产生含氢的重整化气体。
重整反应部分32包括其中形成有用于允许燃料流动的第二沟槽32c的板形第二反应板32a。而且,用于加速燃料的重整反应的重整催化剂层32e形成在第二沟槽32c的表面上。
在盖板40设置在第二反应板32a的上表面上的情况下,用于允许燃料流动的第二通道32d可以由盖板40的覆盖表面和第二沟槽32c而形成。
因此,当燃料在从热源部分31吸收了预定温度范围的热能的情况下供应到第二通道32d时,根据本实施例的重整反应部分32通过使用重整催化剂层32e的燃料由重整反应而产生含氢的重整化气体。
第一一氧化碳减少部分33在预定温度范围内通过包含在重整化气体中的一氧化碳的水煤气转换反应浓缩从重整反应部分32供应的重整化气体以减少一氧化碳的浓度。
第一一氧化碳减少部分33包括其中形成有用于允许重整化气体流动的第三沟槽33c的板形第三反应板33a。而且,用于加速一氧化碳的水煤气转换反应的水煤气转换催化剂层33e形成在第三沟槽33c的表面上。
在盖板40设置在第三反应板33a上表面上的情况下,用于允许重整化气体流动的第三通道33d可以由盖板40的覆盖表面和第三沟槽33c而形成。
因此,当燃料在从重整反应部分32产生的重整化气体供应到第三通道33d的情况下供应到第二通道32d时,根据本实施例的第一一氧化碳减少部分33通过使用水煤气转换催化剂层33e由一氧化碳的水煤气转换反应而浓缩氢,以初步减少一氧化碳浓度。
然后,第二一氧化碳减少部分34供应有来自第一一氧化碳减小部分33的、其中一氧化碳的浓度已经被初步减少了的重整化气体和来自氧供应单元70的空气,并产生热,以通过包含在重整化气体中的一氧化碳与包含在空气中的氧的优先CO氧化反应而第二次减少包含在重整化气体中的一氧化碳浓度。
第二一氧化碳减少部分34包括其中形成有用于允许重整化气体和空气流动的第四沟槽34c的板形第四反应板34a。而且,用于加速一氧化碳的优选CO氧化反应的优选CO氧化催化剂层34e形成在第四沟槽34c的表面上。
在盖板40设置在第四反应板34a上表面上的情况下,用于允许重整化气体和空气流动的第四通道34d可以由盖板40的顶表面和第四沟槽34c而形成。
因此,当空气和其中一氧化碳浓度已经被第一一氧化碳减少部分33初步减少的重整化气体供应到第四通道34d时,根据本实施例的第二一氧化碳减少部分34产生热以采用优先CO氧化催化层34e通过包含在重整化气体中的一氧化碳与包含在空气中的氧的优先CO氧化而第二次减少一氧化碳浓度。
在具有上述结构的反应部分31、32、33和34中,将反应板31a、32a、33a和34a与盖板40彼此整体固定的结合部分60设置在其间。
结合部分60可以形成在反应板31a、32a、33a和34a与盖板40之间的接触部分中。在反应板31a、32a、33a和34a与盖板40之间的接触部分包括其中未形成沟槽31c、32c、33c和34c的反应板31a、32a、33a和34a的部分的,以及与反应板31a、32a、33a和34a接触的盖板40的部分。
在本实施例中,结合部分60可以通过熔化金属而形成。即,每个结合部分60可以通过钎焊具有相应于沟槽31c、32c、33c或34c的开口81的金属膜80而形成。
因此,在本发明的一个实施例中,用于形成结合部分60的金属膜80具有比形成反应板31a、32a、33a和34a及盖板40的材料低的熔点。因此,当通过加热金属膜80而形成每个结合部分60时,反应板31a、32a、33a和34a及盖板40可以彼此紧密固定,而不变形反应板31a、32a、33a和34a及盖板40。
结合部分60可以由选自铜、不锈钢、铝、镍、铁及包含相应金属的合金的材料制成。此处,当结合部分60由包含反应板31a、32a、33a和34a及盖板40的材料的合金制成时,可能防止由于不同类型金属之间不同特性(例如热特性)而导致的裂纹。
在本实施例中,反应板31a、32a、33a和34a及盖板40可以通过由金属制成的结合部分60而稳固地彼此固定。
在根据本实施例的重整器30中,由于结合部分60通过在反应板31a、32a、33a和34a与盖板40之间设置金属膜80(见图2)然后钎焊该金属膜80而形成,重整器30的制造工艺得到简化,因此提高了生产率。此外,由于结合部分60的使用,可能提高反应板31a、32a、33a和34a与相应盖板40之间的气密性。
在具有上述结构的重整器30中,根据本发明的热处理部分110设置在每个反应板31a、32a、33a和34a的沟槽的外部。热处理部分110用作用于调节从反应板31a、32a、33a和34a供应的热能的热绝缘部分或冷却部分,同时减少反应板31a、32a、33a和34a与相应盖板40之间的接触面积。
在本实施例中,热处理部分110通过反应板31a、32a、33a和34a与相应盖板40之间的结合而形成为形成在沟槽31c、32c、33c和34c外部的预定内部空间,其中每个内部空间可以形成为形成在每个反应板31a、32a、33a和34a的第二部分B中的凹槽111。
凹槽111在每个反应板31a、32a、33a和34a的相应第二部分B的至少一个边缘形成为沟槽形。在本实施例中,如图2和3所示,凹槽111沿每个反应板31a、32a、33a和34a的一个边缘纵向形成。
具体地,凹槽111可以通过反应板31a、32a、33a和34a与盖板40的钎焊和结合而形成为预定内部空间。该内部空间可以用作热绝缘部分115,用于绝缘供应到第一、第二和第三反应板31a、32a、33a和34a的热同时仍保持真空。此外,内部空间之一可以形成为用于允许冷却媒质流动的冷却通道,并可以用作用于冷却从第四反应板34a供应的热的冷却部分117。
在本实施例中,热绝缘部分115可以形成在真空空间中,该真空空间用于通过形成在每个第一、第二和第三反应板31a、32a和33a的第二部分B中的凹槽111来保持真空,同时第一、第二和第三反应板31a、32a和33a及盖板40被钎焊并结合在真空室中。即,热绝缘部分115形成为热源部分31、重整反应部分32和第一一氧化碳减少部分33的真空空间,因此使用该真空空间绝缘供应到热反应部分31、32和33的热能。因此,由于热绝缘部分115的使用,每个反应部分31、32和33可以保持其特定工作温度范围。
在本实施例中,冷却部分117可以形成为用于允许冷却媒质通过形成在第四反应板34a的第二部分B中的沟槽111而流动的冷却通道,同时第四反应板34a和盖板40被钎焊并结合。即,冷却部分117形成为用于第二一氧化碳减少部分34的冷却通道,因此通过一氧化碳和空气的优先氧化反应冷却从第二一氧化碳减少部分34产生的热。因此,由于冷却部分117的使用,第二一氧化碳减少部分34可以维持其特定工作温度范围。
图4A到4F是示出根据本发明实施例的热处理部分110的改进范例的反应板31a、32a、33a或34a的平面图。
图4A是根据本实施例的热处理部分的第一改进范例。在这种情况下,可以通过在每个反应板31a、32a、33a和34a的第二部分B中彼此垂直的边缘中形成为沟槽形的凹槽111来构造热处理部分110(见图3)。
图4B是根据本实施例的热处理部分的第二改进范例。在这种情况下,可以通过在每个反应板31a、32a、33a和34a的第二部分B中彼此平行的一对边缘中形成为沟槽形的凹槽111a来构造热处理部分110(见图3)。
图4C是根据本实施例的热处理部分的第三改进范例。在这种情况下,可以由在每个反应板31a、32a、33a和34a的第二部分B中除了一个边缘以外的所有边缘中形成为沟槽形的凹槽111b来构造热处理部分110(见图3)。
图4D是根据本实施例的热处理部分的第四改进范例。在这种情况下,可以由在每个反应板31a、32a、33a和34a的第二部分B中的整个边缘形成为沟槽形以围绕每个反应板31a、32a、33a和34a的第一部分A的凹槽111c来构造热处理部分110(见图3)。
图4E是根据本实施例的热处理部分的第五改进范例。在这种情况下,可以通过内部和外部凹槽111d(或通过两重设置图4D的第四改进范例的凹槽111c)来构造热处理部分110(见图3)。即在图4E中示出的每个内部和外部凹槽111d基本上与图4D的第四改进范例的凹槽111c的结构相同。然而,本发明的第五改进范例的结构不限于图4D的改进范例的结构,且可以通过在每个反应板31a、32a、33a和34a的第二部分B中两重设置如上述任意改进范例中的凹槽来构造热处理部分110。
图4F是根据本实施例的热处理部分的第六改进范例。在这种情况下,可以通过多个沿每个反应板31a、32a、33a和34a的第二部分B中的边缘连续设置的彼此之间具有预定间距的凹槽(或多个圆形凹槽)111来构造热处理部分110(见图3)。
图5是示出根据本发明另一示范性实施例的用于燃料电池的重整器130的结构的截面图。
参照图5,根据本实施例的重整器130包括热处理部分120,所述热处理部分120具有多个形成在第二一氧化碳减少部分134的第四反应板134a边缘中的第一孔121a和多个形成在盖板140的边缘中的第二孔121b。多个第二孔121b对应于第一孔121a以与第一孔121a连通。
由于热处理部分120形成在第二一氧化碳减少部分134中,它可以用作用于允许冷却剂通过第一孔121a和第二孔121b流动的冷却通道。
根据本实施例的重整器130的其他结构和操作基本上与本发明的上述实施例相同,这样将不提供其详细描述。
图6是示出根据本发明又一示范性实施例的用于燃料电池的重整器230的结构的横截面图。
参照图6,根据本实施例的重整器230具有这样的结构,其中基本上与上述实施例中的反应部分31、32、33、和34(或134)相同的反应部分231、232、233和234彼此靠近堆叠。
重整器230可以通过在热源部分231上(或上方)依次堆叠重整反应部分232和第一一氧化碳减少部分223然后在热源部分231下面堆叠第二一氧化碳减少部分234而构造。
具体地,根据本实施例的重整器230可以通过在第一反应板231a的上表面上依次堆叠第二反应板232a、第三反应板233a和盖板240然后在第一反应板231a的下表面上堆叠第四反应板234a而构造。
将反应板231a、232a、233a和234a与盖板240彼此整体固定的结合部分260形成在其间。用于调节供应到每个反应板231a、232a、233a和234a的热能的热处理部分210形成在每个反应板231、232、233和234中。
在图6中,由于结合部分260和热处理部分210具有与上述实施例中的结合部分60和热处理部分210基本相同的结构,将不为本实施例提供其详细描述。
根据上述本发明,由于重整器具有形成为板形的简单结构,可能紧密地实现燃料电池系统的整个结构。
此外,根据本发明,由于重整器通过堆叠多个反应板与调节供应到反应部分的热能的热处理部分而形成,重整器的热效率和反应效率提高了。
虽然结合某些示范性实施例描述了本发明,本领域的技术人员应该理解,本发明不限于所公开的实施例,而是相反,本发明旨在覆盖包括在所附权利要求及其等同物精神和范畴内的各种改进。
权利要求
1.一种用于燃料电池的重整器,包括至少一个反应板,具有形成在其表面中的沟槽;盖板,设置在所述至少一个反应板的表面上;结合部分,形成在所述至少一个反应板与盖板之间,以将所述至少一个反应板与盖板彼此整体固定;和热处理部分,形成在所述沟槽外部,所述热处理部分适用于减少所述至少一个反应板与盖板之间的接触面积,并用于控制供应到所述至少一个反应板的热能。
2.如权利要求1所述的重整器,其中,所述反应板具有界定所述沟槽的区域的第一部分和界定所述第一部分以外区域的第二部分。
3.如权利要求2所述的重整器,其中,所述热处理部分具有至少一个形成在所述反应板相应于所述第二部分区域的至少一个边缘上的凹槽。
4.如权利要求3所述的重整器,其中,所述至少一个凹槽包括用于保持真空状态并通过通过至少一个反应板与盖板之间的结合而形成的真空空间。
5.如权利要求3所述的重整器,其中,所述至少一个凹槽包括适用于允许冷却媒质流动并通过所述至少一个反应板与盖板之间的结合而形成的冷却通道。
6.如权利要求3所述的重整器,其中,所述至少一个凹槽形成在所述至少一个反应板的多个边缘上以围绕整个所述第一部分。
7.如权利要求6所述的重整器,其中,设置有多个凹槽。
8.如权利要求2所述的重整器,其中,所述热处理部分包括形成在所述至少一个反应板相应于所述第二部分的区域的至少一个边缘上的第一孔和形成在盖板相应于第一孔的边缘上的第二孔以与第一孔连通。
9.如权利要求1所述的重整器,其中,所述结合部分熔化在位于所述至少一个反应板与盖板之间的接触部分中,以将所述至少一个反应板与盖板结合。
10.如权利要求9所述的重整器,其中,所述结合部分由具有比构成所述至少一个反应板和盖板的材料的熔点低的熔点的金属制成。
11.如权利要求10所述的重整器,其中,所述结合部分通过钎焊材料来形成。
12.如权利要求1所述的重整器,其中,催化剂层形成在所述至少一个反应板的沟槽中。
13.一种用于燃料电池的重整器,包括多个反应部分,通过堆叠多个相邻的反应板而形成,每个反应板包括形成在其表面中的沟槽;盖板,设置在所述反应板最上面一个的表面上;结合部分,形成在所述反应板之间及所述反应板的最上一个与盖板之间,以将所述反应板与盖板彼此整体固定;和热处理部分,形成在至少一个反应板中以控制供应到所述反应板的热能。
14.如权利要求13所述的重整器,其中,所述热处理部分具有至少一个形成在每个所述反应板的至少一个边缘上的凹槽。
15.如权利要求14所述的重整器,其中,所述至少一个凹槽包括适用于保持真空状态并通过所述反应板与盖板之间的结合而形成的真空空间,且其中,所述真空空间包括适用于绝缘供应到反应部分的热的热绝缘部分。
16.如权利要求14所述的重整器,其中,所述至少一个凹槽包括适用于允许冷却媒质流动并通过所述反应板与盖板之间的结合而形成的冷却通道,且其中,所述冷却通道包括适用于冷却供应到所述反应部分的热的冷却部分。
17.如权利要求13所述的重整器,其中,所述结合部分通过钎焊金属来形成。
18.如权利要求13所述的重整器,其中,催化剂层形成在每个所述反应板的沟槽中。
19.如权利要求18所述的重整器,其中,所述反应部分包括热源部分,包括具有形成在其沟槽中的第一催化剂层的热源部分反应板,通过热源部分适用于通过燃料与氧化剂的氧化反应而产生热能;和重整反应部分,包括具有形成在其沟槽中的第二催化剂层的重整反应部分反应板,所述重整反应部分适用于通过使用由所述热源部分产生的热能的燃料的重整反应而从燃料产生重整化气体。
20.如权利要求19所述的重整器,其中,所述反应部分还包括至少一个一氧化碳减少部分,其包括具有至少一个形成在其沟槽中的第三催化剂层的一氧化碳减少部分反应板,所述至少一个一氧化碳减少部分适用于减少包含在由所述重整反应部分所产生的重整化气体中的一氧化碳的浓度。
21.一种用于燃料电池的重整器,包括多个反应板,彼此靠近堆叠,每个所述反应板包括形成在其表面中的沟槽;盖板;结合部分,形成在至少一个反应板和盖板之间,以将所述至少一个反应板与盖板彼此整体固定;和热处理部分,形成在所述至少一个反应板中,以控制供应到所述至少一个反应板的热能。
22.如权利要求21所述的重整器,还包括第二结合部分,形成在至少两个其他反应板之间以将所述至少两个其他反应板彼此整体固定;和第二和第三热处理部分,分别形成在所述至少两个其他反应板中,以控制供应到所述至少两个其他反应板的热能。
23.如权利要求21所述的重整器,其中,所述第二热处理部分包括适用于绝缘供应到所述至少两个其他反应部分之一的热的真空凹槽,且其中,所述第三热处理部分包括适用于允许冷却媒质流动以冷却供应到所述至少两个其他反应部分的另一个的热的冷却凹槽。
全文摘要
本发明公开了一种用于燃料电池的重整器,其包括至少一个在其表面中形成有沟槽的反应板;设置在该反应板表面上的盖板;形成在该反应板与盖板之间并将该反应板与盖板彼此整体固定的结合部分;热处理部分,形成在沟槽外部并减少反应板与盖板之间的接触面积,并控制供应到反应板的热能。
文档编号H01M8/02GK1767244SQ20051011842
公开日2006年5月3日 申请日期2005年10月28日 优先权日2004年10月28日
发明者朴真, 金周龙, 徐东明, 孙寅赫, 李东旭, 赵殷淑 申请人:三星Sdi株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1