功率模块、相脚和三相变换器的制作方法

文档序号:6856798阅读:102来源:国知局
专利名称:功率模块、相脚和三相变换器的制作方法
技术领域
本发明一般涉及功率模块,更具体地,涉及用于高功率电子应用的低电感功率模块。
背景技术
现代的功率半导体器件开关,例如硅绝缘栅双极型晶体管(IGBT),能够以比早期的设计高很多的频率进行开关。它们较低的开关损耗能够进行需要高频率功率转换的新应用。然而,这些较快的开关转换所固有的问题是与常规封装工艺的高寄生电感相关。更具体地,当切断功率器件时发生的过冲电压正比于寄生电感与在开关期间IGBT电流的斜率的乘积。由于新的IGBT较快的开关转换,对于新一代的功率器件来说,降低寄生电感更加关键,以避免当切断器件时过多的过冲电压。例如,在具有50nH寄生电感的500V DC总线上工作和5A/ns的相对高的开关转换的转换器引起50%的过冲电压。
在图11中示出了具有螺旋式电源端子的常规功率模块。常规功率模块的寄生电感接近20nH且常规设计的相脚电感一般超过50nH。通过由引线接合提供的剩余物和衬底上的布局,该螺旋式功率模块端子引线提供很大一部分寄生电感。除了它们的高寄生电感之外,非对称布局导致在功率器件之间很少的电流分配。因此,使用具有新一代快速IGBT器件的常规功率模块将引起不希望的明显较高的电应力。
之前已经有尝试设计低电感功率模块。例如,2002年9月2日IEEE,Proceedings of the 14thInternational Symposium on PowerSemiconductor Devices and ICs的、Mourick等人。的“750A,75VMOSFETPower Module with Sub-nH Inductance”,描述了一种以能够与功率器件三维交叉的多个导电网为特征的低电感多芯片互连。在每个开关转换期间,由通过功率器件的电流和在导电网中的电流产生相对的磁场。该相对的磁场可以抵消掉对于互连产生的2nH的寄生电感。然而,Mourick等人没能够提出在模块和转换器级的低寄生电感互连的设计。该设计的其它缺点包括由于增加了导电网而增加了成本,以及该模块组件的整体复杂性。
Arai等人的、名称为“具有低浮动电感的半导体器件”的美国专利No.5,424,579,提出了功率模块的器件和衬底布图。然而,Arai等人以一对保持模块的高电感的常规功率端子为特征。另外,该布图不是对称的,其引起在并行的功率器件芯片之间的动态和静态电流的问题。
Bayerer等人的、名称为“低电感功率半导体模块”的美国专利No5,574、312,含糊地描述了建立在液体冷却散热片的两侧上的低电感双功率模块,且存在着使其不可实现该设计的几个方面。例如,Bayerer等人的图2表示相脚的不对称布图,其在下面可能安装有集电极/漏极/阴极的散热片的一侧上具有器件,且在下面倒装有发射极/源极/阳极的另一侧上具有器件。另外,功率器件至双面散热片的焊接几乎不可实现且可能需要使用具有不同熔化温度的多个焊料。而且,该模块使用中点的电源端子以从散热片的一侧至另一侧连接器件。该连接总是引起高的寄生电感,增加总的相脚电感。
因此希望开发一种用在封装功率器件中的低电感功率模块。还希望开发低电感相脚模块和具有低寄生电感的模块化的三相变换器。还希望降低对与电源端子引线相关的寄生电感的贡献和在并行功率器件之间提供静态和动态电流分配。

发明内容
简要地,根据本发明的一个实施例,描述了一种功率模块。该功率模块包括至少一个衬底,该衬底包括上层、电绝缘体和热耦合层。该上层包括至少一个导电图案且被构成为接收至少一个功率器件。该电绝缘体设置在上层和热耦合层之间。该热耦合层被构成为至散热片的热导体。该功率模块还包括至少一个薄层互连,该薄层互连包括第一导电层、绝缘层和第二导电层。该绝缘层设置在第一和第二导电层之间,且该薄层互连的第一导电层电连接到衬底的上层。电连接将至少一个功率器件的顶面连接到薄层互连的第二导电层。
根据本发明的另一个实施例,描述了一种模块组件。该模块组件包括多个功率模块、多个被构成为接收每一个功率模块的薄层互连的容器、以及底板。该底板包括正直流电(DC)功率总线层,输出层,和负DC功率总线层。该容器安装在底板上。
根据本发明的另一个实施例,描述了模块的相脚组件。该模块的相脚组件包括了两个功率模块,每一个功率模块包括散热片,连接到散热片的衬底,至少一个开关,其包括至少一个晶体管和至少一个反并行二极管并且被安装在衬底的上层的导电图案上。每一个功率模块还包括封装衬底和至少一个开关的外壳,和薄层互连。薄层互连的第一导电层电连接衬底的上层。电连接将至少一个反并行二极管的阳极连接到薄层互连的第二导电层。
根据本发明的另一个实施例,描述了模块的相脚组件。该模块的三相变换器组件包括了六个功率模块,多个用于接收各个功率模块的薄层互连的容器,和底板。该容器安装在底板上。功率模块被布置成三对,每一对对应于一个相脚。


当参考附图阅读以下的详细描述时,本发明的这些和其它特征、方面和优点将更好理解,附图中,贯穿附图的相同符号表示相同部件,其中图1说明使用引线接合的本发明的单刀开关功率模块实施例;图2说明使用功率堆焊的本发明的另一个单刀开关功率模块实施例;图3是图1或图2的单刀开关功率模块的侧视图,并示意性地说明用于功率模块的示范性散热片;图4示出两种类型的边缘卡连接器和容器结构;图5是包括连接到各自的容器的两个示范性边缘卡连接器的相脚组件的截面图,其中容器安装到底板上;图6说明本发明的相脚实施例,为了清楚起见,移除了外壳,暴露出多个安装在衬底上的功率器件;图7示出在适当位置具有外壳的图6的相脚;图8是具有两个单刀开关模块和一个安装在底板的背面上的低电感电容器的图5的相脚组件的透视图;图9说明本发明的全桥实施例,其中几个功率模块共用一个散热片;
图10示出使用图5中示出的三个相脚而形成的模块化的三相位功率转换器组件;图11说明常规功率模块;图12是示范性功率模块的等效电路图,且示出不希望的寄生电感的位置;图13是示范性相脚组件的等效电路图,且示出了不希望的寄生电感的位置;图14是三级相脚组件的等效电路图,其中示意性的结构不包括寄生元件;和图15是本发明的开关磁阻电动机(SRM)实施例的等效电路图。
具体实施例方式
参考图1和3描述本发明的单刀开关功率模块10的实施例。本领域技术人员将认识到,尽管将功率模块10描述为单刀开关结构,但是功率模块10同样可应用于其它结构。如图所示,例如,在图1中,功率模块10包括具有包括至少一个导电图案17的上层16的衬底12,且该上层16被构成为接收至少一个功率器件14。在图1中说明了一个示范性的导电图案17。如图3所示,衬底12还包括电绝缘体26和热耦合层28。电绝缘体26设置在上层16和热耦合层28之间。热耦合层28构成为热耦合至散热片30。功率模块10还包括薄层互连(laminar interconnect)18,其包括第一导电层20、绝缘层22和第二导电层24,例如图1所示。绝缘层22设置在第一和第二导电层20、24之间。薄层互连18的第一导电层20电连接到衬底12的上层16。例如图1所示,电连接42将功率器件14的顶面19连接到薄层互连18的第二导电层24。对于图1的示范性实施例,该电连接是引线接合42。有利地,通过使用薄层互连和以这种方式连接衬底和薄层互连,减少了互连对总的寄生电感的贡献。
如这里所使用的,短语“上层16”包括形成导电图案17并设置在相同平面内的多个连接和/或不连接的导电区域。上层16是导电的。
如这里所使用的,短语“电连接到”包括通过引线、焊接、功率堆焊、结合或其它的电连接方式连接两个元件。根据具体实施例,将衬底12的上层16焊接到薄层互连18的第一导电层20。通过将上层16连接到第一导电层20,所有功率器件14的底面(未示出),例如IGBT集电极(或MOSFET漏极)和二极管阴极被互相连接。
根据更具体的实施例,衬底12由直接接合的铜(DBC)或活泼金属铜焊(AMB)结构形成。DBC和AMB都涉及到用于直接将铜层接合到陶瓷衬底的处理。示范性的DBC或者AMB衬底由铜-陶瓷-铜层形成。DBC和AMB提供用于衬底12的常规结构,且在电绝缘体26的两侧上使用相同的导电材料(这种情况下,是铜)提供了热和机械稳定性。
根据更具体的实施例,电绝缘体26是导热的。示范性的电绝缘体包括氧化铝(Al2O3)、氮化铝(AlN)、氧化铍(BeO)和氮化硅(Si3N4),其都是热导体。
示范性的绝缘层22包括FR4、Kapton、其它的绝缘聚合物和其它的绝缘材料。根据具体实施例(未示出),绝缘层22通过蔓延一段距离而延伸超过第一和第二导电层20、24,以避免在薄层互连18的边缘电击穿。如本领域技术人员所熟知的,用于确定蔓延距离的一般规格是100mil每千伏,其中mil是每英寸的千分之一。示范性的导电层由铜形成。金结合的铜也可用于降低氧化。
冷却是关于功率电子器件的设计。很多冷却技术可用于功率模块10,包括平面冷却技术,其例子包括液体冷却、微通道冷却和常规散热片。对于图3的示范性实施例,热耦合层28构成为耦合到基板30。例如,热耦合层28焊接或接合到基板30。特别是,DBC或AMB衬底12可使用多种技术中任何一种来接合到基板30,包括铜焊、接合、扩散接合、焊接或压力接点例如压紧(clamping)。这提供简单的组装过程。对于图3的示范性实施例,功率模块10包括散热片30,其包括基板30。如所示出的,衬底12附着到基板30。如在共同悬而未决的专利申请“Heatsink with microchannel cooling for power devices”中讨论和说明的用于微通道冷却实施例,散热片30包括多个微通道(在该申请中未示出)。在一个实施例中,在设置在绝缘体26和基板30之间的导电(例如,铜)层28中形成微通道。在另一个实施例中,微通道形成于设置在上层16和任选导电层或基板30中的一个之间的陶瓷绝缘体26中。有利地,散热片30将热量从功率器件14导出,以调节高功率密度。
对于图1的示范性实施例,功率模块10还包括安装在衬底12上的多个功率器件14,该功率器件电连接到衬底12的上层16。示范性的功率器件包括晶体管,例如绝缘栅双极型晶体管(IGBT),金属氧化物半导体场效应晶体管(MOSFET)、金属半导体场效应晶体管(MESFET)和高电子迁移率晶体管(HEMT)以及二极管。本领域技术人员将认识到这些是功率器件的例子且本发明绝不受限于这些例子。如上面注意到的,电子连接42、43将功率器件14的顶面19连接到薄层互连18的第二电性导电层24。例如,功率器件14可以通过焊料层15安装到衬底12上,如图3中说明的。通过将功率器件14的顶面连接到薄层互连18的第二导电层24,IGBT发射极(或是MOSFET源极)和二极管的阳极是互连的。另外,通过将功率器件14的顶面连接到薄层互连18的第二导电层24,降低了寄生电感。对于图1的示范性实施例来讲,电连接是引线接合42。示范性的引线接合包括10-15mil铝引线接合。带状连接是电连接的另一种类型。图2说明了电连接包括至少一个功率堆焊43的电连接的另一个实施例,其堆焊功率器件14的顶面(在图2中未示出)。功率堆焊在Ozmat等人的、名称为“功率电子模块封装”的共同转让的美国专利No.6,377,461中进行了描述,这里通过参考将该专利其整体并入文本。功率堆焊一般包括至少一个导电的和绝缘的层,以及多个通孔(金属插塞)。示范性的绝缘层由Kapton形成。有利地,功率堆焊比引线接合更坚固,且相对于引线接合减小了寄生电阻和电感。
根据具体实施例,电子连接17和42或43对于静态(稳定状态)和动态(瞬态)电流分配是对称的。通过对称,意味着在功率器件14和第一和第二导电层20和24之间的各自的电子连接的总长度基本上相同。相反,常规功率模块设计提供在功率器件和功率端子之间长度可变的电流通路。因此,具有较短电流通路的器件比具有较长电流通路的那些功率器件承受更大的应力。然而,图1和图2的对称设置在并行的功率器件14之间提供了良好的静态和动态电流分配。
对于图6中示出的相脚实施例,功率器件14包括形成至少一个开关34的至少一个晶体管36和/或至少一个反并行二极管(anti-paralleldiode)38。根据具体实施例,开关34是400A开关且包括四(4)个晶体管和四(4)个反并行二极管。该结构不过是示范性的,且开关34可以具有其它的电流额定值和相对应的其它的晶体管/反并行二极管结构,其取决于对于开关34的希望的应用。开关34安装在导电图案17上,如图6中表示的。在图6中示出了如引线接合42的电连接,且将二极管38的阳极连接到薄层互连18的第二导电层24。该电连接也可采用带状接合或这一个或多个功率堆焊43的形式,如上面参考图2所讨论的。
示范性的晶体管包括绝缘栅双极型晶体管(IGBT),其具有发射极和集电极以及具有源极和漏极的MOSFET。对于IGBT来讲,在图6中示出的如引线接合42的电连接将IGBT的发射极连接到各自的反并行二极管38的阳极。对于MOSFET来讲,通过内部反并行体二极管,电连接将MOSFET的源极连接至第二导电层24。在某些设计中,希望使用具有外部高性能二极管的MOSFET,例如肖特基二极管。在这种设计中,电连接将MOSFET的源极连接至各自的反并行二极管的阳极。I GBT的好处包括其低传导损耗特性,而MOSFET特征的加快了开关速度。根据具体实施例,功率模块10包括多个晶体管36,其具有至少一个MOSFET晶体管和至少另一个IGBT晶体管。更通常地,功率模块10包括至少两个不同类型的晶体管36。类似地,对于另一实施例来讲,功率模块10包括至少两种类型的二极管38。例如,功率模块10包括多个反并行二极管,其具有至少一个为双极型二极管的二极管和至少另一个为肖特基二极管的二极管。
根据具体实施例,开关34包括至少两个晶体管36和至少两个反并行二极管38。例如,对于图6的相脚实施例来讲,开关34具有四个晶体管36和四个反并行二极管38,且构成为400A开关。如上面参考图1所讨论的,衬底12的上层16包括导电图案17,且开关34设置在图案17上。开关34还包括形成在图案17上的栅极和回路引线(return lead)63。图6中示出的如栅极引线接合64的电连接将每个晶体管36对称地连接至栅极引线63,其还提高了在功率器件14之间的静态和动态电流分配。
对于图1和2的实施例来讲,薄层互连18是构成为连接至安装在底板46上的容器44的边缘卡连接器18。示范性的容器在图4中示出,而图5示出了安装在底板46上的两个容器44。容器44具有用于与边缘卡连接器18接触的内部接触表面54,和用于与底板46接触的外部接触表面56。该接触表面可以是平滑的或是粗糙的,且示范性的接触表面是使用铜或镀有金的铜形成的。如在图5中表示的,底板46包括正的直流DC总线层48、输出层50和负的DC总线层52。有利地,通过使用边缘卡连接器18和容器44,相对于常规功率模块减小了互连电感。
根据具体实施例,为了保护功率器件14,功率模块10还包括封闭有衬底12的外壳32。图7示出了示范性的外壳32。
模拟出一个的单刀开关功率模块的例子,图12是用于单刀开关功率模块的等效电路图。该实例的功率模块的寄生电感如下计算LIGBT=Lconn+LsD+LsQ,和LDiode=Lconn+LsD。
如这里所使用的,当IGBT导通时,LIGBT是封装电感,和当反并行二极管导通时,LDiode是封装电感。Lconn是对IGBT和反并行二极管之间共用的薄层互连的封装电感的贡献。LsQ是对与至少一个引线接合42和在IGBT芯片和反并行二极管芯片之间的导电图案17的一部分相关联的封装电感的贡献。LsD是对与至少一个引线接合42和在二极管芯片和薄层互连之间的导电图案的一部分相关联的封装电感的贡献。在该例子中,使用以下的参数值。在模块上的导体宽度设置成51mm,和在连接器上的导体宽度选择为86mm。在导电图案17上使用2.5mm的导体间隔,且在连接器上的两个导电层16、28的间隔选择为0.635mm。散热片的宽度和厚度分别设置成51mm和5mm。使用0.508mm的引线接合直径,且以两个频率进行模拟fs=DC和1MHz。这仅仅是用于进行说明性目的的模拟用途的一个例子,且不将这些值认定为以任何方式限制本发明。对于这个例子,该模拟的结果包括0.93nH的总开关模块电感,在1MHz时的9.2nH的栅极电感,406.4pF的开关模块电容,和在散热片和集电极板之间的207.5pF的电容。
参考图4-6描述功率模块组件80的实施例.本领域技术人员将认识到,尽管功率模块组件80说明为相脚结构,但是功率模块组件80同样可应用其它结构。如图所示的,例如在图5中,功率模块组件80包括多个功率模块10。如上所述,示范性的功率模块10包括衬底12,边缘卡连接器18和电连接42、43。上面讨论了用于功率模块10的示范性的功率器件14。功率模块组件80还包括构成为接收各自的边缘卡连接器18的多个容器44。示范性的容器在图4中说明。根据具体实施例,容器44具有至少一百安培(100A)的电流额定值,且更具体地,具有至少四百安培(400A)的电流额定值。例如,功率模块组件80还包括底板46,其具有正直流DC总线层48,输出层50和负DC总线层52,如在图5中表示的。容器44安装在底板46上,如在图6中表示的。
对于图5和8的示范性实施例,功率模块组件80包括两个功率模块10和两个容器44。如在图5和8中所示,设置功率模块10以使其各自的基板30相互面对。有利地,该结构提供了低寄生电感。可选地,对于控制寄生电感的应用几乎不是至关重要的且封装的约束妨碍了图5中示出的结构,功率模块10和容器44可设置成在底板46上的并排结构。例如,图9示出了具有设置成并排的单刀开关功率模块10的全桥结构。对于图9的结构,单刀开关功率模块10共用一个散热片30。可选地,每个单刀开关功率模块10也可具有单独的散热片。
根据具体实施例,功率模块组件80还包括用于冷却安装在各自的功率模块10中的功率器件14的至少一个散热片30。上面参考图3讨论了散热片30。根据更具体的实施例,电绝缘体26是导热的。
根据具体的实施例,衬底12由直接接合的铜(DBC)或活泼金属铜焊(AMB)形成。对于图6的示范性实施例,功率模块组件80还包括安装在衬底12的导电图案17上的多个功率器件14。示范性的电连接包括引线或带状接合42和功率堆焊43。对于图6的示范性实施例,电连接采取引线接合42的形式。如上面注意到的,本发明的一个益处是电连接对于静态和动态电流分配是对称的。
如上面注意到的,希望减小功率模块组件的寄生电感。对于图8中表示的相脚实施例,功率模块组件80还包括至少一个低电感电容器82。示范性的低电感电容器82包括多层陶瓷电容器和薄膜电容器。如图所示的,该一个低电感电容器82安装在底板46的底侧84上。有利地,低电感电容器82的使用还减小了对来自DC总线连接的寄生电感的贡献。
功率模块组件80的好处包括低寄生电感、模块化的结构和对高电流的标度能力。
在另一实施例中,功率模块组件80构成为开关磁阻电动机(SRM)驱动。例如在图15中示出的两个相脚组件SRM驱动功率电路,功率模块组件80包括至少四个功率模块10,其中至少两个功率模块是开关模块10,和至少两个功率模块是二极管模块10。对于该示范性的四个功率模块10的结构,SRM驱动可构成为驱动SRM的一个线圈。该SRM驱动具有至少两个相脚,每个相脚包括至少至少一个开关模块和至少一个二极管模块。如所说明的,开关模块包括至少一个晶体管,例如IGBT,和二极管模块包括至少一个二极管。功率模块10沿着底板46成对设置,如在图8中说明的两个功率模块的情况。然而,对于图15中示出的SRM实施例,四个功率模块10设置成两对,每对由来自相同相脚的开关和二极管模块组成。图9说明图15的SRM实施例的一个可能的物理结构。可选择地,可如图10中所示构成SRM器件。该SRM实施例可以被概括为使用其它数目相脚的SRM驱动功率电路。更通常地,SRM包括N个线圈,其中N是整数,且相应的SRM驱动包括设置成两个相脚的四个功率模块10(两个开关模块10和两个二极管模块10),以驱动每一个线圈。例如,对于三个线圈SRM来讲,SRM驱动包括设置成三个相脚的十二(12)个功率模块(六个开关模块和六个二极管模块),具有驱动各自的三个线圈的三对相脚。三相SRM变换器与图10中表示的标准三相变换器相类似,但具有包括开关模块和二极管模块的附加交替成对模块的差别,以使得对于SRM变换器的每一相位重复图15的布局。
可有利地组合功率模块10以形成模块化的相脚组件80,其是更普通的功率模块组件80的具体实施例。参考图5-8讨论了模块化的相脚组件80,其包括两个功率模块10,这在上面已经描述。根据具体实施例和如所示出的,在图6和7中,将功率模块10叠置在一起以使一个功率模块10的基板30面对另一个功率模块10的基板30。有利地,通过如在图6和7中表示的背对背设置功率模块,减小了由于底板引起的寄生电感。图9示出了功率模块10的另一种设置,其中单刀开关模块10形成全桥。对于图9的设置,模块10共用一个单一散热片30。可选择地,每个单刀开关功率模块10也可以具有单独的散热片。
模拟模块化的相脚组件的一个例子,图13是用于示范性的相脚组件的电路图。相脚组件的寄生电感如下计算LswL+=Lconn+LBus/2+LsD1+LsQ1,LdL+=Lconn+LBus/2+LsD2,Lsw1-=Lconn+LBus/2+LsD2+LsQ2,和LdL-=Lconn+LBus/2+LsD1。
如这里使用的,LswL+是对于输出端子和正极端子之间的上部开关路径的寄生电感,LdL+是对于输出端子和正极端子之间的上部二极管路径的寄生电感,LswL-是对于输出端子和负极端子之间的下部开关路径的寄生电感,和LdL-是对于输出端子和负极端子之间的下部二极管路径的寄生电感。LBus是底板的寄生电感,和Lconn是薄层互连的寄生电感。LsQ1(LsQ2)是对与开关Q1(Q2)芯片和反并行二极管D1(D2)芯片之间的引线接合互连相关联的封装电感的贡献。LsD1(LsD2)是对与至少一个引线接合42和二极管D1(D2)芯片与薄层互连之间的导电图案17的一部分相关联的封装电感的贡献。在该例子中,使用以下的参数值。在模块上的导体宽度设置成51mm,和在连接器上的导体宽度选择为56mm。在导电图案17上使用2.5mm的导体间隔,和连接器上的两个导电层的间隔选择为0.635mm。使用40mm的散热片宽度。出于比较目的,这仅仅是用于运行模拟目的的一个例子,并且不认为这些值以任何方式限定本发明。对于这个例子,对于图8的背对背结构,该模拟产生2.78nH的相脚回路电感-来自低电感DC总线电容器的正极到负极端子的总回路电感。比较起来,两个并排设置的相同的功率模块10对于这些参数值产生36.66nH的更高的寄生电感。这很清楚地显示出了叠置功率模块以使得功率模块10之一的基板30面对另一个功率模块10的基板30的重要性,如图5、6、7和8中的例子所示。
如图5和8中的例子所示,模块化的相脚组件80还包括至少两个构成为接收各自的薄层互连18的容器44和底板46。容器44安装在底板46上。至少一个低电感电容器82安装在底板46的底侧84上。实例性的低电感电容器82包括多层陶瓷电容器和薄膜电容器。
图14是三级相脚组件的等效电路图,且该示意图不包括寄生元件。如图所示的,功率模块组件80包括六个功率模块10,其中四个功率模块10是开关模块,和两个功率模块10是二极管模块。对于该实施例,功率模块10被设置成三级相脚。根据更具体的实施例,功率模块组件80还包括垂直设置在底板46(沿着图8中示出的y方向)上的六个容器44,具有在y方向上叠置的功率模块10。
可以有利地组合功率模块10以形成模块化的包括六个功率模块10的三相变换器组件90,上面已经描述过。在图10中说明了示范性模块化的三相变换器组件90。如在图10中所示,将功率模块10设置成三对,每一对对应于一个相脚91。示范性地将相脚91标示为图10中的A、B和C。为了减小相脚回路的电感,形成一对的功率模块10叠置在一起,以使一个功率模块10的基板30与另一个功率模块10的基板30相面对,如在图6、7和10中的例子所示。如在图10中所示,模块化的三相变换器组件90也包括构成为接收各自的薄层互连18的至少六个容器44和底板46。容器44安装在底板46上。
尽管在图10中示出的示范性三相变换器组件90包括连接到DC总线的电解电容器93,但是为了减小DC总线对寄生电感的贡献,可以使用低电感电容器82。尽管在图10中未示出,但是上面参考图8已经讨论了低电感电容器82。根据具体实施例,模块化的三相变换器组件90还包括至少一个低电感电容器82,例如多层陶瓷电容器或薄膜电容器。该低电感电容器安装在底板46的底侧84上,如在图8中的例子所示。
尽管在此只说明并描述了本发明的某些特征,但是对于本领域技术人员可以做很多修改和变化。因此,为了便于理解,附加的权利要求意在覆盖落在本发明的真实范围内的全部的这种修改和变化。
部件表10功率模块12衬底14功率器件15焊料层16上层17导电图案18薄层互连19功率器件的顶面20第一导电层21示出20和16之间的连接的线22绝缘层24第二导电层26电绝缘体28热耦合层30基板(散热片)32外壳34开关36晶体管38二极管42引线或带状接合43功率堆焊44容器46底板48正DC总线层50输出层52负DC总线层54内部容器接触表面56外部容器接触表面63栅极和回路引线
64栅极引线接合80功率模块组件(模块化的相脚组件)82低电感电容器84底板的背面90模块化的三相变换器组件91相脚93电解电容器
权利要求
1.一种功率模块(10),包括至少一个衬底(12),其包括上层(16)、电绝缘体(26)和热耦合层(28),其中所述上层包括至少一个导电图案(17)并且被构成为接收至少一个功率器件(14),其中所述电绝缘体被设置在所述上层和所述热耦合层之间,并且其中所述热耦合层被构成为与基板(30)热耦合;至少一个薄层互连(18),包括第一导电层(20)、绝缘层(22)和第二导电层(24),其中所述绝缘层设置在所述第一和第二导电层之间,其中所述薄层互连的所述第一导电层电连接到所述衬底的所述上层;和多个电连接(42),将至少一个功率器件的顶面(19)连接到所述薄层互连的第二导电层。
2.权利要求1的功率模块(10),还包括安装在所述衬底(12)上的多个功率器件(14),其中所述功率器件电连接到所述衬底的所述上层(16),其中所述功率器件包括形成至少一个开关(34)的至少一个晶体管(36)和至少一个反并行二极管(38),其中所述至少一个开关安装在所述导电图案(17)上,并且其中所述电连接(42)将二极管的阳极连接到所述薄层互连的所述第二导电层。
3.权利要求1的功率模块(10),还包括安装在所述衬底(12)上的多个功率器件(14),其中所述功率器件电连接到所述衬底的所述上层(16),其中所述功率器件包括多个晶体管(36),并且其中至少一个所述晶体管是IGBT和至少一个所述晶体管是MOSFET。
4.权利要求1的功率模块(10),还包括多个安装在所述衬底(12)上的功率器件(14),其中所述功率器件电连接到所述衬底的所述上层(16),其中所述功率器件包括多个反并行二极管(38),并且其中至少一个所述反并行二极管是双极型二极管和至少一个所述反并行二极管是非双极型二极管。
5.权利要求1的功率模块(10),其中所述电连接是从由引线接合(42)、至少一个功率堆焊(43)、带状接合(42)及其组合构成的组中选择的,且其中所述电连接对于静态和动态电流分配是对称的。
6.权利要求1的功率模块(10),其中所述薄层互连(18)包括构成为连接至安装在底板(46)上的容器(44)的边缘卡连接器(18),其中该底板包括正直流(DC)总线层(48)、输出层(50)和负DC总线层(52),且其中所述功率模块还包括至少一个封装所述衬底(12)的外壳(32)。
7.一种功率模块组件(80),包括多个功率模块(10),每一个功率模块包括衬底(12),包括上层(16)、电绝缘体(26)和热耦合层(28),其中所述上层包括至少一个导电图案(17)并且被构成为接收至少一个功率器件(14),其中所述电绝缘体设置在所述上层和所述热耦合层之间,并且其中所述热耦合层被构成为与基板(30)热耦合,边缘卡连接器(18),包括第一导电层(20)、绝缘层(22)和第二导电层(24),其中所述绝缘层设置在所述第一和第二导电层之间,并且其中所述边缘卡连接器的所述第一导电层电连接至所述衬底的所述上层,和多个电连接(42),将所述至少一个功率器件的顶面(19)连接至所述边缘卡连接器的所述第二导电层;多个容器(44),被构成为接收各自的所述边缘卡连接器;底板(46),包括正直流(DC)总线层(48)、输出层(50)和负DC总线层(52),其中所述容器安装在所述底板上;和至少一个低电感电容器(82),其选自由多层陶瓷电容器和薄膜电容器构成的组,其中所述至少一个低电感电容器安装在所述底板的底侧(84)上。
8.权利要求7的功率模块组件(80),被构成为开关磁阻电动机(SRM)驱动,并且包括至少四个功率模块(10),其中至少两个所述功率模块是开关模块(10),其中至少两个所述功率模块使二极管模块(10),其中所述SRM驱动包括至少两个相脚,每个相脚包括至少一个所述开关模块和至少一个所述二极管模块,其中SRM包括N个线圈,其中N是整数,且构成为SRM驱动的所述功率模块组件包括用于每一个相应的N个线圈的两个开关模块和两个二极管模块,其中所述SRM驱动包括2N个相脚,每个相脚包括至少一个所述开关模块和至少一个所述二极管模块,且其中两个所述相脚驱动SRM线圈的相应一个。
9.一种模块化的相脚组件(80),包括两个功率模块(10),每个功率模块包括散热片(30),基板(12),包括上层(16)、电绝缘体(26)和热耦合层(28),其中所述上层(16)包括至少一个导电图案(17),其中所述电绝缘体设置在所述上层和所述热耦合层之间,其中所述衬底附着到所述散热片,并且其中所述热耦合层(28)被构成为与所述散热片热耦合,和至少一个开关(34),包括至少一个晶体管(36)和至少一个反并行二极管(38),其中所述至少一个开关安装到所述导电图案上;外壳(32),封装所述衬底和所述至少一个开关;薄层互连(18),包括第一导电层(20)、绝缘层(22)和第二导电层(24),其中所述绝缘层设置在第一和第二导电层之间,其中所述薄层互连的所述第一导电层电连接到所述衬底的所述上层;和多个电连接(42),将所述至少一个反并行二极管的阳极连接至所述薄层互连的第二导电层。
10.一种模块化的三相变换器组件(90),包括六个功率模块(10),每个功率模块包括散热片(30),衬底(12),包括上层(16)、电绝缘体(26)和热耦合层(28),其中所述上层包括导电层(17),其中所述电绝缘体设置在所述上层和所述导热耦合层之间,其中所述衬底附着到所述散热片,其中所述热耦合层(28)被构成为与所述散热片热耦合,至少一个开关(34),包括至少一个晶体管(36)和至少一个反并行二极管(38),其中所述至少一个开关安装到所述导电图案上;外壳(32),封装所述衬底和所述至少一个开关,薄层互连(18),包括第一导电层(20)、绝缘层(22)和第二导电层(24),其中所述绝缘层设置在所述第一和第二导电层之间,其中所述薄层互连的所述第一导电层电连接到所述衬底的所述上层,和多个电连接(42),将所述反并行二极管的阳极连接到所述薄层互连的所述第二导电层,所述模块化的三相变换器组件还包括多个容器(44),被构成为接收各自的所述薄层互连;和底板(46),包括正直流(DC)总线层(48)、输出层(50)和负DC总线层(52),其中所述容器安装在所述底板上,其中所述功率模块被设置成三对,且其中每一对与一个相脚相对应。
全文摘要
一种功率模块(10),包括衬底(12),该衬底(12)包括上层(16)、电绝缘体(26)和热耦合层(28)。上层包括导电图案(17)并且被构成为接收功率器件(14)。电绝缘体设置在上层和热耦合层之间。热耦合层被构成为与散热片热耦合。该功率模块还包括至少一个薄层互连(18),该薄层互连包括第一和第二导电层(20、24)以及设置在第一和第二导电层之间的绝缘层(22)。薄层互连的该第一导电层电连接到衬底的上层。电连接(42)将功率器件的顶面(19)连接到薄层互连的第二导电层。
文档编号H01L23/488GK1797765SQ200510127249
公开日2006年7月5日 申请日期2005年11月24日 优先权日2004年11月24日
发明者L·D·斯特瓦诺维克, E·C·德尔加多, M·J·舒滕, R·A·博普雷, M·A·德鲁伊 申请人:通用电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1